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Introduction 

In most of the early literature dealing with inventory problems, emphases were placed on either the retailer’s or the supplier’s 

perspective to minimize the cost and/or to maximize the profit. Recently, the integrated inventory models have become more and 

more important, because the supplier and the retailer can increase their mutual benefit through strategic cooperation. Goyal [1] 

developed an integrated model for a single supplier-single retailer system to find the optimal order quantity of the retailer so that the 

total cost at the system is minimized. Monahan [2] examined the quantity discount problem from the supplier point of view and 

obtained the minimum cost of the entire supply chain. Banerjee [3] presented a joint economic-lot-size model where a supplier 

produces for a retailer to order on a lot-for-lot basis. Goyal [4] generalized Banerjee’s [3] model by relaxing the assumption of the lot-

for-lot policy of the supplier and illustrated that the inventory cost can be reduced significantly if the supplier’s economic production 

quantity is a positive integer multiple of the retailer’s purchase quantity. Lu [5] assumed that the supplier’s production rate is greater 

than the demand rate, and the delivery starts as soon as the quantity ordered by the retailer is produced, and later on goods are 

delivered on a lot-for-lot basis. Goyal [6] relaxed the lot-for-lot policy and assumed that if the demand is constant, shipment sizes will 

increase according to the ratio of production rate and demand rate. Goyal and Nebebe [7] proposed the first shipment to be smaller 

and is followed by shipments of equal size. Recently, Ouyang et al. [8] proposed an integrated inventory model with quality 

improvement and lead time reduction. Other related studies of the integrated inventory model include Yang and Wee [9], Yang et al. 

[10], Wee and Chung [11], Teng et al. [12], and so on. In the traditional inventory models, the theme of defective items is always 

ignored. However, defective items can by caused by the incomplete production process and/or damage in transit. And the number of 

defective items will influence the on-hand level and the number of orders in the inventory system. In addition, if the retailer sells 

defective items without inspection, the customers will complain, return the goods, or even never come back. In all cases, substantial 

costs are incurred. Already there are some scholars who have studied and developed various analytical inventory models about 

defective items. Porteus [13] and Rosenblatt and Lee [14] are among the first ones who analyzed a significant relationship between 

quality imperfection and lot size. Next, Paknejad et al. [15] proposed a modified EOQ model with stochastic demand, and the model 
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included the number of defective items in a lot as a random variable. In each delivery, the defective items will be found in each lot and 

sent back to the supplier in the delivery time of the next batch. Salameh and Jaber [16] presented an EPQ model with defective items, 

and they assumed that the production rate for the non-defective items is greater than the demand rate. Ouyang and Chang [17] 

presented an investment in quality improvement inventory model involving defective items production process with controllable lead 

time. There are more papers related to this issue of defective items such as Chung and Hou [18], Hou [19], Rahim and Al-Hajailan 

[20], Lin [21], Wee et al. [22], Sarkar [23],and Barzoki et al. [24], etc.Furthermore, in practical situations, in order to motivate retailer 

to increase order quantity and market share, the supplier often offers a trade credit to the retailer, that is, the retailer may receive goods 

or services without having to pay until sometime later. Haley and Higgins [25] first presented an inventory model with the permissible 

delay in payments. Ferris [26] derived a transactions theory of trade credit use from the motives of trading partners to economize on 

the joint costs of exchange. Kingsman [27] considered the effects of different ways of payment on ordering and stocking. Goyal [28] 

established an EOQ inventory model with interest earned and paid under the condition of permissible delay in payments. Aggarwal 

and Jaggi [29] extended Goyal’s [28] model to include deteriorating items. Jamal et al. [30] further generalized this issue with 

allowable shortages. Buzacott and Zhang [31] proposed an inventory management to incorporate asset-based financing into 

production decisions. In their paper, the retailers buy a product from the suppliers and then sell it to the customers in which the 

retailers require asset-based financing by bank to purchase product from the suppliers. Among other relative inventory financing 

issues studies were Hill and Riener [32], Abad and Jaggi [33], Chen and Kang [34], Huang and Hsu [35], Ho et al.[36] and Thangam 

and Uthayakumar [37].Because of changing of the business environment, the delay payments of trade credit change with each passing 

day. There exist numerous interesting and relevant papers related to trade credits, but most assume that the supplier offers a trade 

credit to the retailer. However, the retailer wishes to motivate the customer’s demand rate and to reduce the on-hand stock cost, and 

offers a trade credit to the customers. Huang [38] considered an EOQ inventory model in which both supplier and retailer have 

adopted trade credit policies. Su et al. [39] developed an integrated supplier-retailer inventory model in which the customer’s demand 

for goods is positively correlated to the credit period offered by the retailer. They discussed how to obtain optimal order quantity, 

shipping, and inventory policy. In most of the inventory models in the literature, the rate of deterioration of goods is viewed as an 

exogenous variable, which is not subjected to control. Deteriorating inventory had been studied in the past decades and authors 

usually focused on constant or variable deterioration rate. Investing on preservation technology (PT) for reducing deterioration rate 

has received little attention in the past years. The consideration of PT is important due to rapid social changes and the fact that PT can 

reduce the deterioration rate significantly. Moreover, sales, inventory and order quantities are very sensitive to the rate of 

deterioration, especially for fast deteriorating products for example, fruits, flowers and sea foods. The effect of preservation 

technology is used to reduce the deterioration rate. This paper extends Chang et al model and studies an integrated supplier-retailer 

inventory model where trade credit and defective items are considered. Numerical example has been used to illustrate the results given 

in this paper.  

Notations and assumptions  

In this paper, the mathematical model is developed on the basis of the following notation and assumptions. 

Notation 

P The supplier’s production rate, P > D 

D The retailer’s demand rate 

K The supplier’s setup cost per order 

A The retailer’s ordering cost per unit ordered 

F Transportation cost per shipment 

hv The supplier’s holding cost per item per unit time 

hb1 The retailer’s holding cost of non-defective items per unit time, excluding interest charges 

hb2  The retailer’s  holding cost of defective items per unit time(including treatment cost), excluding interest charges , 2 1b bh h
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s The retailer’s unit inspection cost 

x The retailer’s inspection rate per order 

o The supplier’s defective rate of production quantity before the capital investment ,       0 < o < 1 

 Defective rate of production quantity through the capital investment 0    o 

C() Capital investment required to reduce the defective rate from o to . 

 Percentage decrease in  per $ increase in investment C() 

c The supplier’s production cost per unit 

v The retailer’s unit purchasing price, v > c 

p The retailer’s unit selling price, p > v 

w The supplier’s unit treatment cost of defective items 

 The retailer’s capital opportunity cost per $ per unit time 

fvc The supplier’s interest earned per $ unit time when buyer pay earlier during [0, M] 

Ivp The supplier’s interest paid per $ unit time 

IBe The retailer’s interest earned per $ unit time 

IBp  The retailer’s interest paid per $ unit time 

Q The retailer’s order quantity (for non-defective items) per order 

Qd The threshold quantity set by supplier at which the full delay payment permitted 

 Proportion of partial delay payment permitted by the supplier 

q The quantity which the supplier transports to the retailer per shipment 

n number of shipments from the supplier to the retailer per order, a positive integer 

M length of delay payment 

T length of replenishment cycle 

Td Time interval in which Qd/n units are depleted to zero due to demand 

CP The supplier’s prevention cost for per item 

CS The supplier’s screening cost 

t The supplier’s transportation maintenance cost 

ζ Preservation technology cost for reducing deterioration rate in order to preserve the  product 

Assumptions  

1. Consider single-supplier single-retailer for a single item in infinite planning horizon. 

2. To avoid the shortage, the production rate of non-defective items needs to greater than demand rate. That is, (1 - ) P > D. 

3. The retailer’s order quantity Q (for non-defective items) and requests the supplier to transport the order quantity in n equally sized 

shipments, where n is a positive integer. 

4. The relationship between the supplier’s production cost (c), the retailer’s purchase cost (v) and retail price (p) is p > v > c. 

5. The defective items found through the retailer’s inspection process will return to the supplier in a batch at the next beginning of 

replenishment time. Therefore, the retailer received items from the supplier, in which the quantity of non-defective is (1 - )q, the 

length of replenishment cycle T = 

(1 )q
,

D



 the quantity per shipment q = 

Q
,

[n(1 - )]
 and the order quantity Q is the sum of all 

non-defective in n times = 
n(1 - )q = nDT.

 

6. If the retailer’s order quantity reach the threshold quantity (i.e. Q  Qd). The supplier provides full delay payment and the credit 

period is M. Otherwise the supplier provides partial delay payment with  proportion (0   < 1) and the remaining balance 1 -  
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proportion should pay immediately when the goods arrived, therefore the supplier can use the balance to earn interest rate fvc during 

the period [0, M]. 

7. The capital investment, C(), in improving process quality (reducing defective rate) is given by the logarithmic function  C() = 

0
0

θ1
ln ,  0 < θ  θ  < 1.

θ

 
 

    

Mathematical model: 

The Supplier’s total profit per unit time : 

The supplier’s total profit per unit time included the sales revenue, the interest earned, the setup cost, the holding cost, 

opportunity cost, the screening cost, the prevention cost an the transportation maintenance cost. These components are calculated as 

follows 

Sales revenue D (v – c) 

Set up cost 

K
.

nT

 
 
   

Holding cost 

vh DT D n 1 nD
 +  - 

1 - P(1 - 2 2P(1 - 

  
  

      

Handling cost of defective items 

q D
 = 

T 1 - 

  
 

   

Opportunity cost of capital investment in quality 

α
αC( ) = ln

δ

   
  

    

The interest earned during [0, M] is 

v
v

(1 β) Qf M
= (1 β)Dvf M

nT

c
c

v


when Q < Qd(T < Td) 

Q
 = D

nT

 
 
 
Q

 

                         = 0 when Q  Qd(T  Td) 

The opportunity cost due to delay payment is  

 

Vp

Vp

βv(1 - qI M
  =  βDv(1 - qI M

T




 when Q < Qd(T < Td) 

(1 - )q
T = 

D

 
 
 
Q

 

 

Vp

Vp

v(1 - qI M
  =  DvI M

T



when Q  Qd(T  Td)  

The screening cost is given by DCs 

The prevention cost is given by QCp 

The transportation maintenance cost is given by nt. 

Hence the supplier’s total profit per unit time denoted by STP() can be expressed as follows 

 STP() = 

1 d

2 d

STP ( )   if  T  T

STP ( )  if  T  T

 


   

where 

STP1()  = Sales revenue – setup cost – holding cost – handling cost of defective items – opportunity cost of capital investment – 

opportunity cost due to delay payment – screening Cost - prevention Cost- transportation maintenance cost + Interest. 
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   =  

0h DTK D n - 1 nD w D α
D(v ) -  -   +  -  -  - ln

nT 1 - P(1 - 2 2P(1 - 1 - δ

vc
    

   
        

    Vp S P Vc- βDvI M -  DC  - QC -nt + (1 - β)Dvf M 
 

STP2()  =  

v 0h DTK D n - 1 nD w D α
D(v ) -  -   +  -  -  - ln

nT 1 - P(1 - 2 2P(1 - 1 - δ
c

    
   

        

   Vp s- DvI M - Dc pQc nt 
. 

The Retailer’s total profit per unit time : 

The Retailer’s total profit per unit time is composed of  

Sales revenue D(p – v) 

Ordering cost 

A

nT

 
 
   

Fixed Transportation Cost 

F

T

 
 
   

Holding Cost 

b1 b2h DT h DTD D
1   + 1

2 x(1 - 1 - 2x(1 - 

    
     

        

Inspection Cost 

sq sD
 - 

T 1 - 

 
 

 

(1 - )q
T = 

D

 
 
 
Q

 

Preservation technology cost 
T

 
 
   

Interest earned during [0, M] 

Case 1.1 

T 2

Be Be

0

pI pI DT
Dt dt + DT(M - T)  =  + DT(M - T)

T T 2

   
   

  


 

                        

2

BepI DT
= DTM - 

T 2

 
 
   

       
Be

T
= DpI M - 

2

 
 
    when T < Td  M 

Case 1.2 

T

Be
Be d

0

pI
Dt dt + DT(M - T) =DpI M-  when T  M  T

T 2

T   
    

  


 

Case 1.3 

T 2 2

Be Be
Be d

0

pI pI DM M
Dt dt  =    =  DpI   when M  T  T

T T 2 2T

 
  

 


 

Case 2.1 
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T

Be
Be d

0

pI
Dt dt + DT(M - T)   = DpI (M T/ 2) when T   T  M

T

 
   

 


 

Case 2.2 

M 2

Be Be
d

0

pI DpI M
Dt dt =  when T   M  T

T 2T
 

 

Case 2.3 

M 2

Be Be
d

0

pI DpI M
Dt dt =  when M   T   T

T 2T
 

 

Opportunity cost due to partial delay payment 

Case 1.1 

BP
BP d

(1 - β)QvI M
 = (1 - β)DvI M when T  < T   M

nT


 

Case 1.2 

BP
BP d

(1 - β)QvI M
 = (1 - β)DvI M when T   M  T

nT
 

 

Case 1.3 

BP
BP d

(1 - β)QvI M
 = (1 - β)DvI M when  M  T < T

nT


 

Case 2.1 

BP(1 - β)QvI M
 = 

nT 0 dwhen  T   T  M 
 

Case 2.2   

BP(1 - β)QvI M
 = 

nT 0 dwhen  T   M  T 
 

Case 2.3   

BP(1 - β)QvI M
 = 

nT 0 dwhen  M  T   T 
 

Opportunity cost for the items still on hand 

Case 1.1  0    dwhen  T < T   M
 

Case 1.2  0    dwhen  T  M  T 
 

Case 1.3 

T

2BP BP
d

M

vI DvI
D(T - t) dt  =  (T  - M)  when M  T< T

T 2T


 

Case 2.1  0    dwhen  T   T  M 
 

Case 2.2 

2BP BP
d

M

vI DvI
D(T - t) dt  =  (T  - M)  when T   M  T

T 2T

T

 
 

Case 2.3 
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T

2BP BP
d

M

vI DvI
D(T - t) dt  =  (T  - M)  when M  T  T

T 2T
 

 

 The retailer’s total profit per unit time (denote by RTP(n, T) can be expressed as follows  

RTP(n, T) = 

1 d

2 d

RTP (n, T)   if  T < T

RTP (n, T)  if  T  T




  

where 

RTP1(n, T) = 

11 d

12 d

13 d

RTP (n, T)   if  T < T   M

RTP (n, T)   if  T  M  T

RTP (n, T)   if  M  T < T




 
   

RTP2(n, T) = 

21 d

22 d

23 d

RTP (n, T)   if  T   T  M

RTP (n, T)   if  T   M  T

RTP (n, T)   if  M  T   T

 


 
    

and 

RTP11(n, T) = Sales revenue – ordering cost - fixed transportation cost - holding cost – inspection cost  - preservation technology 

cost-opportunity cost due to delay payment – opportunity cost for the items still on hand + interest 

    = 

b1 b2h DT h DTA F D D
D(p ) -  -   - 1  - 1

nT T 2 x(1 - 1 - 2x(1 - 
v



   
     

       

      
BP Be

sD
- -  - (1 - β)DvI M+ DpI

1 - T

  
 

    

RTP12(n, T)  = RTP11(n, T) 

RTP13(n, T) = 

b1 b2h DT h DTA F D D
D(p ) -  -   - 1  - 1

nT T 2 x(1 - 1 - 2x(1 - 
v



   
     

       

      

22

BeBP
BP

DpIDvIsD
- -  - (1 - β)DvI M - + 

1 - 2T 2TT

 

  

RTP21(n, T) = 

b1 b2h DT h DTA F D D
D(p ) -  -   - 1  - 1

nT T 2 x(1 - 1 - 2x(1 - 
v



   
     

       

      
Be

sD T
-  - + DpI M - 

1 - 2T

  
 

    

RTP22(n, T) =

b1 b2h DT h DTA F D D
D(p ) -  -   - 1  - 1

nT T 2 x(1 - 1 - 2x(1 - 
v



   
     

       

       

22

BeBP
DpIDvIsD

-  - - + 
1 - 2T 2TT

 

  

RTP23(n, T) =  RTP22(n, T) 

The joint total profit per unit time : 

This integrated inventory system is made up through the cooperation between the supplier and the retailer. Therefore the joint 

total profit per unit time (denoted by  JTP(n, T, )) can be expressed as : 
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JTP(n, T, ) = 

1 d

2 d

JTP (n, T, )  if T < T

JTP (n, T, )  if T  T




   

where  

JTP1(n, T, ) = 

11 1 11 d

12 1 12 d

13 1 13 d

JTP (n, T, ) = STP ( ) + RTP (n, T), if T <  T   M

JTP (n, T, ) = STP ( ) + RTP (n, T), if T <  M  T

JTP (n, T, ) = STP ( ) + RTP (n, T), if M   T < T

  


  
     

JTP2(n, T, ) = 

21 2 21 d

22 2 22 d

23 2 23 d d

JTP (n, T, ) = STP ( ) + RTP (n, T),  if T    T  M

JTP (n, T, ) = STP ( ) + RTP (n, T),  if T    M  T

JTP (n, T, ) = STP ( ) + RTP (n, T),  if M   T   T

   


   
      

Solution Procedure: 

First to find the optimum value of n for given T and  . Taking the first order partial derivative of 1JTP (n, T, )
 and 

2JTP (n, T, )
 with respect to n for given T and   , respectively we get 

2

v v

2 2

h DT h D TK A
JTP (n, T, ) =  - + - t+  , i= 1,2

n n T 2(1 - 2P(1 - n T
i 




  
 

The second order partial derivative with respect to n for given T and  is given by  

2

i2 3 3 3

-2K -2A -2(A + K)
JTP (n, T, ) =  -  = 0, 1,2

n n T n T n T
i


  

  

Equating the first order partial derivative to zero, we get 

2

v v

2 2

h DT h D TK+A
 -  0

n T 2(1 - θ) 2P(1 - θ)
t  

 

  

2

v v

2 2

h DT h D TK+A
 = t+

n T 2(1 - θ) 2P(1 - θ)


 

n = 

2

v v

2

K+A
 

h DT h D T
T

2(1 - θ) 2P(1 - θ)
t
 
  

   

To solve T and  that makes the joint total profit maximum for given n. It is discussed in 6 cases as follows. 

Case 1.1 : T < Td  M 

For any given n and  , taking the first order partial derivative of JTP11(n, T, ) with respect to T we obtain 

11JTP (n, T, )
T




  =

v

2 2 2 2

h DK D n - 1 nD A F
 -  +  + 

nT 1 - P(1 - 2 2P(1 - nT T T

 
   

       

  

b1 b2
Be

h D h DD D 1
 - 1 - 1 DpI

2 x(1 - 1 - 2x(1 - 2

     
       

         
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    =

Be v v b1 b2

2

DpI h nh h hK+A+Fn+ D
 - 

nT 2 (1 - P 2P 2x 2x

n 



  
    

     

     

v b1 b2h (n - 1) h h
 - D

2(1 - 1 - 1 - 

 
  

     

    =

 Be v
b1 b22

DpI hK+A+Fn+ n D n
 - 1 h h

nT 2 (1 - P 2 2x

 



   
     

     

       

v b1 b2h (n - 1) h h
 - D

2(1 - 1 - 1 - 

 
  

     

11JTP (n, T, )
T




  =

Ben
n2

DpIS
 - 0

nT 2
 

      

where Sn =  K+A + Fn + ζn > 0 and 

n = 

 
2

v v b1 b2
b1 b22

h (1 - n/2) h (n - 1) h hD
h h -D 0

(1 - P 2x 2(1 - 2 1 - 

  
             

Then, taking the second order partial derivative of JTP11(n, T, ) with respect to T, we get 

2

112
JTP (n, T, )

T




  = 

n

3

- 2S
0

nT


  

Equating the first order partial derivative to zero, we get 

Ben
n2

DpIS
 - 0

nT 2
 

 

Ben
n2

DpIS
 = 

nT 2


 

n
11

Be
n

S
( , )

DpI
(  )

2

T T n

n





 

 
 

Hence  JTP11(n, T, ) has maximum value at T= T11(n, ) for given n and . 

Case 1.2 : T  M < Td 

12 11JTP (n, T, ) = JTP (n, T, )
T T

 
 

   and 

2

n
122 3

2S
JTP (n, T, ) =  < 0

T nT




  

n
12

Be
n

S
( , )

DpI
(  )

2

T T n

n





 

 
       

Hence JTP12(n, T, ) has maximum value at T= T12(n, ) for given n and . 

Case 1.3 : M  T < Td 

13JTP (n, T, )
T




 =

2 2

v v v b1 b1

2 2 2 2 2

h D h D(n - 1) h nD h D h DK A F
- -  + + + -

nT P(1 - 2(1 - 2P(1 - nT T 2 2x(1 )








   
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2 2

b2 b2 Be BP BP

2 2 2

h D h D DpI M DVI (T - M) DVI (T - M)

1 2x(1 - 2T T 2T T





 
     

 
 

        =

 
2

vn
b1 b22 2

h (1 - n/2)K+A+F D
- - h h

nT (1 - P 2x

n  
      

     

v b1 b2 Beh (n - 1) h h DpI M
 D +

2(1 - 2 1 2T





 
   

    

     

2

BP BP

2

DVI DVI M

2 2T
 

 

     =

22

Ben BP BP
n2 2 2

DpI MS DVI DVI M
- +  

nT 2 2T 2T
  

22

Ben BP BP
n2 2 2

DpI MS DVI DVI M
- +  

nT 2 2T 2T
  

 

The second order partial derivative 

222

Ben BP
132 3 3 3

DpI M2S DVI M
JTP (n, T, ) =  

T nT T T


  

  

 Equating the first order partial derivative to zero , we get 

22

Ben BP BP
n2 2 2

DpI MS DVI DVI M
-  =0

nT 2 2T 2T
   

 

  

2 2

n BP Be BP
n2

2S +DVI M . n - nDpI M DVI
 = 

2nT 2
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  

2

n Be BP
n BP2

2S  - nDM ( I VI )
 = +DVI

nT

p





 

  
 

2
2n Be BP

n BP

2S  - nDM ( I VI )
 = T

n +DVI

p






 

 T = T13(n, )  =  
 

2

n Be BP

n BP

2S  - nDM ( I VI )

n +DVI

p






 

Hence JTP13(n, T, ) has maximum value at T= T13(n, ) for given n and . 

Case 2.1 : Td  T  M 

22JTP (n, T, )
T




  =

v

2 2 2

h DK D n - 1 nD A F
 -  +  +

nT 1 - P(1 - 2 2P(1 - nT T

 
  
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b1 b2
Be 2

h D h DD D 1
 - 1 - 1 DpI
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


     
        

          
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 Be v
b1 b22

DpI hK+A+Fn+ n D n
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 


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  
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Equating the first order partial derivative to zero, we get 

Ben
n2

DpIS
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Hence  JTP21(n, T, ) has maximum value at T= T21(n, ) for given n and . 

Case 2.2 : Td  M  T 

22JTP (n, T, )
T




 =

2 2

v v v b1 b1

2 2 2 2 2
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


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The second order partial derivative 
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222 3 3 3

DpI M2S DVI M
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T nT T T


  

  

Equating the first order partial derivative to zero , we get 
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Hence JTP22(n, T, ) has maximum value at T= T22(n, ) for given n and . 

Case 2.3 : M  Td  T 

23 22JTP (n, T, ) = JTP (n, T, )
T T

 
 

       

and 

2 2

23 222 2
JTP (n, T, ) = JTP (n, T, )  < 0

T T

 
 

   
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Equating the first order partial derivative to zero ,we get 

T = T23(n, )  =  
 

2

n Be BP

n BP

2S  - nDM ( I VI )

n +DVI

p






 

Hence JTP23(n, T, ) has maximum value at T= T23(n, ) for given n and . 

Next , taking the first order partial derivative of JTP(n, T, ) with respect to  for given n nd T is given by 

JTP(n, T, ) = 





  

2 2

v b1 b2 v
b23 3 2

2D h (1-n/2) D (h - h )(1+θ) h (n-1)D
h

P(1-θ) 2x(1 - θ) (1 - θ) 2

 
   

   

       
2

D(s + w) α

(1 - θ) δθ
 

 

Taking the second order partial derivative 

2

2
JTP(n, T, ) = 






  = 

 
2 2

v b1 b2
v b24 4 3

6D h (1-n/2) D (h - h )(2+θ) D
-T h (n-1) 2h

P(1-θ) x(1 - θ) (1 - θ)

 
   

   

       
3 2

D(s + w) α
 < 0

(1 - θ) δθ
 

 

Hence  is the optimal solution for given n and T. 

Therefore the optimal shipment times n, replenishment cycle T and defective rate  that makes the joint total profit JTP(n, T, ) 

maximum. 

Numerical Examples 

Example 1: To illustrate the above solution procedure, we consider an inventory system with the following data: D=10,000 

units/year, P=30,000 units/year, A=$50 /order, K=$120 /setup, F=$25 /shipment, c=$11 /unit, v=$20 /unit, p=$25 /unit, hv=$0.2 

/unit/year, hb1=$0.2 /unit/year, hb2=$0.1 /unit/year, w=$5 /unit, s=$0.5 /unit, x=175,200 units/year, M=30 days(=0.0822 year), 

fVc=0.02, IVp=0.05, IBe=0.025, IBp=0.035, 
0.001,  0.2,     0 0.3,  0.02 Q= 2466units;  

 

3000 ; 0.1d dQ units T 
 
; 3; ( ) $1715.48;n C   $0.02pC  ; $0.01;sC  $3; $75t  

 

Following the proposed models, we can obtain the optimal replenishment cycle T*=0.0822<0.15=Td (i.e., the optimal order 

quantity Q*=2466<3000=Qd). Hence, the vendor only offers partial delay payment and pays capital investment amount C( 

)=$1,715.48 which improves the defective rate from 0.02 to 0.00359756. As a result, the total profit per year of vendor is $88,245.24 

buyer is $44,091.74, and joint is $132336.98. 

Example 2: In this example, we consider an inventory system with the following data: D=5,000 units/year, P=15,000 units/year, 

A=$30 /order, K=$100 /setup, F=$15 /shipment, c=$8 /unit, v=$13 /unit, p=$15 /unit, hv=$0.2 /unit/year, hb1=$0.2 /unit/year, hb2=$0.1 

/unit/year, w=$4 /unit, s=$1 /unit, x=1,00,000units/year, M=15 days(=0.0412 year), fVc=0.01,IVp=0.03,IBe=0.015, IBp=0.013, 

0.003,  0.1,     0 0,  0.01;  Q= 3000units;   2466 ; 0.3d dQ units T  ; 4; ( ) $2000; $0.03;pn C C  

$0.005;sC  $5; $50t  
 

Following the proposed models, we can obtain the optimal replenishment cycle T*=0.0412<0.3=Td (i.e., the optimal order 

quantity Q*3000>2466=Qd). Hence, the vendor only offers partial delay payment and pays capital investment amount C( )=$2,000 . 

As a result, the total profit per year of vendor is $24,327.48, buyer is $4,462.04, and joint is $28,789.52. 

Conclusion 

This paper finds that the supplier should set the proportion of partial delay payment and the threshold quantity more careful, 

therefore the supplier can avoid the more loss in profit and to attract the sales more effective. And the more quantity the retailer 
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orders, the more capital investment the supplier has to pay. This study highlights the concept of preservation technology when demand 

depends on credit period and selling price. Numerical example is presented to illustrate the theoretical results. 
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