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Introduction

Hankel convolution has been studied by many authors in recent past. Following Cholewinski [1], Haimo [2], Hirschman Jr. [3],
the Hankel type convolution for the following form of the Hankel type transformation of a function f € L. (I), where | =
(0, ) and

Ly (D ={f= jlf(x)ldff(x) <oof 1=(0,0)}.
0

Namely,
(hapf) () = F ) = [, jaup ) f ) do (©) , (1.1)

where
Ja-p(x) = 272F T 2a) x? ]_,p (x) and J; (x)
is the Bessel function of first kind and of order A. Here
¢2(@=p)
do(t) = 2—2/3—1"(204) dt.
Wesaythat f € IP (I), 1<p < oo, if

1
p

1l = f FOP do) | < oo.
0

Iff € Ly (1) and h,p f € Ly (1) then the inverse Hankel type transform is given by

f@) = (hap [F1) @ = [; ja-p 60) (hapf) (&) da(t) (12)
If f € LY (I), g € L. (1) then the Hankel type convolution is defined by

(F#9) () = []"(@f) 0) 90 do (), (1.3)
where the Hankel type translation 7, is given by

(@) @) = fe,y) = [, D (x,y,2) f(x) do (2), (1.4)
where
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D (x,y,2) = f g GO g V) jup (28) da()

= 22@2B) (m)~2@H4B) [I(6a + 4B)]* [['(a — I (xy2)*F [ACx,y, 2)]*F
for (a — B) > 0, where A (x,y, z) is the area of a triangle with sides x, y, z if such a triangle exists and zero otherwise.

Here we note that D (x, y, z) is symmetric in x, y, z. Applying (1.2) to (1.4), we get the formula

[oe]

f juep @) D, 2) do(2) = juug () jup (V).

0
Setting t = 0, we get

[oe]

f D(x,y,z) do (z) = 1.
0
Therefore in view of (1.4),

IF @nll,, < Il (15)

Now, using (1.4) we can write (1.3) in the following form:

(F#9) () = f f D(x,y,2) f(2) g) do(z) do (7).
0 0

Some important properties of the Hankel type convolution that are relevant are:
1. Iff,g € L% (1) then from [2],

If#gllie < lIfllie lgllie (1.6)
2. With the same assumptions,
hep (F#9) (1) = (hapf) () (hapg) () (o))
3. Iff e LY (Dand g € IX (I), p = 1. Then (f#g) exists, is continuous and from [7], we get the inequality
If#gllpe < fllie gllpe (1.8)

4 Letr e P, g e LX) ,%+%= 1. Then f#g exists, is continuous and from [7] we have

If#9llcoe < NIfllpo llgllq.o 1.9)
5 Lety e [P (Dandg € X (D), % = %+ é — 1. Then (f#g) exists, is continuous and from [7], we get the inequality :

If#gllre < Wfllp llgllq (1.10)
6. Letf e IZ (I), g € L2 (I) and h € LT, (I). Then the weighted norm inequality

< Wfllpo l19llgq 1Rll6

[ 760 @) ) do@)
0

holdsfor® ;1,1 _ o
p q T

As indicated above the proof of the properties 1 to 5 are well known. Hence, we next give the proof of 6.

Using Holder’s inequality, we get

[ 1 1 1
f FG) (@#0) 0 do ()| < Ifllpg gl Mellsg 5= o+ = 1.
0
Therefore using (1.9), we have
[ 1 1 1
[ 1) @#0) (0 do @) < Wl gl Mhllo = 2401,
0




25569 B.B.Waphare/ Elixir Appl. Math. 72 (2014) 25567-25576
From [4], hep is isometric on 12 (I, (h;% hep f) = f then Parseval’s formula of the Hankel type transformation for f,g €
LZ (1) is given by

Iy f@ g do ) = [ (hap ) 0) (hap 9) @) do (). (1.12)
Furthermore, this relation also holds for f,g € L% (I), (see [8.]).
Fory € LL (1), using translation T given in (1.4) and dialation D, f (x,y) = f (ax, ay), the Bessel wavelet [6] is defined by

P (2.2 =Dyarsp ® = [ @D (%.2,2) do2). (1.12)
The continuous Bessel wavelet transform [6] of a function f € L. (I) with respect to wavelety € L% (I) is defined by
(By f) (b,a) = a*f~2 fooolﬁ (2 S) f(t) do (t), a> 0. (1.13)

By simple modification of (1.13), we can get
b
(B, f) (b,a) = (F#) (5) . a>o.
From (1.3) and (1.4) the continuous Bessel type wavelet transform of a function f € L1 (I) can be written in the form :
(By f) 0,@) = [ jap (bW (hap f) W) (hag ¥) (aw) do (W) (1.14)

Now, we state the Parseval formula of the Bessel type Wavelet transform from [6, p.245].

07 (By £) (0,0) (By g) (b,@) L2290 = ¢, (f,g), (1.15)

for f e l2(andg € 12 (D).
Now, we also state from [3, Theorem 2c, p. 312] and [3, Corollary 2c, p.313] which is useful for our approximation results:

Theorem 1.1: Suppose that

1 k,(x) 20, 0<x<oo,

2. fooo k, x)do(x)=1, n=0,1,23,.....,

3. im0 f;o k,(x)do(x) =0 foreachd >0,

4 ¢ () € L3(D),

5. ¢ iscontinuous at x,,x, € [x — &, x+ 8] and § > 0.

Then

lim (¢#k,) (xo) = $(xo).
Corollary 1.1 : With the same assumptions on k,, (x), if f (x) € L. (I) then
lim [|f#ky = fll, = 0.

The Bessel wavelet type convolution product:

In this section, using properties (1.5), (1.11) and (1.12), we formally define the convolution product for the Bessel type Wavelet
transformation by the relation

By (f ® 9) (b,a) = (By f) (b,a) (By g) (b,a), (2.1)

and investigate its boundedness and approximation properties. This in turn implies that the product of the two Bessel type wavelet
transforms could be wavelet transform under certain conditions.

Theorem 2.1: Let f, g, € Ly (I) and h, (1) (W) # 0. Then the Bessel type Wavelet convolution can be written in the form

F®g) (@ = f (tzaf) Mg do(y) ,

where
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(t2af) ) = [ £GP (3.2 dor @),

D (,y,2) = f f (hag) at) (hagh) (@E) jamp (X0) jump (¥E)

X Lq (t,§,2) do (t) do(§),
and

Lo(t,6,2) = [} jap OE) jaep 1) Qo (v,2) do (),

© ja-g Wz) jg-g(Wy)

Q v,2) = fo (hap 9) (@) do(w).

Proof: From (1.14), we have

ha,s[(By £) (0, )] W) = (hap %) (aw) (hap f) W):
Using (2.1) and (2.5) we get

heg | (By f ® 9)) (b@)| W)
“ha [(By f) (b,a)(By g)(b,@)] (W)

= hap [hah ((hap $)(@?) (hap )O) hal ((hap¥) @) (hepg)))] ) -
By property (1.7) of the Hankel type convolution, we have

hap [(Bo(F ® 9)) B,@] ) = [(heg) (@) (hapf)O) # (egh) (@) (hapg)O] ).
Therefore by (2.5), we get

(hap) (aw) hep [(f ® 9)] (W)
= [(hap¥) (@?) (hopf) O# (happ) (@) (hapg) O] W)

(22)

(23)
(2.4)

(2.5)

(2.6)

This gives a relation between the Bessel type wavelet transform-convolution and the Hankel type transform-convolution.

Let us set
F, = (ha,[f 1/)) (a) (ha,ﬁ f) ©),

G, = (ha,B 1/)) (a-) (ha,ﬁ g) O
Then by (1.3) and (1.4) we get

(hep ¥) (@w) hap [(f ® 9] (W)

f (T Go) () Fy () dor ()
0

f F, 1) ( f D (w,n,€) G (€) do(€) do (n))
0 0

F, () Go (§) D (w,7,$) da(§)do (n)

I

[ee)

[RAOIAG ( [ 509 e @) o €9 o (y)) do (&) do (n)

I
O\’S

[oe]

f ( f Fo (M) ja-p (ny)da(n)) < f Ga (s‘)ja_ﬁ(s‘y)do(f)> Ja-p Wy) do(y)
0 0

0
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= f(ha,ﬁ Fa) (y) (ha,B Ga) (y) ja—B (WY) dU()’)
0
Therefore by the inversion formula of the Hankel type transformation (1.2), we have

ja B (WZ)

fF®g (2= W

( [ (has R) @) (b 62) ) o w30 do (y)) do(w)

= f(ha,ﬁ Fa) (Y)(ha,ﬁ Ga) (y) <J- ]a_l(gh(u;zzpj)a(_(fv‘f;/y) do (W)) do (}’)

~ [ (hap B2 0) (e 62) 03 Qe 0122 do ),
0

where Q, (y, z) is given by (2.4).
Then by the definition of the Hankel type transformation (1.1), (f ® g) (2)

— [ [ s 00 (s #) @) (e £) © do @

SS

00
X < f Ja-p €) (hap ¥) (@§) (hep g) §)do (§) Qq (v,2) da(y)>
0
= [ [ (has ) @O (e ) @) (e £) © (e 9) )
0 0
X (j Ja-p V§) ja—p W) Qa (v, 2) do (y)> do (t) do($)
0

= [ [ (e ) @0 (hes #) @) (e £) © (e 9) ©
00

X Lg (t,¢,2) do(t) da(§) :

Therefore

f®9) (2

= [ [ (hes ) @)t ) @) ( [ s 02 £ ) da(x))

0 0 0

X

(f Ja-p V8 g (y)da(y)> Lq (t,§,2) da(t) do(§)
0

ff(x) P ( [ [ et GO e 06) (e $)@0) (e 9) @) L (26,2 do (0) do (f))
2 0 o0

Il
o —

do(x) da(y)

f(x) g(y) Dy (x,y,2) do(x)do(y),

Il
o —
o —

where

Doy = [ [ g G Jup ) (e ) @) (e ) (@) L(6:6,2) dor 0 o (©).
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If we define the generalized translation by

[oe]

Fzy) = (1 f) 0) = f D.(x,7,2) fx) do(x),

0

then

fF®g) (@ = f (tza f) ) gO) do(¥).

Thus proof is completed.

Theorem 2.3: Assume that
inf|(ha,ﬂ ¥)(aw)| = By (a) > 0.
w

Then

1 —
IDe Gy, D < 5o a2 Il

Proof: From (2.2), we have

Da(,,2) = f f g GO g ) (g ) (@) (hag ) (@€) Le (t,€,2) do (£) do ()
0

X
ORS /—\ OSSO

f s O8) jueg ¥ (hap ¥) (@) (hap ¥) (@)
0

[ s @) s @0 00 (1.2 da(n)> do(t) do (€)
0

j(x—B (xt) j(x—ﬁ $) (ha,[f l/)) (at) (ha,[f l/)) (a&)

( . . ooja— (Wz)ja— (UW)
X ( f Ja—p M) Ja-p (1) ( Of ’Eha’ﬁ ) (’;W) do (w)) do (r,)> do (t) do (§)

0

-/ ( [ e GO g @) (e ) (@) da(t))
0 0

X <f Jaep O Jamp 1) (hap ¥) (af) dU(f)) Qq (z,m) do(n)
= f ha,ﬁ [ja—ﬁ (xt) (ha',,B’ l/)) (at)] m ha,B [ja—ﬁ 6% (ha,ﬁ l,l)) (af)] () Qq (z,m) do(n)

0
= [ [ hep st (g 9) @0 # g 09) (i ) @] ()
0 0

X Jacg W) jurp W2) [(hap ) (aw)] " do (w) do ()

= [lies & (hap ¥) @ I # g O (g ¥) (@ ] )

0
X ja-p W2) [(hap ¥) (@w)] ™ do (w).
Now, set F, (t) = jq—p (xt) he gt (at) and assume that
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inf|(ha‘ﬁ l,b)(aw)| = By (@) >0.
w

Since |joc—p’ (Z)| <1, [2, p. 336], We have
De(,9,2)] < ——— f|<F#F)()|d W)
a\ XY, Z = aftlg) W o w).
Y By(@ )

Using (1.6), we have

1 [ee]
IDe(x,y,2)] < ann IF]
a Bw(a) J 1,0 1,0

2

1 e
< B, (@) Of lia-p Ccv)(hop ¥) (av)| do (v)l

2

IA

! fw| (av)] do(v)
B, (@ _ot,bav o(v

1
By, (a)
48-2

< g MWellol”

[I1allse]”

IA

In order to obtain Plancheral formula for the Bessel type wavelet transform, we define the space

( @ w 2 )

do(b) d

W2 X 1) = | g(b,a: liglhy: = (ng(b o 2% ima(a)) < .
\ 0o )

Theorem2.3: Letf € L2 (1), ¥ € L2 (I). Then

|(Byf) b, a),,. = /Cw 1126 -
Proof: Putting f = g in (1.15), we prove the above theorem.

Theorem 2.4: Let f,g € 12 (I) and letyp € L2 (I) be a Bessel wavelet which satisfies

2 da(a) >0

)= j (hap ) ()|

Then
If & gllze < Ifll26 llgllze 1Pz -

Proof: Using Theorem 2.3 and (2.1)

\/cT,, If ® glloo = [1By(f @ DI,

2 do(a)de 2.7
= (7 11By f (b,@) By g (b, @) M}
From (1.14) and (1.9), we have
1By g ()| < |(g(a) #9()) (b/)| < gllze 1Pll200 (238)

Applying (2.7) and (2.8), we get
1

0 oo , d d b
jCTp If ® gllos < llgllzs ||w||2,,<f f By f (b, )| M)
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/C¢ If @ 9gllze < lgllze W26 wa 120 -

If @ gllze < llgllze 1Wllze Ifllze -

From Theorem 2.3, we obtain

IA

Hence

Thus proof is completed
Weighted Sobolev Space:

In this section we study certain properties of the Bessel type wavelet convolution on a weighted Sobolev space defined below.
Definition 3.1: The Zemanian space H, ; (I), I = (0, ) is the set of all infinitely differentiable functions ¢ on (0, ) such that
k

x™ (x‘1 ;—x> x?P1 (%)

< oo

Pk ($) = Sup

x € (0,00)

forallm,k € Ny.Then f € Hyp (D) is defined by the following way:

(f, ) = j F) W dx, ¢ € Hep () .
0

Definition 3.2: Let k(w) be an arbitrary weight function. Then a function ¢ ¢ [Hes (1)]’ is said to belong to the weighted Sobolev

space
Gg,ﬁ,k (Dfor(a—pB) € R, 1 <p< oo, ifitsatisfies
1
} : (3.1)
19l poie = (J Tk (has ®) W|” daw))?,

wherea > 0and @ € % (I).
In what follows we shall assume that k(w) = |(ha,ﬁ 1/,) (aw)| for fixed ¢ > 0.
Theorem3.1: Letf € G,z,(I)and g € Gg,ﬁ,k([)’ p = 1. Then
"f ® g”p,a,ﬁ,a’,k < ”f”l,a,ﬁ,o‘,k ”g”p,a,ﬁ,a,k .
Proof: In view of (3.1) we have
1
© 14
IF @ lpason = | [ 16w e ( @ 9) @) daw)
0
By (1.8) and (2.6) we have
“f ® g”p,a,ﬁ,a’,k < ”Fa (W)”La,ﬁ,a,k ”Ga (W)”p,a,ﬁ,o‘,k

< [I(hep ) (@) (e £) WL, 5 (3.2)

X [(hap ¥) (aw) (hap g) W[, 5
From Definition 3.2, we get
If ®@ gllpapor < Ifllvapor19lpapor 33
This completes the proof.
Theorem 3.1: Let f € (;g‘ﬁ‘k (Dand g € G(Z,[)’,k (Dwith1 <p,q <oandq/ = %4_ % — 1. Then

”f ® g”r,a,ﬁ‘,a,k < "f”p,a,ﬁ‘,mk ”g”q,a,ﬁ,a,k . (34)

Proof: Using (1.10) and (3.1) we get (3.4).
Approximation properties of the Bessel type wavelet convolution are given next.

Theorem 3.2: Lety, , (W) = ¢,(aw), n =012, ...... be the sequence of basic wavelet functions such that

1L Ypaw) 20, 0<w< oo,
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2. [ g W) do W) =1,

3. limye f:o Yna dow) =0, foreach €>0,

4 (e Yna) W) € Ly (D)

5 hap [(hap Yna) W] = ng W) -
Then

lim [[£(5) ~ (By,f) (b,),, = 0.

Proof: Proof can be completed by following [3, pp. 315-316]
Theorem 3.3: Let k, (W) = (ha,ﬁ’ w) (aw) (hcx,ﬁ gn) (w) for fixed a>0,n €N, and ¢p(w) =
(hap ) (aw) (hqp f) (w) satisfy.

Lk, (W) =20, 0<w< o,

2. fo‘” k, Wdo(w)=1,w=0123,.... ,

3. limy, 00 f;o k,(w)do (w) =0 , foreachd >0,

4 9ow) e Lz (D),

5. ¢ is continuous at w, and (ha,ﬁ 1p) (awy) #0 forwy, € [w—38, w+6], § >0.

Then

lim hep (f ® gn) (Wo) = (Rap f) (Wo).
Proof : In view of relation (2.6), we have
(hap ¥) (aw) heg (f ® gn) W) = (P#ky,) (W) :

Now using Theorem 1.1, we have

lim (hp ¥) (aWo) hep (f ® gn)(wo) = lim ($#en) (wo)
= ¢ (wo)
= (hop¥)(awy) (hep f) (Wo) .

This implies that
lim hep (F ® g)Wo) = (hap £)(Wo) .
Thus proof is completed.

Theorem 3.4: Let £, € LL (I), and k, (w) be the same as Theorem 3.3 which satisfies all the four properties of Theorem 3.2.
Then

rlli_lgo”(ha,ﬁ l,l)) (aWO)(htx,ﬁ f) (WO) - (ha,B l/)) (aWO) ha,ﬁ (f ® gn) (WO)”LJ =0.
Proof: Using (2.6), we have
7lli_{1;10||(ha,ﬁ l/)) (aWO) (ha,ﬁ f)(WO) - (ha,ﬁ l/)) (aWO) ha,ﬁ (f ® gn)(WO)”LJ

(hap ) (@) (hap f) ()

xﬂmmmwwmm$w

ﬂmWWmMﬂwﬂm%

= 1111_{210”4) (wo) — (¢ # ky) Wo)llyo -

Since f,p, € Ly (1), ¢ W) = (hap ) (hap¥a) = hap (F #12) € Li (D).
Therefore using the tools of [3, Corollary 2 ¢, pp.313 — 314], we have

lim ”(ha,B 1!’) (aWO) (hoc,ﬂ f)(WO) - (hoc,ﬂ l;b) (aWO) ha,ﬁ (f ® gn) (Wo) ”1.0 =0.

n—-oo
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