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Introduction 

 Malgonde [1] investigated the following variant of the generalized Hankel-Clifford transform defined by 

        /2

0

( ) ( / ) 2 ( )  ,  1/ 2F y y x J xy f x dx
 

   


 

        (1)  

where  ( )J x  , being the Bessel function of the first kind of order    , in spaces of generalized functions. Note that (1) 

reduces to well-known Hankel-Clifford transform for suitable values of the parameters viz. for 0   and    , a transform 

studied in [4]. 

We can write generalization Hankel-Clifford of the Bessel-Clifford transform of   f x  as 

     /2

,

0

( ) ( ) 2  ,  1/ 2F y f x J xy x dx
 

     




   
    (2) 

The reverse transform from [2] is given by  

     /2

0

( ) ( ) 2  , 1/ 2f x F y J xy y dy
 

   


 

   
     (3) 

where     /2

0

f x x dx
 




  must exist must exist and be absolutely convergent, and where  f x  satisfies Dirichlet's conditions (of 

limited total fluctuation) in the interval  0, . 

For the purpose of determining a discrete transform as in [3], assume   0f x   that for all x T  and define  

  th/  zero of 2N Nr yT j j N J xy    so that the forward transform can be written as 

 

     
1

1 /22
,

0

( / ) ( ) 2  ,  1/ 2N NF rj T T f xT J xrj x dx

 
 

     


  

   
  (4)
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And the reverse transform is written as  
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0

( ) / 2  , 1/ 2N N
N N

rj j
f xT F rj T J xrj dr

T T

 

   

 



   
      

   


 

 

       
1

2
/2

0

( ) / 2  , 1/ 2N
N N

j
f xT F rj T J xrj r dr

T

 

 

   


  

 



 
    
 


  (5)  

We can now expand ( )f xT  over  0,1 ,  using Lommel's generalized version of the Fourier-Bessel series [8], namely, 

,

1 1

( )
, 0 1,

( )( )

0, 1

m m

n m m

C j x
x

j jf xT

x

 

 



 


 

 


  

 2

,

J

 J

       (6) 

where 
mj  are the zeros of  ( )J x   arranged in ascending order, and where the coefficients 

mC   are given by   

   
1

/2

0

( ) 2 .m mC x f xT J xj dx
 

 



 
       (7) 

Considering the additional assumption that 0mC   for all m N  choose N  and T  arbitrarily large, with no loss of generality by 

having imposed this additional assumption on the properties of ( )f xT . Taking the transform of eq. (6) utilizing eq. (4), the well 

established result is obtained: 

 
1

2
, ( / ) and  / .m m m NF j T T C r j j

 

 


 

 
      (8) 

and 

  

1
, ,

, 22
1

, 1

( / ) ( )
( / ) , 0 .

( )

N
m N m

N

m
m m N

F j T rj j
F rj T r

j j rj

   

 

 






   



J

J
     (9) 

Applying eq. (8) to eq. (6) it is seen that 

 

1
, ,

11
2

1

( / ) ( )
, 0 1,

( ) ( )

0, 1 .

N
m m

m

m m

F j T j x
x

f xT T j j

x

   

 

 




 




 

 


  


2

,

J

 J

      (10) 

A new discrete generalized Hankel-Clifford transform algorithm 

 This last equation gives an exact relationship between ( )f xT  and the values of its transform at particular values of r . We now 

need a similar relationship, relating 
, ( / )NF rj T   to values of ( )f xT  at particular values of x . Setting /p Nx j j  in eq. (10), 

multiplying to both the sides by   2 /p m NJ j j j   and assuming, one obtains 

 
1

12
,

2
, 1 1

( / )
( / ), 0 1,( / ) ( )

0, 1

N
m p N

p N
m pN m p

j j jT
f j T j xF j T j j j

x

 

 

 
 


 



 


   


  

 2

,

J

 J

   (12) 

Therefore, exact pair of discrete transform equations are written as 

         
 

   
2

2

1 1

, , , ,2
1 1

1
, ; , ,

N N

m iN

T
f i Y m i F m F m Y m i f i

jT

 

         

 

 

 

 

  
 

where  
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          ,

, , ,

1

( / )
/ ; / ; , .

( )

m i N

m p N

i m

j j j
F m F j T f i f j T j Y i m

j j

 

     

 

  
2

,

J

 J
 

This now can be taken a step further. Inserting eq. (12) into eq. (9), the relationship between  f p  and  , /NF r j T   at continuous 

values of r  is obtained. 

   
 

   

   

2
1 1
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2
1 1, 11
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( / )
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p N m p N N m
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f j T j j j j r j jT
x

F rj T j j rj jj

x

 

   

    

 
 

  


  

 


  

 2
,,

J J

 JJ

 (13) 

This can be further simplified by recognizing that the inner sum on the right-hand side of the above equation is the first  1N   terms 

in the Fourier-Bessel series for  , pr j J  in [5]. Therefore for 1r  , 
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where  
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For most functions  f xT , the error in approximation (14) rapidly becomes small for increasing values of N . In fact, for values of 

N  greater than 10 this error can be less than 1%. In [7], Oppenheim et al presented an algorithm for the numerical evaluation of the 

Hankel transform. 

Calculations in [9] give, 
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where numerical analysis indicates that for 0.    
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These additional relations combined with the original orthogonality relation in eq. (11) may prove to be useful in numerically 

computing the solutions to various types of differential equations which require generalized Hankel-Clifford transforms. 
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Computations 

The discontinuous function as presented in [6], 

 1

1,

0,

a
f

a







 

  

which has analytic transform  
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    (15) 

and the reciprocal of the above, namely 
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4 2 3
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3 3 2
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which has the transform 

,

1, ,
( )

0, .

r a
F r

r a
 


 

  

For the purpose of separating   1f   and   2f   into discrete points we choose 

 1

1, ,

0, ,

n h
f n

n h


 

  

where  

1,..., , / 2n N T N   for our transform,  

/ 2, / 2 1,..., / 2 1, / 2;n M M M M T M       for Candel’s transform as in [6] 

and  
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1,..., , / 4n N T N   for our transform,  
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for Candel’s transform.  
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1/2

2

3 1f  


   which has applications in the problems with elastic scattering of electrons. The analytic function is found by 

MATHEMATICA 5.0 gives these results  
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Now considering   1/ 2    ; the transform of the function is shown below: 

 

Figure 1: Results of the exact transforms and numerical transforms 
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Figure 2: Results show the step function considering the exact transform at 
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The solid line is the exact transform, the dots are the numerical transform.
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Figure 3: Results show the step function considering the numerical transform at 
1 1

; .
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Figure 4: Results of the exact transform and numerical at 
1 1

; .
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For 1 ;f r  

 

Figure 5: Graph of exact transform of 1 ;f r  
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The dotted line is the numerical transform for alpha=1/4 and beta=1/6
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Figure 6: Results show the function 
1f r  the numerical transform at 
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Figure 8: Results show the function exact transform and numerical transform at 
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Figure 9: Results show the function 

3

2
1f r  the exact transform at 

1 1
; .

4 6
    

 

 

 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

5

6

7

8

r

T
ra

n
s
fo

rm
 t

h
e
 s

te
p
 f

u
n
ti
o
n

The dotted line is the numerical transform for alpha=1/4 and beta=1/6

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

50

100

150

200

250

300

r

T
ra

n
s
fo

rm
 t

h
e
 s

te
p
 f

u
n
ti
o
n

The solid line indicates exact transform,dotted line numerical transform for alpha=1/4;beta=1/6

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

500

1000

1500

2000

2500

3000

3500

4000

4500

r

T
ra

n
s
fo

rm
 t

h
e
 s

te
p
 f

u
n
ti
o
n

The solid line is the exact transform for alpha=1/4 and beta=1/6



V. R. Lakshmi Gorty/ Elixir Appl. Math. 71 (2014) 24990-24998 

 
24997 

 

Figure 10: Results show the function 

3

2
1f r  the numerical transform at 
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Figure 11: Results show the function 

3
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1f r  the exact and numerical transform at 

1 1
; .
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Results and discussion 

 In some of the applications it may be necessary to find an analytic solution where equation (15) will help to solve generalized 

Hankel-Clifford Transforms. It may additionally be possible to use one of the relationships in equation (16)-(18) in determining a 

solution. In solving a differential equation requiring generalized Hankel-Clifford transforms, one may be able to dramatically improve 

the speed of calculation utilizing some of the fundamental principles outlined in this paper.  
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