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Introduction 

The auto industry is often thought of as one of the most global of all industries. Its products have spread around the world, and it 

is dominated by a small number of companies with worldwide recognition. However, in certain respect the industry is more regional 

than global, in spite of the globalizing trends evident in the 1990s. The spread of vehicle production in developing countries increased 

markedly in the boom years of rapid expansion in the emerging markets in the 1990s. One feature of the auto industry in the last 25 

years was the way in which leading vehicle manufacturers extended their operations in developing countries. For the global producers, 

rapidly growing markets in developing countries were meant to provide for spreading vehicle development costs; for establishing 

cheap production sites for the production of selected vehicles and components; and for access to new markets for higher-end vehicles, 

which would still be produced in the triad economies. 

Due to high rivalry and competitiveness, the venture search becomes advanced and higher performances at lower cost, so the 

optimization of the operations of the industrial system and its support systems such as maintenance system, assembly and production 

system is necessary. In a highly competitive industry, production management has to continually focus on achieving increased product 

performance, quality and efficiency in order to maintain a fair share of the available market and improve its customer base. To 

improve business performances, maintenance is thus directly related to risk analysis and dependability which allow forecasting the 

gaps between nominal and non-nominal operations of the system (degradation, failure, etc). As the complexity and automation of 

equipments increased, it resulted in severe problems of maintenance and repair. This put forward the tasks of developing a systematic 

approach to the study of any phenomena and process that can lead to failure free operation or render service for a good or at least 

reasonable period of time. Bazovsky, Igor [1] and Barlow and Proschan [2] have described various reliability aspects and its principles 

in the modern day life. 

Further, real-time and embedded systems are now a central part of our lives. Reliable functioning of these systems is of 

paramount concern to the millions of users that depend on these systems every day. Unfortunately most embedded systems still fall 
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short of user’s expectation of reliability. Basically a system is a combination of elements forming a planetary whole i.e. there is a 

functional relationship between its components. The properties and behaviour of each component ultimately affects the properties of 

the system. Any system has a hierarchy of components that pass through the different stages of operations which can be operational, 

failure, degraded or in repair. Failure doesn’t mean that it will always be complete; it can be partial as well. But both these types affect 

the performance of system and hence the reliability. Majority of the systems in the industries are repairable. The performance of these 

systems can influence the quality of product, the cost of business, the service to the customers, and thereby the profit of enterprises 

directly. Modern repairable systems tend to be highly complex due to increase in convolution and automation of systems. 

As far as the production-operations are concerned, not only reliability but also steady state availability analysis is essential, again 

on account of increased complexity and cost of present day equipment. Also the markets are getting globalized and more competitive. 

Penalties for delayed deliveries have been increased. Sometimes the orders are cancelled and defaulting plants are not favoured with 

orders. To overcome these types of problems, reliability and steady state availability analysis is necessary for performance studies in 

the area of discrete manufacturing systems. Many researcher [3, 4, 5 and 6] discussed reliability and steady state analysis of 

manufacturing plant by using different approaches like Probabilistic rational model technique, Matlab tool, matrix method etc.    

This paper proposes a methodology to develop a decision-making aid tool whose objective is to assess the dependability and 

performances of an industrial system. In practical situation data collected or available for the complex repairable industrial systems 

are vague, ambiguous, qualitative and imprecise in nature due to various practical constraints. So it is not easy to calculate reliability 

indices of such systems up to a desired accuracy. If reliability indices of these systems have been calculated, then they have high range 

of uncertainty. The purpose of the present paper is to compute the reliability characteristics of an automobile assembly plant. An 

automobile assembly plant consists of five sub-units working in series as: Vendor (supply steel metal and body parts), Weld shop, 

Paint shop, Assembly shop and Quality department. In the Weld shop and Assembly shop three parallel machines are involved in 

doing the same job. These subsystems follows 2-out -of-3:G and 1-out-of-3:F configurations which specifies that if at least two 

machines of the Weld shop and Assembly shop are working then the system is in operating state and able to fulfil the required target 

and if two machines are failed and only one machine is working then the system fails [7]. Also system can fail due to machine 

failures. Machine failures can be major or minor or both. Here two different groups of repairmen are involved in repairing of the 

system. Since these groups have different skills and expertise hence when both of the groups are involved in repairing for different 

failures then joint distribution is obtained with the help of Gumble-Hougaard copula. After assembly of the product, quality checks are 

done by the quality department. Any ignorance or unawareness of the quality experts can lead to the system into the risk state, which 

may result to the system failure. Preventive maintenance is one of the important aspects of production companies; it is possible by 

providing rest to all the machines one by one for a particular period of time as per maintenance schedule. The above facts i.e. 

preventive maintenance and risk analysis have been taken into consideration in the present study. The reliability block diagram, 

transition state diagram and state specification of the considered system is shown in Figures-1, 2 and table-1 respectively. 

Nomenclatures  

Pr                   Probability. 

P0(t) Pr{ at time t the system is in state S0 } 

Pi(k ,t) 

 

V/W/P/A/Q 

Pr {the system is in failed state due to the failure of the i
th

 subsystem at time t and elapsed repair time lies between k 

and k+},where i=V, P, M, QR ,Q, A,W  and k= x, y, r, q, h, g, u. 

Vendor/Weld shop/Paint shop/Assembly shop/Quality department.  

K Elapsed repair time, where k= x, y , r, q, h, g ,u. 

AW 11
/

 
 

Failure rate of the one machine of the Weld shop/Failure rate of the one machine of the assembly shop. 

M
 

 

Failure rate due to machine failure  
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)(1 tPW   

)(1 tP A  

 

i
 

 

Pr {the system is in operating state when one machine of the weld shop is failed and remaining two are working} 

 

Pr{the system is in operating state when one machine of the assembly shop is failed and remaining two are working } 

 

General failure rate of i
th 

subsystem,
 
where i= V, P, M, Q,A,W  

,      
 

)(ki
 

General repair rate of i
th

 system in the time interval (k, k+), where i= V, P, M,Q,QR,A,W  and k= x, y, r, q, h, g, u. 

Q
 

Risk factor or risk rate (that lead the system into the risk state). 

Pi, W (k, t) 

 

Pi, A (k, t) 

 

 

PQR(q, t)                   

Pr (at time t system is in failed state due to the failure of the i
th

 Subsystem (from the state S2) while one machine of 

the weld shop is not working). Elapsed repair time for i
th

 subsystem lies between (k, k+), where i= V, P, A and k= x, 

y, g. 

Pr (at time t system is in failed state due to the failure of the i
th

 Subsystem (from the state S4) while one machine of 

the assembly shop is not working). Elapsed repair time for i
th

 subsystem lies between (k, k+), where i= V, P,W and 

k= x, y, u. 

Pr ( at time t system is in risk state due to negligence of quality Department) 

K1, K2                    Revenue per unit time and service cost per unit time respectively. 

              

Let 
reu 1 and 

)(2 ru M  then the expression for joint probability according to Gumbel-Hougaard family of copula is given as  

    
/1

)(logexp rr MM 
. 

 

Figure. 1 Reliability block diagram 

Methodology used 

Cox [8] has done an analysis of Non-Markovian stochastic process by inclusion of supplementary variables. Supplementary 

variable technique is used to estimate the reliability measures of the considered industrial problem. Nelson and Ram, Singh [9, 10] 

incorporated Copula methodology to evaluate the joint probability distribution of repairs in case of machine failures. This method 

provides an easy way to estimate the variation in different system performance in terms of reliability with respect to time.  

Approach 

The mathematical model of an automobile assembly plant has been developed using Markov Process with the help of 

supplementary variable technique and copula methodology. The corresponding differential equations obtained are solved using 

Laplace Transforms. Maple -program have been developed to study the variations of reliability, MTTF, availability, sensitivity 

analysis and cost effectiveness of the system with respect to various parameters. Parametric investigations have also been performed 

with the help of numerical results to show the effects of various system parameters to the reliability and MTTF which may be helpful 

to managerial staff of the industry in the decision making. 

Novelty 

 Industrial implications of the results have been discussed. 
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Figure 2. Transition State diagram 

System description 

An assembly line is a manufacturing process in which parts (usually interchangeable parts) are added to a product in a sequential 

manner using optimally planned logistics to create a finished product much faster than with handcrafting-type methods. Assembly 

lines are designed for a sequential organization of workers, tools or machines, and parts. 

Assembling of a vehicle is very complex system, which includes various processes. Manufacturing process of vehicles mainly 

includes Vendor, Weld Shop, Paint Shop, Assembly Shop and Quality department.  

Vendor The most important part of manufacturing is Vendor, since vehicle consist of thousands of small and big components and 

manufacturing of all parts are not viable for a single company, therefore one company assembles all the parts which is called OEM 

(Original Equipment Manufacturing) as like Tata Motors, Maruti, Fiat etc. 

Weld Shop This is the first and basic process of vehicle manufacturing. In this shop the basic sheet metal material provided by 

vendors are converted to the usable form and different components of basic welded body, and then all the components welded to form 

vehicle body. Later it is sent to Paint Shop. 

Paint Shop This is the second shop in the process of manufacturing. In this shop, body which received from Weld Shop is painted in 

different colours as per market requirement then it is sent to Assembly Shop. 

Engine Shop This shop is indirectly connected to assembly shop and not taken into the consideration in the present system, where 

engine and gear box are assembled from the components provided by the vendors and then this engine along with gearbox supplied to 

assembly shop. 

Assembly Shop This is one of the most important shops in vehicle manufacturing as the finished vehicle assembles from this shop 

only. In this shop painted body is equipped and assembled with different non identical components which are supplied by different 

vendors logically to form finished vehicle. 

http://en.wikipedia.org/wiki/Manufacturing
http://en.wikipedia.org/wiki/Interchangeable_parts
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Quality Department Before sending finished vehicle to the dealer it goes through different quality checks, like it is tested on the test 

track by running it and PDI (Pre dispatch inspection) for any issues. All parts which are supplied by the vendors for vehicle 

manufacturing goes through different quality checks. 

Assumptions 

The following assumption has been taken into the considerations in this study. 

 Initially at t=0, all subsystems are operating well. 

 Failures are statistically independent. 

 The repair time of the subsystems are assumed to be arbitrarily distributed. 

 Repaired subsystem/ plant(s) works like new. 

 All failures follow exponential time distribution. 

 Weld shop and Assembly shop has 2-out-of-3: G and 1-out-of-3:F configuration. 

 The whole system can also fail due to machine failures that may be either major or minor or both. 

 Joint probability distribution has been obtained with the help of copula for repair when the system suffers from both major and 

minor machine failures [11, 12]. 

Formulation of mathematical model 

Probabilistic considerations and limiting procedure yield the following integro-differential equations satisfying the model:            

)(011 tP
dt

d
QpMVWA 







   



dxtxPx VV

0

),()(

 




dytypPyp ),()(
0



       

                             





0

),()( dgtrPr MM 


0

),()( dqtqPq QQ  


0

),()( dgtgPg AA

         

                             





0

),()( dutuPu WW 


0

),()( dhthPh QQ

                                    … (1) 

0),()( 

















txPx

xt
VV

                                                                         … (2) 

0),()( 

















tyPy

yt
pp

                                          … (3) 

    0),()(logexp
/1



















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 
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0),()( 

















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QRQRQ 

                                                                         … (5) 
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






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





thPh
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QQ

                                                                                                    … (6) 

)(1 tP
dt

d
wQpMVWA 








   



dxtxPx VWV

0

),()( 


0

),()( dgtgPg AWA

  

                                                                          




dytyPy Wpp ),()(
0


)(01 tPW

                          … (7) 
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0),()( 

















txPx

xt
VWV

                                               … (8) 

0),()( 

















tgPg
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                                                                                … (9) 

0),()( 

















tyPy

yt
Wpp

                                                          … (10) 

0),()( 

















tuPu

ut
WW

                                                                                                  … (11) 

)(1 tP
dt

d
AQpMVWA 








   



dxtxPx VAV

0

),()( 


dytyPy App ),()(
0







0

),()( dutuPu WAW

    
)(01 tPA

                                                                                      … (12) 

0),()( 

















txPx
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VAV

                                              … (13) 

0),()( 

















tyPy
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                                            … (14) 

0),()( 

















tuPu

ut
WAW

                                                                                 … (15) 

0),()( 

















tgPg
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AA

                                                                                           … (16) 

Boundary conditions  

)(),0( 0 tPtP VV 
                                                                                                           … (17) 

)(),0( 0 tPtP pp 
                                                                                                             … (18) 

)(),0( 0 tPtP MM 
                                              … (19) 

 )()()(),0( 0 tPtPtPtP WAQQR  
                                                           … (20) 

)(),0( tPtP QRQQ 
                                                    … (21) 

)(),0( tPtP WVVW 
                                                                                                              … (22) 

)(),0( tPtP WAAW 
                                                                                         … (23) 

)(),0( tPtP WpPW 
                                                              … (24) 

)(),0( tPtP WWW 
                                                                 … (25) 

)(),0( tPtP AVVA 
                                                                                   … (26) 

)(),0( tPtP pppA 
                                                               … (27) 
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)(),0( tPtP AWWA 
                                                                                           … (28) 

)(),0( tPtP AAA 
                                                                                                        …(29) 

Initial Condition  

1)0(0 P
, otherwise zero.                                                                             … (30) 

Solution of the model       

Solving equations (1) through (16) by taking Laplace transform and using initial and boundary conditions, one may obtain 

following transition state probabilities of the system. 

 )()(1
)(

1
)( sasB

sK
sPup 

                                                                                                      ... (31) 

)()()()()()()()()()()()( sPsPsPsPsPsPsPsPsPsPsPsPdown PAVAWAWPWVWQQRMPv 
                            

                       
)()( sPsP AWA 
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1
sJsAsBsJsJsJ

sK
QRQMMPPvv  

                             

                             
)()()()()]()()()(1[ sBsJsBsJsJsJsAsB PPvvQQRQQ  

 

                             
)()()()()()()()( sAsJsAsJsBsJsBsJ PPvvWWAA  

 

                              
)()()()( sBsJsAsJ AAWW  

                                                                      ... (32)                  

where, 
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ughqryxjWAQQRMPVifordjdjjsjjS
i

ijii  
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  … (40)  

    
/1

)(logexp rr MM 
                                                                                                         … (41) 

Verification 

s
sPsP downup

1
)()( 

                                                                                                      … (42) 

Steady state behaviour of the system 

Using Abel’s lemma in Laplace transforms, viz; 

                          
lim ( ) lim ( ) ( )
s t

sf s f t f say
 

 
0                                             … (43) 

provided the limit on the right hand side exists, the time independent operational probabilities are obtained as follows. 
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where, 
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Particular cases 

When repairs follow exponential distribution then for all i and j in equations (31) and (32), one may obtain the following 

transition state probabilities.  
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 sG QWAPMV  
                                                                         … (83) 

Non repairable system 

If the system is non repairable then the repair rates will be zero and probabilities will be independent of x, then the reliability 

function is given by 

QMWAPvs  


11

1
(s)R

                                                                         ... (84) 
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where, R(s) is the Laplace transform of the reliability function.  

By taking the inverse laplace transform of eq. (84), the reliability of the system in terms of time is obtained as: 

])(exp[)( 11 ttR QWAPMV  
                                                            … (85) 

Consider
02.,009.,007.,007.,006.,.005 11  QAWMPv 

in equation (85) and varying values of t as 

0, 1, 2, 3, 4…., one can obtain Figure-3 which shows how the reliability varies with respect to time. 
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Figure 3. Reliability Vs Time                                                                    Figure 4.  Availability Vs Time 
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           Figure 5. MTTF Vs Vendor, Paint shop and Machine failure                               Figure 6. MTTF Vs Risk Rate 
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Figure 7. Sensitivity of system reliability w. r. t. Vendor failure    Figure 8: Sensitivity of system reliability w. r. t. Weld shop   
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Figure9. Sensitivity of system reliability w. r. t. Machine failure  Figure 10. Sensitivity of system reliability w. r. t. Risk factor 
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Figure 11 Sensitivity for MTTF with respect to X1=
V

, X2= P
. (X=X1=X2)  Figure 12 Sensitivity for MTTF with respect to 

X= Q ( Q =.01,.02,…,.1) ( V
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=.001, .002 ….01) 

 

Figure 13. Cost Vs Time 
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                                                                 ... (86) 

Setting, 
,02.,009.,007.,007.,006.,.005 11  QAWMPv 
and repair rates i =1, i= V, P, M, Q, QR, A, 

W and x= y= r= q= h= g= u=1. When repair rates follow exponential distribution, equation (86) becomes, 

054.

055.

016.
1

)(






s

ssupP
                                                                           

Taking inverse Laplace transforms, we have 

)0540000000.()0550000000.( .17.16)( tt eetPup  
                                                        … (87) 

Now, varying, t=0, 1, 2, 3…….20, in equations (87), we get the change of availability of the system with respect to time which is 

given in Figure-4. 

MTTF of the system 

The mean time to failure (MTTF) is given as under:  








0

)()(up
0

limMTTF  dttRsP
s                                                                                                                      

                QWAPMV  


11

1

                                                                       … (88) 

a) Setting,
02.,009.,007.,007.,006. 11  QAWMP 

 and putting v
=.001,.002,.003....in equation (88) one can 

get Figure-5 which exhibits the variation of MTTF for different values of Vendor failure. 

b) Consider, 
02.,009.,007.,007.,.005 11  QAWMv 

 and putting P
=.001,.002,.003…in equation (88), one 

can obtain the MTTF with respect to different values of Paint shop failure as shown in Figure-5. 

c) Let
02.,009.,007.,006.,.005 11  QAWPv 

and substituting
,..,004,.003,.002,.001.M

in equation 

(88), we get Figure-5 that gives us the changes of MTTF for various values of Machine failure.  

d) Assuming, 
009.,007.,007.,006.,.005 11  AWMPv 

 and taking Q =.01,.02, .03, .04 … in equation (88), 

we have Figure-6 which shows the variation of MTTF for a range of values of Risk failure.  

Sensitivity analysis for system reliability and MTTF 

First we perform sensitivity analysis for changes in the system reliability resulting from changes in system 

parameters V
, P

and Q  [13]. Differentiating equation (85) with respect to V
, we obtain  

                    

)*)
11

((
)(

t
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te

V
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
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




                           … (89) 

Using the same procedure we can get W

tR



 )(

, M

tR



 )(

and Q

tR



 )(

. 

Setting 
02.,009.,007.,007.,006. 11  QAWMP 

and putting v
=.001, .005 and .01, in equation (89), we 

have Figure-7 which shows the sensitivity of system reliability with respect to Vendor. 
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Using the same procedure described above, we can get W

tR



 )(

, M

tR



 )(

 and Q

tR



 )(

. Numerical results of the sensitivity analysis 

for W

tR



 )(

, M

tR



 )(

and Q

tR



 )(

 are presented in Figures-8, 9 and10 respectively. 

Now we provide a sensitivity analysis of MTTF of the system with respect to the system parameters V
, P

and Q . 

Differentiating equation (88) with respect to V
, we obtain 

             

2)
11

(

1

QMWAPv

MTTF
V  






                               … (90) 

Setting 
02.,009.,007.,007.,006. 11  QAWMP 

and putting v
=.001, .005 and .01, in equation (90), we 

have Figure-11 which shows the sensitivity of MTTF with respect to Vendor. Similarly, by the same procedure we can obtain 

PMTTF  /
 and QMTTF  /

 as given in Figures-11 and 12 respectively. 

Table 1 Shows the state specification of the transition diagram 

States Description 
System 

State  

S0 The state when the system is in fully operational condition. G 

S1 The state when the system is in failed state due to the failure of Vendor. FR 

S2 
The state when the system is in operable state when only two machines (out of three) of the weld shop 

are working. 
G 

S3 The state when the system is in failed state due to the failure of Paint shop. FR 

S4 
The state when the system is in operable state when only two machines (out of three) of the assembly shop 

are working. 
G 

S5 The state when the system is in failed state due to the machine failure (major and minor). FR 

S6 The state when the system is in risk state due the mistake of quality department. RS 

S7 The state when the system is in failed state from the risk state due to the fault of quality department FR 

S8 The state when the system is in failed state from the state S2 due to the failure of Vendor. FR 

S9 The state when the system is in failed state from the state S2 due to the failure of assembly shop. FR 

S10 
The state when the system is in failed state from the state S2 due to the failure of two machines of the weld 

shop. 
FR 

S11 The state when the system is in failed state from the state S2 due to the failure of Paint shop. FR 

S12 The state when the system is in failed state from the state S4 due to the failure of Vendor.                                   FR 

S13 The state when the system is in failed state from the state S4 due to the failure of weld shop. FR 

S14 The state when the system is in failed state from the state S4 due to the failure of Paint shop. FR 

S15 
The state when the system is in failed state from the state S4 due to the failure of two machines of the 

assembly shop. 
FR 

Note:  G= Good state; FR= Failed state; RS = Risk state. 

Cost effectiveness of the system 

Cost function for considered system is given by 
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up 2
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1 )()(  
                                                                                                                  

where, K1 and K2 are revenue and repair costs per unit time, respectively.  
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Setting,
02.,007.,005.,009.,007.,007.,006.,.005 11  QAWAWMPv 

K1=20, K2= 

 10 and varying t=0, 1 2 ….10 in equations (91), we can get the cost effectiveness of the system as given in Figure-13. 

 

Result and discussion 

In this study, we analyzed the reliability, availability, MTTF, sensitivity and cost effective of the complex system incorporating 

risk factor. To numerically examine the behaviour of reliability and availability of the system, the various parameters are fixed 

as
02.,009.,007.,007.,006.,.005 11  QAWMPv 

 and subsequent values obtained have been shown in 

Figure-3. One can easily conclude from Figure-3 that the reliability of the system decreases with passage of time when all failures 

follow exponential time distribution. Figure-4 represents the variation of availability of the system. Critical examination of Figure-4 

yields that the values of the availability decreases approximately in a constant manner with the increment in time. Further, by fixing 

the values of the parameters and varying one parameter we get the change of MTTF with respect to that parameter as exhibited in 

Figure-5. Observation of this figure reveals that the MTTF decreases with the increment in Vendor failure rate, Paint Shop  failure rate 

and machine failure. Also it is interesting to mention here that at some points MTTF with respect to different parameters are found to 

be same. Further, Figure-6 shows that the MTTF of the system decreases smoothly for increased values of risk rate. The sensitivities 

of the system reliability with respect to V
, W1

, M
and Q  are shown in Figures-7,  8,  9 and 10 respectively. It can easily be 

observed that all the system parameters have the biggest impact approximately at the same time. Furthermore, we also observed that 

V
and Q  are prominent parameters and almost have the equal sensitive effect on the system reliability. Table-2 shows that the 

sensitivity with respect to V
and p

on the MTTF which increases rapidly from -493.82 to -355.98 and -416.49 to -307.77 as 

V
and p

 varies from .001 to .01 respectively as shown in Figure-11. Figure-12 reveals the sensitivity of MTTF for various values 

of risk rate Q . To examine the profit function, revenue cost per unit time is taken as 20 and service cost 10, the result obtained have 

been shown in Figure-13. From this observation, it is very clear that the profit decreases as the service cost increases. 

Table 2. Sensitivity analysis of MTTF with respect to V
and P

 

V / P  0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 

VMTTF  /  -493.82 -472.58 -452.69 -434.02 -416.49 -400 -384.46 -369.82 -355.98 

PMTTF  /  -416.49 -400 -384.46 -369.82 -355.99 -342.93 -330.57 -318.87 -307.77 

 

Conclusion 

In this paper, the operational readiness of an automobile assembly system is discussed using mathematical modelling approach. 

Also, the present study discussed the transition state probabilities, steady state probabilities, reliability, availability, MTTF analysis for 

Vendor, Paint Shop, Machine, Risk failure rate, sensitivity analysis and variation of costs with respect to time. Supplementary variable 

technique is used to change a non markovian process into markovian process. Further, the copula approach allows us to incorporate 

two different distributions in repair simultaneously hence overcome some of the well known limitations of traditional methods. It also 

provides greater flexibility as well as allows us a much wider range of possible dependence structures. The proposed method has the 

advantages of modelling and analyzing system reliability in a more flexible and intelligent manner. 

This analysis may help managerial staff in the following ways. 

a. Managing resources, Vendors. 
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b. Taking timely decisions. 

c. Planning preventive maintenance policies. 

d. Planning strategies of production.  
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