
Sumit Pathare and

Pranav Kulkarni/ Elixir Inform. Tech. 72 (2014) 25810-25813

25810

Introduction

 Parallel computers can be roughly classified as Multi-Core

and Multiprocessor. A core is the part of the processor which

performs reading and executing of the instruction. However as

the name implies, Multicore processors are composed of more

than one core. A very common example would be a dual core

processor. The advantage of a multicore processor over a single

core one is that the multi-core processor can either use both its

cores to accomplish a single task or it can span threads which

divided tasks between both its cores, so that it takes twice the

amount of time it would take to execute the task than it would

on a single core processor. Multicore processors can also

execute multiple tasks at a single time. Performance is the

activity of collecting the information about the execution

characteristics of a program [6]. One of the parameter to

measure performance is the execution time. Hence change in the

design from sequential to parallel approach may result in lesser

execution time and is demonstrated through coding practices in

OpenMP on the case studies: Matrix Multiplication and Floyd

Warshell algorithm. Rest of the paper is organized as follows.

Section 2 specity related work. Section 3 gives detailed

description of openMP and parallel programming, section 4

explains implementation details, section 5 focuses on test result

and analysis. Paper is concluded in section 6.

Related Work

 In 2012, Songmin Jia, Xiaolin Yin, and Xiuzhi Li [7]

proposed an effective Simultaneous Localization and Map

Building (SLAM) technique for indoor mobile robot navigation

based on OpenMP. Particle Filter (PF) based SLAM provides an

effective indoor mobile robot navigation framework, but real-

time performance of PF needs improving due to their inherent

complex and intensive computation. OpenMP is the product of

the multi-core technology development and has been widely

accepted by both industry and academia. We propose a multi-

thread particles filter algorithm based on OpenMP to reduce

computation time of PF and execution time of SLAM. The

results in real experiments and simulations show that the parallel

PF-SLAM algorithm based on OpenMP could reduce the SLAM

execution time while guaranteeing the accuracy of SLAM.

 In 2009, Han Cao1a, Fei Wangb, Xin Fang, Hong-lei Tu [5]

proposed the idea to apply the non hierarchical algorithm such

as Dijkstra’s algorithm to different levels and the entrance points

and exit points (node E) between high-level and low-level are

obtained by the heuristic directing search approach. The

algorithm procedure to find the satisfactory path, in terms of the

minimum travel time based on the Manhattan distance and travel

speed associated with the edges in the network .

Programming in OpenMP

 OpenMP is an API (application program interface) used to

explicitly direct multi-threaded, shared memory parallelism.

OpenMP was introduced in 1997 to standardize programming

extensions for shared memory machines as shown in figure 1.4

[2]. In OpenMP the user specifies the regions in the code that

are parallel [5]. The user also specifies necessary

synchronization like locks, barriers etc. to ensure correct

execution of the parallel region. At run time threads are forked

for the parallel region and are typically executed in different

processors sharing the same memory and address space.

 Advantage of having multiple cores is that we could use

these cores to extract thread level parallelism in a program and

hence increase the performance of the single program. A lot of

Performance analysis of algorithm using Openmp
Sumit Pathare and

Pranav Kulkarni

Department IT, Pune University, Nashik, India.

ABSTRACT

Parallel programming represents the next turning point in how software engineers write

software. Today, low-cost multicore processors are widely available for both desktop

computers and laptops. As a result, applications will increasingly need to be paralleled to

fully exploit the multicore-processor throughput gains that are becoming available.

Unfortunately, writing parallel code is more complex than writing serial code. This is

where the OpenMP programming model enters the parallel computing picture. OpenMP

helps developers create multithreaded applications more easily while retaining the look

and feel of serial programming. The term algorithm performance is a systematic and

quantitative approach for constructing software systems to meet the performance

objectives such as response time, throughput, scalability and resource utilization. The

performances (speedup) of parallel algorithms on multi-core system have been presented

in this paper. The experimental results on a multi-core processor show that the proposed

parallel algorithms achieves good performance compared to the sequential.

 © 2014 Elixir All rights reserved

.

ARTICLE INFO

Article history:

Received: 15 March 2014;

Received in revised form:

15 July 2014;

Accepted: 26 July 2014;

Keywords

Multicore,

Multiprocessor,

OpenMP,

Parallel programming.

Elixir Inform. Tech. 72 (2014) 25810-25813

Information Technology

Available online at www.elixirpublishers.com (Elixir International Journal)

Tele:

E-mail addresses: patharesumit09@gmail.com

 © 2014 Elixir All rights reserved

Sumit Pathare and

Pranav Kulkarni/ Elixir Inform. Tech. 72 (2014) 25810-25813

25811

research has been done on this area. Many techniques rely on

hardware based mechanisms and some depend on compiler to

extract the threads .Some the advantages of OpenMP includes:

good performance, portable (it is supported by a large number of

compilers), requires very little programming effort and allows

the program to be paralleled incrementally. OpenMP is widely

available and used, mature, lightweight, and ideally suited for

multi-core architectures. Data can be shared or private in the

OpenMP memory model. When data is private it is visible to

one thread only, when data is public it is global and visible to all

threads. OpenMP divides tasks into threads; a thread is the

smallest unit of a processing that can be scheduled by an

operating system. The master thread assigns tasks unto worker

threads. Afterwards, they execute the task in parallel using the

multiple cores of a processor [1].

Implementation Details

Objective

 We are implementing the sequential algorithm and parallel

algorithm, for this threading concept is used. Program divided

into number of threads and each thread is executed independent

of other Thread. As number of threads executed simultaneously,

time required to execute that program reduces. Main objective

of this approach is to save the time required to execute the

programs.

Overview of Proposed Work

 We describe the techniques and algorithm involved in

achieving good performance by reducing execution time

through OpenMP Parallelism on multi-core. We tested the

algorithms by writing the program using OpenMP on multi-core

system and measure their performances with their execution

times as shown in figure 2.

Figure 2: Overview of Proposed Work

Working Modules

 There are some numerical problems which are large and

complex. The paper solutions of which takes more time using

sequential algorithm on a single processor machine or on

multiprocessor machine. The fast solution of these problems can

be obtained using parallel algorithms and multi-core system. In

this, we select two numerical problems as follows:

Matrix Multiplication

 In matrix multiplication algorithm, there is no task

dependency hence thread and kernel instances parallel running

reduces execution time. Matrix multiplication problem also

solved using openMP. It will give best result by executing it

sequentially rather than parallel when number of rows and

columns are less, but as number of rows and columns(i.e matrix

A[500][500]) increases sequential algorithm’s performance

decreases where role of parallel programming comes into play.

Algorithm for it given as follows:

Matrix_Multiplication(int size, int n)

Step 1: Size represents size of matrix and n represents number

of threads.

Step 2: Declare variables to store allocated memory

Step 3: Declare variables to input matrix size and variables to be

used by OpenMP functions a_r, a_c, b_r, b_c, nthreads, tid,

chunk.

Step 4: Declare variable to calculate the time difference between

the parallelism.

Step 5: Accept number of rows and columns.

Step 6: Allocate memory for matrix one

Step 7: Allocate memory for matrix two

Step 8: Allocate memory for sum matrix

{

c=(int *) malloc(10*a_r)

for(i=0;i< b_c; i++)

{

c[i]=(int *) malloc(10*b_c)

}

}

Step 9: Start the timer

double start = omp_get_wtime()

Step 10: Here Actual Parallel region starts #pragma omp parallel

shared(a,b,c,nthreads,chunk)

private(tid,i,j,k)

{

tid = omp_get_thread_num()

if (tid == 0)

{

nthreads = omp_get_num_threads()

print Starting matrix multiple example with number of threads

}

Step 11: Initializing first matrix.

Step 12: Initializing second matrix.

Step 13: Print Thread starting matrix multiply.

#pragma omp for schedule (static, chunk)

for(i=0;i<a_r; i++)

{

 for(j=0;j<a_c; j++)

 {

 for(k=0;k<b_c; k++)

 {

 c[i][j]=c[i][j]+a[i][k]*db[k][j]

 }

 }

}

Step 14: end the timer

double end = omp_get_wtime()

Step 15: Store the difference

dif = end – start

Step 16: Free memory

for(i=0;i<a_r; i++)

{ free(a)

 free(b)

 free(c)

}

Step 17: Print the time required for computation.

Floyd-Warshell Algorithm

 The Floyd–Warshall algorithm compares all possible paths

through the graph between each pair of vertices. It does so by

incrementally improving an estimate on the shortest path

between two vertices, until the estimate is optimal. In this

algorithm each thread has given a chunk size which specifies

number of iterations that thread executes. If w(i, j) is the weight

Sumit Pathare and

Pranav Kulkarni/ Elixir Inform. Tech. 72 (2014) 25810-25813

25812

of the edge between vertices i and j, we can define

shortestPath(i, j, k + 1) in terms of the following recursive

formula: the base case is:

shortestPath(i, j, 0) = w(i, j);

Algorithm: Warshell(int nthreads, int nodes)

Step 1: Start Enter number of thread and number of nodes(n).

Step 2: Initialize matrix

 if(i==j) then

 mat[i][j]=0

 else generate random between 0-10.

Step 3: Start clock using

 start = clock();

Step 4: Set chunk size.

Step 5: Compute shortest path between two vertices in parallel

section

 #pragma omp parallel for private(i,j) shared(k)

 for (i = 0; i < n; ++i){

 for (j = 0; j < n; ++j){

 if ((dist[i][k] * dist[k][j] != 0) && (i != j))

 if ((dist[i][k] + dist[k][j] < dist[i][j]) ||

 (dist[i][j]==0)){

 dist[i][j] = dist[i][k] + dist[k][j];}

 }

 }

Step 6: End time.

Step 7: Print the time required for computation.

Table 1: Comparison Chart for Matrix Multiplication

Algorithm

DataSet
Sequential

program

Parallel Program

with 2threads

Parallel Program

with 4 Thread

200 0.0555 0.0529 0.0435

400 0.4236 0.3212 0.3507

600 1.5991 1.1313 1.2182

800 5.9626 3.3564 3.0578

Table 2: Comparison Chart for Floyd Warshell Algorithm

DataSet
Sequential

program

Parallel Program

with 2threads

Parallel Program

with 4 Thread

50 0.00286 0.00320 0.00467

60 0.00457 0.00345 0.00772

70 0.00729 0.00518 0.00504

80 0.01079 0.00735 0.00702

Experiment Results

 There are two algorithms and each has two versions:

sequential and parallel. Both the programs are executed on

intel@i3 proessor machine. We analyzed the result and derived

the conclusion.

 In both the experiment execution time for sequential and

parallel program are recorded to compare the results of

sequential vs parallel. Execution time is recorded against

different dataset to analyse the speedup of parallel algorithm

against sequential. Table 1 shows the time required for parallel

matrix multiplication algorithm and sequential algorithm. Table

2 shows the time rewuired for Floyd Warshell parallel and

sequential algorithm.

From figure 3 and 4 we can see initially sequential

algorithm requires less time than parallel but as dataset increases

performance of parallel algorithm increases.

Conclusion and Future Work

 The algorithms with small data set gives good performance

when executed by a sequentially programming. But as data set

increases performance of sequential execution falls down where

parallel execution is used for large data set then it gives best

results than sequential execution.

Figure 3: Performance Analysis of Matrix Multiplication

Algorithm

Figure 4: Performance Analysis of Floyd Warshell

Algorithm

Acknowledgment

The authors want to thank their guide Prof. Vijay R. Sonawane

and Prof. Vivek N. Waghmare for invaluable assistant that we

have received from them.

References

[1] Daniel Lorenz, Peter Philippen, Dirk Schmidl and Felix

Wolf. "Profiling of OpenMP Tasks with Score-P". International

Conference on Parallel Processing Workshops, German

Research School for Simulation Sciences, 52062 Aachen,

Germany, 2012.

[2] D. Dheeraj, B. Nitish, Shruti Ramesh, "Optimization of

Automatic Conversion of Serial C to Parallel OpenMP",

International Conference on Cyber-Enabled Distributed

Computing and Knowledge Discover PES Institute of

Technology Bangalore, India, Dec 2012.

[3] Suneeta H. Angadi, G. T. Raju Abhishek B, "Software

Performance Analysis with Parallel Programming Approaches",

International Journal of Computer Science and Informatics,

ISSN (PRINT): 2231 -5292, Vol-1, Iss-4, 2012.

[4] Sanjay Kumar Sharma, Dr. Kusum Gupta, "Performance

Analysis of Parallel Algorithms on Multi-core System using

OpenMP Programming Approaches", International Journal of

Computer Science, Engineering and Information Technology

(IJCSEIT), Vol.2, No.5, October 2012.

[5] Han Cao1a, Fei Wangb, Xin Fang, Hong-lei Tu, "OpenMP

Parallel Optimal Path Algorithm and Its Performance Analysis",

Jun Shi World Congress on Software Engineering, DOI 10.1109

WCSE, 2009.

[6] Javier Diaz, Camelia Munoz-Caro, and Alfonso Nino, "A

Survey of Parallel Programming Models and Tools in the Multi

and Many-Core Era" IEEE TRANSACTIONS ON PARALLEL

AND DISTRIBUTED SYSTEMS, VOL. 23, NO. 8, AUG 2012.

Sumit Pathare and

Pranav Kulkarni/ Elixir Inform. Tech. 72 (2014) 25810-25813

25813

[7] Songmin Jia, Xiaolin Yin, and Xiuzhi Li, "Mobile Robot

Parallel PF-SLAM Based on OpenMP", IEEE, International

Conference on Robotics and Biomimetics , December 2012.

[8] Paul Graham, Edinburgh, "A Parallel Programming Model

forShared Memory Architectures", Parallel Computing Centre

The University of Edinburgh, March 2011.

 Sumit Pathare is pursuing his Bachelor of Engineering in

Information Technology under Pune University. He is currently

working on the project Performance Analysis of Algorithm

using OpenMP.

Pranav Kulkarni is pursuing his Bachelor of Engineering in

Information Technology under Pune University. He is urrently

working on the project Performance Analysis of Algorithm

using OpenMP.

