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Introduction 

 Glass fiber reinforced polymer composites are widely used 

in aircraft, spacecraft, automotive and electronics industries 

because of their high strength, stiffness, temperature resistance 

and low weight. An on-line monitoring procedure, capable to 

predict the failure load in fibre reinforced polymer composite 

materials will permit to guarantee the structural safety. Acoustic 

emission (AE) technique is one of the versatile techniques 

widely used for materials research and online monitoring 

because of its potential for detection and location of dynamic 

events. AE is defined as the class of phenomenon whereby 

transient elastic waves are generated by rapid release of energy 

from localized sources in a material. The AE occurs as a series 

of short impulsive packets of energy. The energy thus released 

from the packet travels as spherical wave front and can be 

picked up from the surface of materials using highly sensitive 

transducers. The wave thus picked up by the transducer is 

converted into an electrical signal, which on suitable processing 

and analysis can reveal valuable information about the source. 

Artificial Neural Network (ANN) is one of the best prediction 

tools. A Neural network is a machine that is designed to model 

the way in which the brain performs a particular task or function 

of interest; the network is usually implemented by using 

electronic components or is simulated in software on a digital 

computer. To achieve good performance, neural networks 

employ a massive interconnection of simple computing cells 

referred to as “neurons”. Artificial neural networks have been 

trained to perform complex functions in various fields, including 

prediction, pattern recognition, identification, control systems, 

classification, speech, and vision. 

 A number of studies exist, which are aimed at the prediction 

of strength of the composite materials. V. Arumugam et al [1] 

predicted the residual strength of post impacted carbon/epoxy 

composite laminates using an online acoustic emission (AE) 

monitoring and artificial neural networks (ANN). The dominant 

AE parameters such as counts, energy, duration, rise time and 

amplitude are recorded during monitoring. Cumulative counts 

corresponding to the amplitude ranges obtained during the 

tensile testing are used for training the network. S. 

Rajendraboopathy et al [2] used cumulative counts of acoustic 

emission parameter to predict the ultimate failure load of the 

carbon/epoxy laminates. They achieved 5% error margin by 

giving the cumulative counts as input vectors for the three layer 

network. Alberto Diaz Diaz et al [3] determined a method for 

accurately predicting the onset of mode III delamination in multi 

layered structures.  Software called DEILAM and a model of 

plates called M4-5N were used to evaluate the stresses in the 

laminate. Two application examples with two materials were 

considered and in both examples the theoretical predictions were 

accurate. R.R. Chang and J.M. Chu [4] estimated the failure 

strength of laminated composite shafts subjected to static 

bending load and torque. They also found out that the ultimate 

failure load is generally higher than the first-ply failure load of a 

laminated composite shaft. James L. Walker and Eric v. K. Hill 

[5] demonstrated the feasibility of predicting ultimate strength in 

simple composite structures through a neural network analysis 

of their acoustic emission (AE) amplitude distribution data. A 

back propagation neural network was trained to correlate the AE 

amplitude with the ultimate strengths of the samples. The 

network was trained using two sets of inputs, the statistical 

parameters obtained from a WeibuIl distribution fit of the 

amplitude distribution data and the event frequency (amplitude) 

distribution. A. R. Bunsell and D. Valentin [6] proposed a life 

prediction technique under steady loading for filament wound 

tubes. J. Baram and M. Rosen [7] indicated that analysis of the 

amplitude distribution of the acoustic signals emitted during 

cyclic stress may provide a non-destructive method of predicting 

fatigue life. Mariappan et al [8] used Nomograph to estimate the 

shape parameter β and scale parameter θ for Weibull analysis. 

The values obtained using the Nomograph was found to be
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ABSTRACT  

The objective of this paper is to predict the failure load of the composite laminates during 

tensile loading using an online Acoustic Emission (AE) monitoring and Artificial Neural 

Network. Bidirectional glass/epoxy laminates were subjected to tensile loading. The 

laminates were made for 12 layers of bi-directional glass mat in an epoxy matrix. The AE 

data recorded during the tensile testing was used to predict the failure load. The 

parameters such as amplitude, count, duration, energy, peak to count and rise-time were 

used for the analysis. Feed forward back propagation neural network model was generated 

from acoustic emission cumulative counts data taken during loading of bi-directional 

glass/epoxy tensile specimens. Cumulative counts recorded up to 50% and 75% of the 

failure load were used as the input data for simulation. The results show that the 

developed non-destructive method is capable of predicting the failure of composites 

subjected to tensile loading with an error of 3.5% and 7.6% for cumulative counts of 50% 

and 75% of loads respectively. 
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closer when compared to its counterparts. N.H. Yang, H. 

Nayeb-Hashemi and A. Vaziri [9] determined a non-destructive 

evaluation method for predicting the residual tensile strength of 

erosion damaged fiber-reinforced composites based on 

monitoring the acoustic emission (AE) activity of the 

composite specimens during uniaxial tensile loading. Weibull 

probability distribution was used for the prediction. In our 

project we undergone tensile testing in 12 layer glass/epoxy 

composites and recorded the AE parameters required for the 

prediction. Feed forward back propagation neural network 

model was generated from acoustic emission cumulative counts 

data taken during loading of bi-directional glass/epoxy tensile 

specimens. Cumulative counts recorded up to 50% and 75% of 

the failure load were used as the input data for simulation. The 

results showed that the developed non-destructive method is 

capable of predicting the failure of composites subjected to 

tensile loading with an error of 3.5% and 7.6% for cumulative 

counts of 50% and 75% of loads respectively. 

Specimen Preparation 

          A 300 × 300 mm glass/epoxy composites laminates is 

fabricated by hand lay-up using 12 layers bi-direction glass mat 

in an epoxy matrix .The laminate was cured at a pressure of 100 

kg/cm
2
 at room temperature using a 300 ton capacity 

compression molding machine for 24hrs. ASTM D3039 

standard tensile specimen of size 280 × 18 × 2.78 mm
3
 were 

removed from the fabricated laminates using water-jet cutting 

to avoid machining defects and maintain a good surface finish. 

Tensile Testing Procedure 

         The tensile tests were conducted on specimens using an 

Instron 3367 (Norwood, MA, United states) Universal Testing 

Machine at room temperature. The cross head speed was kept at 

0.3 mm/min. Damage initiation & accumulation in the 

specimens during tensile tests is monitored by an eight channel 

Acoustic Emission monitoring system. 

Acoustic Emission Monitoring 

 An 8 channel AE system supplied by Physical Acoustics 

Corporation (PAC) (Princeton, NJ, USA) with a sampling rate 

of 3 MHz and 40 dB pre-amplification is used for this study. 

Preamplifiers having a bandwidth of 10 kHz-2 MHz are used. 

The ambient noise was filtered using a threshold of 45 dB. AE 

measurements were pre-formed using two PAC Nano 30 

resonant sensors is kept at 100mm. High vacuum silicon grease 

was used as couplant. 

 The amplitude distribution covers the range 0-100 dB (0 

dB corresponds to 1 µV at the transducer output). After 

mounting the transducers, a pencil lead break procedure was 

used to generate repeatable AE signals for the calibration of 

each sensor. Velocity and attenuation studies are performed on 

the laminates. The average wave velocity in the material was 

found to be 3228 m/s. AE hardware settings are as follows: 

Peak definition time (PDT) = 30 µs, hit definition time (HDT) 

= 300 µ/s, hit lockout time (HLT) = 600 µs. These time 

intervals enables the partition of continuous stress wave into 

separate hits, in order to analyze them using signal descriptors, 

such as counts, amplitudes etc. Here, suitable values for PDT, 

HDT and HLT have been selected. 

Artificial Neural Network 

 Work on artificial neural networks, commonly referred to 

as “neural networks”, has been motivated right from its 

inception by the recognition that the human brain computes in 

an entirely different way from the conventional digital 

computer. The brain is a highly complex, nonlinear, and 

parallel computer (information-processing system). It has the 

capability to organize its structural constituents, known as 

neurons, so as to perform certain computations (e.g., pattern 

recognition, perception, and motor control) many times faster 

than the fastest digital computer in existence today. 

 A neural network is massively parallel distributed 

processor made up of simple processing units, which has a 

natural propensity for storing experiential knowledge and 

making it available for use. It resembles the brain in two 

respects: Knowledge is acquired by the network from its 

environment through learning process and the inter-neuron 

connection strengths, known as synaptic weights, are used to 

store the required knowledge.  

The procedure used to learning process is called a learning 

algorithm, the function of which is to modify the synaptic 

weights of the network is an orderly fashion to attain a desired 

design objective. The modification ofsynaptic weights provides 

the traditional method for the design of neural networks. Such 

an approach is the closest to linear adaptive filter theory, which 

was already well established and successfully applied in many 

diverse fields. However it is also possible for the neural 

network to modify its own topology, which is motivated by the 

fact neurons in the human brain can die and that new synaptic 

connections can grow.  

 Artificial neural networks have been trained to perform 

complex functions in various fields, including prediction, 

pattern recognition, identification, control systems, 

classification, speech, and vision. To achieve good 

performance, neural networks employ a massive 

interconnection of simple computing cells referred to as 

“neurons”. A model of a neuron was shown in fig. 1. For 

modeling an artificial functional model from the biological 

neuron, three basic components must be taken in account. 

 
Fig 1: Model of a neuron 

 First off, the synapses of the biological neuron are modeled 

as weights. The synapse of the biological neuron is the one 

which interconnects the neural network and gives the strength 

of the connection. For an artificial neuron, the weight is a 

number, and represents the synapse. A negative weight reflects 

an inhibitory connection, while positive values designate 

excitatory connections. We can train a neural network to 

perform a particular function by adjusting the values of the 

connections (weights) between elements. Typically, neural 

networks are adjusted, or trained, so that a particular input leads 

to a specific target output. There, the network is adjusted, based 

on a comparison of the output and the target, until the network 

output matches the target. Many such input/target pairs are 

needed to train a network.  
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Fig 2: Performance plot 

 
Fig 3: Training state 

 
Fig 4: Regression plots 

Result And Discussions 

 Artificial Neural Network (ANN) was used to predict the 

failure load. Cumulative counts of 8 specimens were used to 

train the network and cumulative counts recorded for 50% & 

75% of the failure loads were used for simulation. Feed forward 

back propagation was the network type used. MATLAB neural 

network tool was used for the prediction with cumulative count 

as input and failure load as target. The back propagation 

algorithm is one of the best learning procedures which calculate 

the error by comparing the calculated outputs and target. The 

error is the difference between the output values and the target 

values. TRAINLM was the training function used. TRAINLM 

is a network training function that updates weight and bias 

values according to Levenberg-Marquardt optimization. 

TRAINLM is often the fastest back propagation algorithm in 

the toolbox, and is highly recommended as a first-choice 

supervised algorithm, although it does require more memory 

than other algorithms.  

 
Fig. 5: Actual load and predicted load for cumulative count 

of 50% load 

 
Fig. 6: Actual load and predicted load for cumulative count 

of 75% load 

 LEARNGDM was used as the adaption learning 

function. LEARNGDM is the gradient descent with momentum 

weight and bias learning function. Hyperbolic tangent sigmoid 

(TANSIG) transfer function was used as the transfer function. 

Transfer functions calculate a layer's output from its net input. 

Four hidden layer and one output layer was used for training 

the network. The network structured as 20-20-10-5 was able to 

give the prediction results. 1000 epochs were used as the 

training parameter. With this trained network failure load can 

be predicted for the cumulative counts of 50% load of any 

similar specimen. The performance plot is shown in fig. 2. The 

regression plot obtained during the training of neural network is 

shown in fig. 4. The predicted values obtained by the 

simulation of neural network are tabulated in the table 1. 

Cumulative counts recorded for 50% & 75% of the failure 

loads shows the maximum of 3.5% & 7.6% error respectively 

Conclusion 

 Acoustic emission helps in the real time monitoring of the 

strength of composite materials. AE parameters like amplitude, 

duration, counts and energy are most significant parameters for 

prediction of failure load. Cumulative counts recorded for 50% 

of the failure loads shows the maximum of 3.5% error and the 

cumulative counts recorded for 75% of the failure loads shows 

the maximum of 7.6% error. 
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The plot between actual and predicted loads is shown in fig. 5 

& 6. Feed forward back propagation neural network in 

MATLAB is very useful tool for predicting the failure load of 

the composite materials. Hence it is proved that the artificial 

neural network is the best tool for predicting the failure load of 

composite materials. It is also proven that the cumulative counts 

from smaller load can be used to predict the failure load. 
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Table 1: Failure load predicted using Artificial Neural Network 

Sp. No. 
Actual failure  

load (kN) 

Predicted failure load for Cumulative  

counts of 50% loads (kN) 
% Error 

Predicted failure load for Cumulative  

counts of 75% loads (kN) 
% Error 

1 8.113 8.113042724 -0.000526606 8.310284862 -2.431712827 

2 9.119 9.118999957 4.69735E-07 9.119000054 -5.9516E-07 

3 9.5 9.499999886 1.20464E-06 9.500000004 -4.35093E-08 

4 9.72 9.720000162 -1.67043E-06 9.719999975 2.59897E-07 

5 10.55 10.55000009 -8.94725E-07 10.55000011 -1.01031E-06 

6 11 11.0000997 -0.00090638 10.99997386 0.00023764 

7 11 11.00005931 -0.000539192 10.99986474 0.001229651 

8 12.91 12.91000032 -2.5056E-06 12.90999996 3.29596E-07 

9 13.16 13.15999933 5.05542E-06 13.1599998 1.53388E-06 

10 13.18 13.18000021 -1.62379E-06 13.17999996 2.94612E-07 

11 13.37 13.37000013 -9.52422E-07 13.37000012 -9.05675E-07 

12 14.4 14.4 3.03111E-08 14.39999987 9.33366E-07 

13 15 14.99999973 1.804E-06 15.00000022 -1.4619E-06 

14 16.26 16.26000004 -2.47232E-07 17.50737307 -7.671421112 

15 16.9 17.49799005 -3.538402685 16.89999999 3.00166E-08 

16 17.03 17.03 2.70452E-08 17.02999997 1.592E-07 

17 17.52 17.51999995 2.96255E-07 17.28516077 1.340406575 

18 17.61 17.5788343 0.176977259 16.66579942 5.361729587 

 


