
G.S.Pugalendhi/ Elixir Inform. Tech. 71 (2014) 24965-24969

24965

Introduction

 In the course of doing business, sometimes sensitive data

must be handed over to supposedly trusted third parties. For

example, a hospital may give patient records to researchers who

will devise new treatments. Similarly, a company may have

partnerships with other companies that require sharing customer

data. Another enterprise may outsource its data processing, so

data must be given to various other companies. We call the

owner of the data the distributor and the supposedly trusted third

parties the agents. Our goal is to detect when the distributor’s

sensitive data have been leaked by agents, and if possible to

identify the agent that leaked the data[1]. We consider

applications where the original sensitive data cannot be

perturbed. Perturbation is a very useful technique where the data

are modified and made “less sensitive” before being handed to

agents. For example, one can add random noise to certain

attributes, or one can replace exact values by ranges. However,

in some cases, it is important not to alter the original

distributor’s data. For example, if an outsourcer is doing our

payroll, he must have the exact salary and customer bank

account numbers.

 If medical researchers will be treating patients (as opposed

to simply computing statistics), they may need accurate data for

the patients. Traditionally, leakage detection is handled by

watermarking, e.g., a unique code is embedded in each

distributed copy. If that copy is later discovered in the hands of

an unauthorized party, the leaker can be identified[2].

Watermarks can be very useful in some cases, but again, involve

some modification of the original data.

 Furthermore, watermarks can sometimes be destroyed if the

data recipient is malicious. In this paper, we study unobtrusive

techniques for detecting leakage of a set of objects or records.

Specifically, we study the following scenario : After giving a set

of objects to agents, the distributor discovers some of those

same objects in an unauthorized place. (For example, the data

may be found on a website, or may be obtained through a legal

discovery process.)[1] At this point, the distributor can assess

the likelihood that the leaked data came from one or more

agents, as opposed to having been independently gathered by

other means. Using an analogy with cookies stolen from a

cookie jar, if we catch Freddie with a single cookie, he can argue

that a friend gave him the cookie. But if we catch Freddie with

five cookies, it will be much harder for him to argue that his

hands were not in the cookie jar. If the distributor sees “enough

evidence” that an agent leaked data, he may stop doing business

with him, or may initiate legal proceedings. In this paper, we

develop a model for assessing the “guilt” of agents. We also

present algorithms for distributing objects to agents, in a way

that improves our chances of identifying a leaker.

 Finally, we also consider the option of adding “fake”

objects to the distributed set. Such objects do not correspond to

real entities but appear realistic to the agents. In a sense, the fake

objects act as a type of watermark for the entire set, without

modifying any individual members[2]. If it turns out that an

agent was given one or more fake objects that were leaked, then

the distributor can be more confident that agent was guilty.

System Analysis

Existing System

The guilt detection approach we present is related to the

data provenance problem tracing the lineage of S objects implies

essentially the detection of the guilty agents. Tutorial provides a

good overview on the research conducted in this field[3].

Suggested solutions are domain specific, such as lineage tracing

for data warehouses and assume some prior knowledge on the

way a data view is created out of data sources. Our problem

formulation with objects and sets is more general and simplifies

lineage tracing, since we do not consider any data

transformation from Ri sets to S.

As far as the data allocation strategies are concerned, our

work is mostly relevant to watermarking that is used as a means

of establishing original ownership of distributed objects.

Watermarks were initially used in imagtes, video, and audio data

whose digital representation includes considerable redundancy

[4]. Recently other works have also studied marks insertion to

relational data. Our approach and watermarking are similar in

the sense of providing agents with some kind of receiver

identifying information. However, by its very nature, a

watermark modifies the item being watermarked. If the object to

be watermarked cannot be modified, then a watermark cannot be

inserted. In such cases, methods that attach watermarks to the

Data leakage detection in single sign on system
G.S.Pugalendhi

Information Technology, Maharaja Institute of Technology, Coimbatore, India.

ABSTRACT

In Single Sign On (SSO) Systems clients are allowed to login into multiple websites using

a single user id and password. In that case single sign on data distributor has given

sensitive data to a set of supposedly trusted agents (third parties). Some of the data are

leaked and found in an unauthorized place (e.g. on the web). The distributor must assess

the likely hood that the leaked data came from one or more agents, as opposed to having

been independently gathered by other means. This paper presents a novel approach for

data allocation strategies (across the agents) that improve the probability of identifying

leakages of user profile information’s. In some cases, we can also inject “realistic but

fake” data records to further improve our chances of detecting leakage and identifying the

guilty party.

 © 2014 Elixir All rights reserved

.

ARTICLE INFO

Article history:

Received: 13 February 2014;

Received in revised form:

6 June 2014;

Accepted: 13 June 2014;

Keywords

Single Sign On;

Random Access Memory.

Elixir Inform. Tech. 71 (2014) 24965-24969

Information Technology

Available online at www.elixirpublishers.com (Elixir International Journal)

Tele:

E-mail addresses: pugal_lendhi@yahoo.co.in

 © 2014 Elixir All rights reserved

G.S.Pugalendhi/ Elixir Inform. Tech. 71 (2014) 24965-24969

24966

distributed data are not applicable.

 Finally, there are also lots of other works on mechanisms

that allow only authorized users to access sensitive data through

access control policies. Such approaches prevent in some sense

data leakage by sharing information only with trusted parties[3].

However, these policies are restrictive and may make it

impossible to satisfy agents’ requests.

Proposed System

 A distributor owns a set of valuable data objects. The

distributor wants to share some of the objects with a set of agens

U1; U2; … ; UN. but does not wish the objects be leaked to other

third parties. The objects in T could be of any type and size, e.g.,

they could be tuples in a relation, or relations in a database. An

agent receives a subset of objects Ri T, determined either by a

sample request or an explicit request: Sample request Ri ¼

SAMPLEδt;MIρ: Any subset of mi records from T can be given

to Ui.Explicit request Ri ¼ EXPLICITδT; condiρ: Agent Ui

receives all T objects that satisfy condi. Example. Say that T

contains customer records for a given company A. Company A

hires a marketing agency U1 to do an online survey of

customers. Since any customers will do for the survey, U1

request a sample of 1,000 customer records. At the same time,

company A subcontracts with agent U2 to handle billing for all

California customers. Thus, U2 receives all T records that

satisfy the condition “state is California”. Although we do not

discuss it here, our model can be easily extended to requests for

a sample of objects that satisfy a condition (e.g., an agent wants

any 100 California customer records). Also note that we do not

concern ourselves with the randomness of a sample. (We

assume that if a random sample is required, there are enough T

records so that the to-be-presented object selection schemes can

pick random records from T.)

 Suppose that after giving objects to agents, the distributor

discovers that a set S T has leaked. This means that some third

party, called the target, has been caught in possession of S. For

example, this target may be displaying S on its website, or

perhaps as part of a legal discovery process, the target turned

over S to the distributor, Since the agents U1; . . . ; Un have

some of the data, it is reasonable to suspect them leaking the

data. However, the agents can argue that they are innocent, and

that the S data were obtained by the target through other means.

For example, say that one of the objects in S represents a

customer X. Perhaps X is also a customer of some other

company, and that company provided the data to the target. Or

perhaps X can be reconstructed from various publicly available

sources on the web. Our goal is to estimate the likelihood that

the leaked data came from the agents as opposed to other

sources. Intuitively, the more data in S, the harder it is for the

agents to argue they did not leak anything. Similarly, the “rarer”

the objects, the harder it is to argue that the target obtained them

through other means[4]. Not only do we want to estimate the

likelihood the agents leaked data, but we would also like to find

out if one of them, in particular, was more likely to be the

leaker. For instance, if one of the S objects was only given to

agent U1, while the other objects were given to all agents, we

may suspect U1 more. The model we present next captures this

intuition. We say an agent Ui is guilty and if it contributes one or

more objects to the target. We denote the event that agent Ui is

guilty by Gi and the vent that agent Ui is guilty for a given

leaked set S by GijS. Our next step is to estimate PrfGijSg, i.e.,

the probability that agent Ui is guilty given evidence S.

Project description

Module description
 The template is designed so that author affiliations are not

repeated each time for multiple authors of the same affiliation.

Please keep your affiliations as succinct as possible (for

example, do not differentiate among departments of the same

organization). This template was designed for two affiliations.

User Profile

 This is used to manage the user profile data onto the

database. This assigns a unique account ID to each user. The

target audience may be existing users or, in the case of a new

site, new users. User profiles (also referred to as user persons)

are an excellent way to document and illustrate realistic sample

users. User profiles are short bios or narratives about a user and

their use of a Web site. These personas typically are concise one

page documents.

 Creating user personas is often the job of an information

architect or designer who understands the target user groups and

is experienced in creating these documents. However, in some

situations it’s beneficial having the combined Web group or

project team collaborate to develop the user profiles. Working as

a group will the team to focus on and understand the various

user groups you are targeting. Typically how profiles are

developed will depend on the size of the site, budget, and

timeframe[10].

 It’s important to make sure your personas accurately

describe the target (or existing) audiences. They should be based

on your current understanding of existing users (if they exist),

research, user interviews, and the knowledge of content experts

and clients.

A user profile should include;

 Name

 Occupation

 Age

 Gender

 Education

 Banking Credentials

 Shopping Details

Registration

 This contains a registration form which gets user input and

stores them into the database.

Edit / Delete

User profile modifying is done in this module.

User Data

 This module stores the user profile and their website

information on the database in addition to their account details.

User uploaded data’s and their website resource access limits are

stored[5].

Activity Session

 This module creates and manages the user activity details

on the website. The User Profile Service class in the Web

service includes methods to manage user profiles. For example,

to add a link to the My Links page on the My Site for the

specified account name, you use the AddLink method of the

User Profile Service class. To remove a colleague from the My

Colleagues page for the specified account name, you use the

Remove Colleague method[9].

You can also use the relevant properties of various classes

in the User Profile Service Web service namespace to get or set

a particular property. For example, to get or set common

memberships that two user profiles share, you use the

Memberships property in the In Common Data class. To specify

or determine whether a property value was changed for a

G.S.Pugalendhi/ Elixir Inform. Tech. 71 (2014) 24965-24969

24967

particular user profile property, you use the Is Value Changed

property of the Property Dataclass[6].

 The User Profile Service Web service provides a user

profile interface for remote clients to read and create user

profiles. To use the User Profile Service Web service library,

you must generate a proxy class in either Microsoft Visual C# or

Microsoft Visual Basic through which you can call the various

Web service methods.

 The Web Services Description Language (WSDL) for the

User Profile Servcie Web service endpoint is accessed through

User Profile Service.asmx?wsdl[5].

The following example shows the format of the URL to the User

Profile Service Web Service WSDL file.

http://<server>/<customsite>/_vti_bin/UserProfileService.asmx

Session Information

 This module stores the details about their session with their

login details includes time and type of login onto the website.

A session starts when :

 A new user requests an ASP file, and the Global.asax file

includes a Session_OnStart procedure.

 A value is stored in a Session variable

 A user requests an ASP file, and the Global.asax file uses the

<object> tag to instantiate an object with session scope.

 A session ends if a user has not requested or refreshed a page

in the application for a specified period. By default, this is 20

minutes.

Page Resource Access Data

 This module monitors and stores information about the user

website pages visiting, the type of page, and frequency about the

visit into their activity session data.

Agent Admin

 This module manages the details about the websites that

using the access control tools and provides the detail report

about the user activity to the admin.

Agent Registration

 This module is used to register the website, one admin user

registration is allowed for the website. Admin registered can ad

more websites under their account control.

Tool Download

Registered website admin are provided the tools for

downloading.

Tool Implementation

 Tools are automatically configured for the website on which

they are going to be installed. Website admin are just want to

copy the generated content into their webpages which they want

to monitor.

Tool Management

 This module is used to manage the admin tools; admin can

add more tools, edit or delete their tools.

Tool Sharing

 This module provides the tool sharing functionality to

admin in order them to implement the monitoring control tool

on their multiple websites.

Fake Objects

 The distributor may be able to add fake objects to the

distributed data in order to improve his effectiveness in

detecting guilty agents. However, fake objects may impact the

correctness of what agents do, so they may not always be

allowable. The idea of perturbing data to detect leakage is not

new, e.g. However, in most cases, individual objects are

perturbed, e.g., by adding random noise to sensitive salaries, or

adding a watermark to an image. In our case, we are perturbing

the set of distributor objects by adding fake elements. In some

applications, fake objects may cause fewer problems that

perturbing real objects. For example, say that the distributed

data objects are medical records and the agents are hospitals. In

this case, even small modifications to the records of actual

patients may be undesirable[6][7].

 However, the addition of some fake medical records may be

acceptable, since no patient matches these records, and hence,

no one will ever be treated based on fake records. Our use of

fake objects is inspired by the use of “trace” records in mailing

lists. In this case, company A sells to company B a mailing list

to be used once (e.g., to send advertisements). Company A adds

trace records that contain addresses owned by company A. Thus,

each time company B uses the purchased mailing list, A receives

copies of the mailing. These records are a type of fake objects

that help identify improper use of data. The distributor creates

and adds fake objects to the data that he distributes to agents.

We let Fi Ri be the subset of fake objects that agent Ui receives.

As discussed below, fake objects must be created carefully so

that agents cannot distinguish them from real objects. In many

cases, the distributor may be limited in how many fake objects

he can create. For example, objects may contain e-mail

addresses, and each fake e-mail address may require the creation

of an actual inbox (otherwise, the agent may discover that the

object is fake). The inboxes can actually be monitored by the

distributor: if e-mail is received from someone other than the

agent who was given the address, it is evident that the address

was leaked. Since creating and monitoring e-mail accounts

consumes resources, the distributor may have a limit of fake

objects.

 If there is a limit, we denote it by B fake objects. Similarly,

the distributor may want to limit the number of fake objects

received by each agent so as to not arouse suspicions and to not

adversely impact the agents’ activities. Thus, we say that the

distributor can send up to bi fake objects to agent Ui. Creation.

The creation of fake but real-looking objects is a nontrivial

problem whose thorough investigation is beyond the scope of

this paper. Here, we model the creation of a fake object for agent

Ui as a black box function CREATEFAKEOBJECT Ri; Fi;[7]

condition that takes as input the set of all objects Ri, the subset

of fake objects Fi that Ui has received so far, and condition, and

returns a new fake object. This function needs Condition to

produce a valid object that satisfies Ui’s condition. Set Ri is

needed as input so that the created fake object is not only valid

but also indistinguishable from other real objects. For example,

the creation function of a fake payroll record that includes an

employee rank and a salary attribute may take into account the

distribution of employee ranks, the distributionof salaries, as

well as the correlation between the two attributes. Ensuring that

key statistics do not change by the introduction of fake objects is

important if the agents will be using such statistics in their work.

Finally, function CREATEFAKEOBJECT() has to be aware of

the fake objects Fi added so far, again to ensure proper statistics.

The distributor can also use function CREATEFAKEOBJECT()

when it wants to send the same fake object to a set of agents.

In this case, the function arguments are the union of the Ri and

Fi tables, respectively, and the intersection of the conditions

condis. Although we do not deal with the implementation of

CREATEFAKEOBJECT(), WE NOTE THAT THERE ARE

TWO MAIN DESIGN OPTIONS. The function can either

produce a fake object on demand every time it is called or it can

return an appropriate object from a pool of objects created in

advance.

Fake Object Allocation Strategies

 In this section, we describe allocation strategies that solve

exactly or approximately the scalar versions of for the different

G.S.Pugalendhi/ Elixir Inform. Tech. 71 (2014) 24965-24969

24968

instances presented. We resort to approximate solutions in cases

where it is inefficient to solve accurately the optimization

problem.

Explicit Data Requests

 In problems of class EF, the distributor is not allowed to

add fake objects to the distributed data. So, the data allocation is

fully defined by the agents’ data requests. Therefore, there is

nothing to optimize. In EF problems, objective values are

initialized by agents’ data requests. Say, for example, that T ¼

ft1; t2g and there are two agents with explicit data request such

that R1 ¼ ft1; t2g and R2 ¼ ft1g.

 The distributor cannot remove or alter the R1 or R2 data to

decrease the overlap R1\R2. However, say that the distributor

can create one fake object (B ¼ 1) and both agents can receive

one fake object (b1 ¼ b2 ¼ 1). In this case, the distributor can

add one fake object to either R1 or R2 to increase the

corresponding denominator of the summation term. Assume that

the distributor creates a ake object f and he gives it to agent R1.

Agent U1 has now R1 ¼ ft1; t2; fg and F1 ¼ ffg and the value of

the sum-objective decreases to 1 3 ρ 1 1 ¼ 1:33<1:5

 If the distributor is able to create more fake objects, he

could further improve the objective. We present in Algorithms 1

and 2 a strategy for randomly allocating fake objects. Algorithm

1 is a general “driver” that will be used by other strategies, while

Algorithm 2 actually performs the random selection. We denote

the combination of Algorithm 1 with 2 as e-random. We use e-

random as our baseline in our comparisons with other

algorithms for explicit data requests[8]

System Flow Diagram

Figure 1. System Flow Diagram

Table design

TABLE .1 TB USER TABLE

Field name Data type Constraint

Userid Varchar(50) Primary Key

Name Varchar(50) Primary Key

Password Varchar(50) Primary Key

Fullname Varchar(50) Primary Key

Email Varchar(50) Primary Key

Age Varchar(50) Primary Key

Gender Varchar(50) Primary Key

Country Varchar(50) Primary Key

City Varchar(50) Primary Key

State Varchar(50) Primary Key

Address Varchar(50) Primary Key

TABLE 2. TB USER IN SESSION

Field name Data type Constraint

Sessionname Varchar(50) Primary Key

Status Varchar(50) Primary Key

TABLE 3. TB SESSION

Field name Data type Constraint

Sessionid Varchar(50) Primary Key

Userid Varchar(50) Primary Key

Websiteid Varchar(50) Primary Key

Lastlogin Varchar(50) Primary Key

Visitedarea Varchar(50) Primary Key

Country Varchar(50) Primary Key

State Varchar(50) Primary Key

Webtype Varchar(50) Primary Key

Gender Varchar(50) Primary Key

Age Varchar(50) Primary Key

TABLE 4. TB AGENT TABLE

Field name Data type Constraint

Website Id Varchar(50) Primary Key

Password Varchar(50) Secondary

Key

Name Varchar(50) Secondary

Key

Web type Varchar(50) Primary Key

Country Varchar(50) Secondary

Key

State Varchar(50) Primary Key

TABLE 5. TB LEAKAGE DETECTION

Field name Data type Constraint

User id Varchar(50) Primary Key

Name Varchar(50) Primary Key

Password Varchar(50) Primary Key

Full name Varchar(50) Primary Key

Email Varchar(50) Primary Key

Age Varchar(50) Primary Key

Gender Varchar(50) Primary Key

Country Varchar(50) Primary Key

City Varchar(50) Primary Key

State Varchar(50) Primary Key

Address Varchar(50) Primary Key

Conclusion

 In a perfect world, there would be no need to hand over

sensitive data to agents that may unknowingly or mailiciously

leak it. And even if we had to hand over sensitive data, in a

perfect world, we would watermark each object so that we could

trace it origins with absolute certainity. However, in many cases,

we must indeed work with agents that may not be 100 percent

trusted, and we may not be certain if a leaked object came from

an agent or from some other source, since certain data cannot

admit watermarks. In spite of these difficulties, we have shown

that it is possible to assess the likelihood that an agent is

responsible for a leak, based on the overlap of his data with the

leaked data and the data of other agents, and based on the

probability that objects can be “guessed” by other means.

 Our model is relatively simple, but we believe that it

captures the essential trade-offs. The algorithms we have

presented implement a variety of data distribution strategies that

can improve the distributor’s chances of identifying a leaker.

We have shown that distributing objects judiciously can make a

significant difference in identifying guilty agents, especially in

cases where there is large overlap in the data that agents must

receive.

References

[1] R.Agrawal and J.Kiernan, “Watermarking Relational

Databases,” Proc. 28
th

 Int’l Conf. Very Large Data Bases

(VLDB ’02), VLDB Endowment, pp. 155-166, 2002.

[2] P.Bonatti, S.D.C. di Vimercati, and P.Samarati, “An

Algebra for Composing Access Control Policies,” ACM Trans.

Information and System Security, Vol.5.no.1, pp.1-35,2002.

G.S.Pugalendhi/ Elixir Inform. Tech. 71 (2014) 24965-24969

24969

[3] P.Buneman, S.Khanna, and W.C. Tan, “Why and Where: A

Characterization of Data Provenance,” Proc. Eighth Int’l Conf.

Database Theory (ICDT ’01), J.V. den Bussche and V.Vianu,

eds., pp.316-330, Jan. 2001

[4] P.Buneman and W.-C.Tan, “Provenance in Databases,”

Proc.ACM SIGMOD, pp. 1171-1173, 2007.

[5] Y.Cui and J.Widom, “Lineage Tracing for General Data

Warehouse Transformations,” The VLDB J., vol. 12, pp. 41-58,

2003.

[6] S.Czerwinski, R. Fromm, and T. Hodes, “Digital Music

Distribution and Audio Watermarking,”

http://www.scientificcommons.org/43025658, 2007.

[7] F.Guo, J.Want, Z. Zhang, X.Ye, and D.Li, “An Improved

Alorithm to Watermark Numeric Relational Data,” Information

Security Applications, pp. 138-149, Springer, 2006.

[8] F. Hartung and B. Girod, “Watermarking of Uncompressed

and Compressed Video,” Signal Processing, vol. 66, no.3, pp.

283-301, 1998.

[9] S. Jajodia, P.Samarati, M.L. Sapino, and V.S.

Subrahmanian, “Flexible Support for Multiple Access Control

Policies,” ACM Trans. Database Systems, Vol. 26, no. 2, pp.

214-260, 2001.

[10] Y. Li, V. Swarup, and S. Jajodia, “Fingerprinting Relational

Databases: Schemes and Specialities,” IEEE Trans. Dependable

and Secure Computing, vol. 26, no.2, pp. 34-45, Jan – Mar

2005.

