The convolution product associated with the Bessel type wavelet transform

B.B.Waphare

MAEER's MIT ACSC Alandi, Pune - 412 105, Maharashtra, India.

ARTICLE INFO

Article history:

Received: 23 May 2014;
Received in revised form:
19 June 2014;
Accepted: 4 July 2014;

Keywords

Bessel type wavelet transform,
Convolution product,
Hankel type transformation,
Hankel type translation.

Abstract

In this paper the convolution product associated with the Bessel type wavelet transformation is investigated. Certain norm inequalities for the convolution product are established.

© 2014 Elixir All rights reserved

Introduction

Hankel convolution has been studied by many authors in recent past. Following Cholewinski [1], Haimo [2], Hirschman Jr. [3], the Hankel type convolution for the following form of the Hankel type transformation of a function $f \in L_{\sigma}^{1}(I)$, where $I=$ $(0, \infty)$ and

$$
L_{\sigma}^{1}(I)=\left\{f: \int_{0}^{\infty}|f(x)| d \sigma(x)<\infty\{, \quad I=(0, \infty)\}\right.
$$

Namely,

$$
\begin{equation*}
\left(h_{\alpha, \beta} f\right)(x)=\tilde{f}(x)=\int_{0}^{\infty} j_{\alpha-\beta}(x t) f(t) d \sigma(t) \tag{1.1}
\end{equation*}
$$

where

$$
j_{\alpha-\beta}(x)=2^{-2 \beta} \Gamma(2 \alpha) x^{2 \beta} J_{-2 \beta}(x) \text { and } J_{\lambda}(x)
$$

is the Bessel function of first kind and of order λ. Here

$$
d \sigma(t)=\frac{t^{2(\alpha-\beta)}}{2^{-2 \beta} \Gamma(2 \alpha)} d t
$$

We say that $f \in L_{\sigma}^{p}(I), 1 \leq p<\infty$, if

$$
\|f\|_{p, \sigma}=\left(\int_{0}^{\infty}|f(x)|^{p} d \sigma(x)\right)^{\frac{1}{p}}<\infty
$$

If $f \in L_{\sigma}^{1}(I)$ and $h_{\alpha, \beta} f \in L_{\sigma}^{1}(I)$ then the inverse Hankel type transform is given by
$f(x)=\left(h_{\alpha, \beta}^{-1}[\tilde{f}]\right)(x)=\int_{0}^{\infty} j_{\alpha-\beta}(x t)\left(h_{\alpha, \beta} f\right)(t) d \sigma(t)$
If $f \in L_{\sigma}^{1}(I), g \in L_{\sigma}^{1}(I)$ then the Hankel type convolution is defined by
$(f \# g)(x)=\int_{0}^{\infty}\left(\tau_{x} f\right)(y) g(y) d \sigma(y)$,
where the Hankel type translation τ_{x} is given by
$\left(\tau_{x} f\right)(y)=\tilde{f}(x, y)=\int_{0}^{\infty} D(x, y, z) f(x) d \sigma(z)$,
where

Tele:

E-mail addresses: balasahebwaphare@gmail.com
$D(x, y, z)=\int_{0}^{\infty} j_{\alpha-\beta}(x t) j_{\alpha-\beta}(y t) j_{\alpha-\beta}(z t) d \sigma(t)$

$$
=2^{2(\alpha-2 \beta)}(\pi)^{-2(\alpha+4 \beta)}[\Gamma(6 \alpha+4 \beta)]^{2}[\Gamma(\alpha-\beta)]^{-1}(x y z)^{4 \beta}[\Delta(x, y, z)]^{4 \beta},
$$

for $(\alpha-\beta)>0$, where $\Delta(x, y, z)$ is the area of a triangle with sides x, y, z if such a triangle exists and zero otherwise.
Here we note that $D(x, y, z)$ is symmetric in x, y, z. Applying (1.2) to (1.4), we get the formula

$$
\int_{0}^{\infty} j_{\alpha-\beta}(z t) D(x, y, z) d \sigma(z)=j_{\alpha-\beta}(x t) j_{\alpha-\beta}(y t) .
$$

Setting $t=0$, we get

$$
\int_{0}^{\infty} D(x, y, z) d \sigma(z)=1 .
$$

Therefore in view of (1.4),
$\|\tilde{f}(x, y)\|_{1, \sigma} \leq\|f\|_{1, \sigma}$.
Now, using (1.4) we can write (1.3) in the following form:

$$
(f \# g)(x)=\int_{0}^{\infty} \int_{0}^{\infty} D(x, y, z) f(z) g(y) d \sigma(z) d \sigma(y) .
$$

Some important properties of the Hankel type convolution that are relevant are:

1. If $f, g \in L_{\sigma}^{1}(I)$ then from [2],
$\|f \# g\|_{1, \sigma} \leq\|f\|_{1, \sigma}\|g\|_{1, \sigma}$
2. With the same assumptions,
$h_{\alpha, \beta}(f \# g)(x)=\left(h_{\alpha, \beta} f\right)(x)\left(h_{\alpha, \beta} g\right)(x)$
3. If $f \in L_{\sigma}^{1}(I)$ and $g \in L_{\sigma}^{p}(I), p \geq 1$. Then $(f \# g)$ exists, is continuous and from [7], we get the inequality $\|f \# g\|_{p, \sigma} \leq\|f\|_{1, \sigma}\|g\|_{p, \sigma}$
4. Let $f \in L_{\sigma}^{p}(I), g \in L_{\sigma}^{p}(I), \frac{1}{p}+\frac{1}{q}=1$. Then $f \# g$ exists, is continuous and from [7] we have
$\|f \# g\|_{\infty, \sigma} \leq\|f\|_{p, \sigma}\|g\|_{q, \sigma}$
5. Let $f \in L_{\sigma}^{p}(I)$ and $g \in L_{\sigma}^{p}(I), \frac{1}{r}=\frac{1}{p}+\frac{1}{q}-1$. Then $(f \# g)$ exists, is continuous and from [7], we get the inequality :
$\|f \# g\|_{r, \sigma} \leq\|f\|_{p}\|g\|_{q}$
6. Let $f \in L_{\sigma}^{p}(I), g \in L_{\sigma}^{p}(I)$ and $h \in L_{\sigma}^{r}(I)$. Then the weighted norm inequality

$$
\left|\int_{0}^{\infty} f(x)(g \# h)(x) d \sigma(x)\right| \leq\|f\|_{p, \sigma}\|g\|_{q, \sigma}\|h\|_{r, \sigma}
$$

holds for $\frac{1}{p}+\frac{1}{q}+\frac{1}{r}=2$.
As indicated above the proof of the properties 1 to 5 are well known. Hence, we next give the proof of 6 .
Using Holder's inequality, we get

$$
\left|\int_{0}^{\infty} f(x)(g \# h)(x) d \sigma(x)\right| \leq\|f\|_{p, \sigma}\|g\|_{q, \sigma}\|h\|_{s, \sigma}, \frac{1}{s}=\frac{1}{q}+\frac{1}{r}-1 .
$$

Therefore using (1.9), we have

$$
\left|\int_{0}^{\infty} f(x)(g \# h)(x) d \sigma(x)\right| \leq\|f\|_{p, \sigma}\|g\|_{q, \sigma}\|h\|_{s, \sigma}, \quad \frac{1}{s}=\frac{1}{q}+\frac{1}{r}-1
$$

From [4], $h_{\alpha, \beta}$ is isometric on $L_{\sigma}^{2}(I),\left(h_{\alpha, \beta}^{-1} h_{\alpha, \beta} f\right)=f$ then Parseval's formula of the Hankel type transformation for $f, g \in$ $L_{\sigma}^{2}(I)$ is given by

$$
\begin{equation*}
\int_{0}^{\infty} f(x) g(x) d \sigma(x)=\int_{0}^{\infty}\left(h_{\alpha, \beta} f\right)(y)\left(h_{\alpha, \beta} g\right)(y) d \sigma(y) \tag{1.11}
\end{equation*}
$$

Furthermore, this relation also holds for $f, g \in L_{\sigma}^{1}(I)$, (see [8.]).
For $\psi \in L_{\sigma}^{1}(I)$, using translation τ given in (1.4) and dialation $D_{a} f(x, y)=f(a x, a y)$, the Bessel wavelet [6] is defined by
$\tilde{\psi}\left(\frac{t}{a}, \frac{b}{a}\right)=D_{1 / a} \tau_{b} \psi(t)=\int_{0}^{\infty} \psi(z) D\left(\frac{t}{a}, \frac{b}{a}, z\right) d \sigma(z)$.
The continuous Bessel wavelet transform [6] of a function $f \in L_{\sigma}^{1}(I)$ with respect to wavelet $\psi \in L_{\sigma}^{1}(I)$ is defined by

$$
\begin{equation*}
\left(B_{\psi} f\right)(b, a)=a^{4 \beta-2} \int_{0}^{\infty} \tilde{\psi}\left(\frac{t}{a}, \frac{b}{a}\right) f(t) d \sigma(t), a>0 \tag{1.13}
\end{equation*}
$$

By simple modification of (1.13), we can get

$$
\left(B_{\psi} f\right)(b, a)=(f \# \psi)\left(\frac{b}{a}\right), \quad a>0
$$

From (1.3) and (1.4) the continuous Bessel type wavelet transform of a function $f \in L_{\sigma}^{1}(I)$ can be written in the form :

$$
\begin{equation*}
\left(B_{\psi} f\right)(b, a)=\int_{0}^{\infty} j_{\alpha-\beta}(b w)\left(h_{\alpha, \beta} f\right)(w)\left(h_{\alpha, \beta} \psi\right)(a w) d \sigma(w) \tag{1.14}
\end{equation*}
$$

Now, we state the Parseval formula of the Bessel type Wavelet transform from [6, p.245].
$\int_{0}^{\infty} \int_{0}^{\infty}\left(B_{\psi} f\right)(b, a)\left(B_{\psi} g\right)(b, a) \frac{d \sigma(b) d \sigma(a)}{a^{4 \alpha}}=C_{\psi}\langle f, g\rangle$,
for $f \in L_{\sigma}^{2}(I)$ and $g \in L_{\sigma}^{2}(I)$.
Now, we also state from [3, Theorem 2c, p. 312] and [3, Corollary 2c, p.313] which is useful for our approximation results:
Theorem 1.1: Suppose that

1. $k_{n}(x) \geq 0,0<x<\infty$,
2. $\int_{0}^{\infty} k_{n}(x) d \sigma(x)=1, n=0,1,2,3, \ldots \ldots$,
3. $\lim _{n \rightarrow \infty} \int_{\delta}^{\infty} k_{n}(x) d \sigma(x)=0$ for each $\delta>0$,
4. $\phi(x) \in L_{\sigma}^{\infty}(I)$,
5. ϕ is continuous at $x_{0}, x_{0} \in[x-\delta, x+\delta]$ and $\delta>0$.

Then

$$
\lim _{n \rightarrow \infty}\left(\phi \# k_{n}\right)\left(x_{0}\right)=\phi\left(x_{0}\right) .
$$

Corollary 1.1 : With the same assumptions on $k_{n}(x)$, if $f(x) \in L_{\sigma}^{1}(I)$ then

$$
\lim _{n \rightarrow \infty}\left\|f \# k_{n}-f\right\|_{1}=0
$$

The Bessel wavelet type convolution product:

In this section, using properties (1.5), (1.11) and (1.12), we formally define the convolution product for the Bessel type Wavelet transformation by the relation

$$
\begin{equation*}
B_{\psi}(f \otimes g)(b, a)=\left(B_{\psi} f\right)(b, a)\left(B_{\psi} g\right)(b, a) \tag{2.1}
\end{equation*}
$$

and investigate its boundedness and approximation properties. This in turn implies that the product of the two Bessel type wavelet transforms could be wavelet transform under certain conditions.

Theorem 2.1: Let $f, g, \psi \in L_{\sigma}^{1}(I)$ and $h_{\alpha, \beta}(\psi)(w) \neq 0$. Then the Bessel type Wavelet convolution can be written in the form

$$
(f \otimes g)(z)=\int_{0}^{\infty}\left(\tau_{z, a} f\right)(y) g(y) d \sigma(y)
$$

where

$$
\begin{gather*}
\left(\tau_{z, a} f\right)(y)=\int_{0}^{\infty} f(x) D_{a}(x, y, z) d \sigma(x) \\
D_{a}(x, y, z)=\int_{0}^{\infty} \int_{0}^{\infty}\left(h_{\alpha, \beta} \psi\right)(a t)\left(h_{\alpha, \beta} \psi\right)(a \xi) j_{\alpha-\beta}(x t) j_{\alpha-\beta}(y \xi) \\
\times L_{a}(t, \xi, z) d \sigma(t) d \sigma(\xi), \tag{2.2}
\end{gather*}
$$

and

$$
\begin{gather*}
L_{a}(t, \xi, z)=\int_{0}^{\infty} j_{\alpha-\beta}(y \xi) j_{\alpha-\beta}(y t) Q_{a}(y, z) d \sigma(y) \tag{2.3}\\
Q_{a}(y, z)=\int_{0}^{\infty} \frac{j_{\alpha-\beta}(w z) j_{\alpha-\beta}(w y)}{\left(h_{\alpha, \beta} \psi\right)(a w)} d \sigma(w) \tag{2.4}
\end{gather*}
$$

Proof: From (1.14), we have

$$
\begin{equation*}
h_{\alpha, \beta}\left[\left(B_{\psi} f\right)(b, a)\right](w)=\left(h_{\alpha, \beta} \psi\right)(a w)\left(h_{\alpha, \beta} f\right)(w) \tag{2.5}
\end{equation*}
$$

Using (2.1) and (2.5) we get

$$
\begin{aligned}
& h_{\alpha, \beta}\left[\left(B_{\psi}(f \otimes g)\right)(b, a)\right](w) \\
& \quad=h_{\alpha, \beta}\left[\left(B_{\psi} f\right)(b, a)\left(B_{\psi} g\right)(b, a)\right](w) \\
& =h_{\alpha, \beta}\left[h_{\alpha, \beta}^{-1}\left(\left(h_{\alpha, \beta} \psi\right)(a \cdot)\left(h_{\alpha, \beta} f\right)(\cdot)\right) h_{\alpha, \beta}^{-1}\left(\left(h_{\alpha, \beta} \psi\right)(a \cdot)\left(h_{\alpha, \beta} g\right)(\cdot)\right)\right](w)
\end{aligned}
$$

By property (1.7) of the Hankel type convolution, we have
$h_{\alpha, \beta}\left[\left(B_{\psi}(f \otimes g)\right)(b, a)\right](w)=\left[\left(h_{\alpha, \beta} \psi\right)(a \cdot)\left(h_{\alpha, \beta} f\right)(\cdot) \#\left(h_{\alpha, \beta} \psi\right)(a \cdot)\left(h_{\alpha, \beta} g\right)(\cdot)\right](w)$.
Therefore by (2.5), we get

$$
\begin{align*}
& \left(h_{\alpha, \beta} \psi\right)(a w) h_{\alpha, \beta}[(f \otimes g)](w) \\
& \quad=\left[\left(h_{\alpha, \beta} \psi\right)(a \cdot)\left(h_{\alpha, \beta} f\right)(\cdot) \#\left(h_{\alpha, \beta} \psi\right)(a \cdot)\left(h_{\alpha, \beta} g\right)(\cdot)\right](w) \tag{2.6}
\end{align*}
$$

This gives a relation between the Bessel type wavelet transform-convolution and the Hankel type transform-convolution.
Let us set

$$
\begin{aligned}
F_{a} & =\left(h_{\alpha, \beta} \psi\right)(a \cdot)\left(h_{\alpha, \beta} f\right)(\cdot), \\
G_{a} & =\left(h_{\alpha, \beta} \psi\right)(a \cdot)\left(h_{\alpha, \beta} g\right)(\cdot)
\end{aligned}
$$

Then by (1.3) and (1.4) we get
$\left(h_{\alpha, \beta} \psi\right)(a w) h_{\alpha, \beta}[(f \otimes g)](w)$
$=\int_{0}^{\infty}\left(\tau_{w} G_{a}\right)(\eta) F_{a}(\eta) d \sigma(\eta)$
$=\int_{0}^{\infty} F_{a}(\eta)\left(\int_{0}^{\infty} D(w, \eta, \xi) G_{a}(\xi) d \sigma(\xi) d \sigma(\eta)\right)$
$=\int_{0}^{\infty} \int_{0}^{\infty} F_{a}(\eta) G_{a}(\xi) D(w, \eta, \xi) d \sigma(\xi) d \sigma(\eta)$
$=\int_{0}^{\infty} \int_{0}^{\infty} F_{a}(\eta) G_{a}(\xi)\left(\int_{0}^{\infty} j_{\alpha-\beta}(w y) j_{\alpha-\beta}(\eta y) j_{\alpha-\beta}(\xi y) d \sigma(y)\right) d \sigma(\xi) d \sigma(\eta)$
$=\int_{0}^{\infty}\left(\int_{0}^{\infty} F_{a}(\eta) j_{\alpha-\beta}(\eta y) d \sigma(\eta)\right)\left(\int_{0}^{\infty} G_{a}(\xi) j_{\alpha-\beta}(\xi y) d \sigma(\xi)\right) j_{\alpha-\beta}(w y) d \sigma(y)$
$=\int_{0}^{\infty}\left(h_{\alpha, \beta} F_{a}\right)(y)\left(h_{\alpha, \beta} G_{a}\right)(y) j_{\alpha-\beta}(w y) d \sigma(y)$.
Therefore by the inversion formula of the Hankel type transformation (1.2), we have

$$
\begin{aligned}
& (f \otimes g)(z)=\int_{0}^{\infty} \frac{j_{\alpha-\beta}(w z)}{\left(h_{\alpha, \beta} \psi\right)(a w)}\left(\int_{0}^{\infty}\left(h_{\alpha, \beta} F_{a}\right)(y)\left(h_{\alpha, \beta} G_{a}\right)(y) j_{\alpha-\beta}(w y) d \sigma(y)\right) d \sigma(w) \\
& =\int_{0}^{\infty}\left(h_{\alpha, \beta} F_{a}\right)(y)\left(h_{\alpha, \beta} G_{a}\right)(y)\left(\int_{0}^{\infty} \frac{j_{\alpha-\beta}(w z) j_{\alpha-\beta}(w y)}{\left(h_{\alpha, \beta} \psi\right)(a w)} d \sigma(w)\right) d \sigma(y) \\
& =\int_{0}^{\infty}\left(h_{\alpha, \beta} F_{a}\right)(y)\left(h_{\alpha, \beta} G_{a}\right)(y) Q_{a}(y, z) d \sigma(y)
\end{aligned}
$$

where $Q_{a}(y, z)$ is given by (2.4).
Then by the definition of the Hankel type transformation (1.1), $(f \otimes g)(z)$

$$
\begin{aligned}
& =\int_{0}^{\infty} \int_{0}^{\infty} j_{\alpha-\beta}(y t)\left(h_{\alpha, \beta} \psi\right)(a t)\left(h_{\alpha, \beta} f\right)(t) d \sigma(t) \\
& \times\left(\int_{0}^{\infty} j_{\alpha-\beta}(y \xi)\left(h_{\alpha, \beta} \psi\right)(a \xi)\left(h_{\alpha, \beta} g\right)(\xi) d \sigma(\xi) Q_{a}(y, z) d \sigma(y)\right) \\
& =\int_{0}^{\infty} \int_{0}^{\infty}\left(h_{\alpha, \beta} \psi\right)(a t)\left(h_{\alpha, \beta} \psi\right)(a \xi)\left(h_{\alpha, \beta} f\right)(t)\left(h_{\alpha, \beta} g\right)(\xi) \\
& \times\left(\int_{0}^{\infty} j_{\alpha-\beta}(y \xi) j_{\alpha-\beta}(y t) Q_{a}(y, z) d \sigma(y)\right) d \sigma(t) d \sigma(\xi) \\
& =\int_{0}^{\infty} \int_{0}^{\infty}\left(h_{\alpha, \beta} \psi\right)(a t)\left(h_{\alpha, \beta} \psi\right)(a \xi)\left(h_{\alpha, \beta} f\right)(t)\left(h_{\alpha, \beta} g\right)(\xi) \\
& \quad \times L_{a}(t, \xi, z) d \sigma(t) d \sigma(\xi):
\end{aligned}
$$

Therefore
$(f \otimes g)(z)$
$=\int_{0}^{\infty} \int_{0}^{\infty}\left(h_{\alpha, \beta} \psi\right)(a t)\left(h_{\alpha, \beta} \psi\right)(a \xi)\left(\int_{0}^{\infty} j_{\alpha-\beta}(x t) f(x) d \sigma(x)\right)$
$\times\left(\int_{0}^{\infty} j_{\alpha-\beta}(y \xi) g(y) d \sigma(y)\right) L_{a}(t, \xi, z) d \sigma(t) d \sigma(\xi)$
$=\int_{0}^{\infty} \int_{0}^{\infty} f(x) g(y)\left(\int_{0}^{\infty} \int_{0}^{\infty} j_{\alpha-\beta}(x t) j_{\alpha-\beta}(y \xi)\left(h_{\alpha, \beta} \psi\right)(a t)\left(h_{\alpha, \beta} \psi\right)(a \xi) L_{a}(t, \xi, z) d \sigma(t) d \sigma(\xi)\right)$
$d \sigma(x) d \sigma(y)$
$=\int_{0}^{\infty} \int_{0}^{\infty} f(x) g(y) D_{a}(x, y, z) d \sigma(x) d \sigma(y)$,
where

$$
D_{a}(x, y, z)=\int_{0}^{\infty} \int_{0}^{\infty} j_{\alpha-\beta}(x t) j_{\alpha-\beta}(y \xi)\left(h_{\alpha, \beta} \psi\right)(a t)\left(h_{\alpha, \beta} \psi\right)(a \xi) L_{a}(t, \xi, z) d \sigma(t) d \sigma(\xi)
$$

If we define the generalized translation by

$$
F_{a}(z, y)=\left(\tau_{z, a} f\right)(y)=\int_{0}^{\infty} D_{a}(x, y, z) f(x) d \sigma(x)
$$

then

$$
(f \otimes g)(z)=\int_{0}^{\infty}\left(\tau_{z, a} f\right)(y) g(y) d \sigma(y)
$$

Thus proof is completed.
Theorem 2.3: Assume that

$$
\underset{w}{\inf }\left|\left(h_{\alpha, \beta} \psi\right)(a w)\right|=B_{\psi}(a)>0 .
$$

Then
$\left\|D_{a}(x, y, z)\right\| \leq \frac{1}{B_{\psi}(a)} a^{4 \beta-2}\|\psi\|_{1, \sigma}^{2}$.
Proof: From (2.2), we have

$$
\begin{aligned}
& D_{a}(x, y, z)=\int_{0}^{\infty} \int_{0}^{\infty} j_{\alpha-\beta}(x t) j_{\alpha-\beta}(y \xi)\left(h_{\alpha, \beta} \psi\right)(a t)\left(h_{\alpha, \beta} \psi\right)(a \xi) L_{a}(t, \xi, z) d \sigma(t) d \sigma(y) \\
& =\int_{0}^{\infty} \int_{0}^{\infty} j_{\alpha-\beta}(x t) j_{\alpha-\beta}(y \xi)\left(h_{\alpha, \beta} \psi\right)(a t)\left(h_{\alpha, \beta} \psi\right)(a \xi) \\
& \times\left(\int_{0}^{\infty} j_{\alpha-\beta}(\eta \xi) j_{\alpha-\beta}(\eta t) Q_{a}(\eta, z) d \sigma(\eta)\right) d \sigma(t) d \sigma(\xi) \\
& =\int_{0}^{\infty} \int_{0}^{\infty} j_{\alpha-\beta}(x t) j_{\alpha-\beta}(y \xi)\left(h_{\alpha, \beta} \psi\right)(a t)\left(h_{\alpha, \beta} \psi\right)(a \xi) \\
& \times\left(\int_{0}^{\infty} j_{\alpha-\beta}(\eta \xi) j_{\alpha-\beta}(\eta t)\left(\int_{0}^{\infty} \frac{j_{\alpha-\beta}(w z) j_{\alpha-\beta}(\eta w)}{\left(h_{\alpha, \beta} \psi\right)(a w)} d \sigma(w)\right) d \sigma(\eta)\right) d \sigma(t) d \sigma(\xi) \\
& =\int_{0}^{\infty}\left(\int_{0}^{\infty} j_{\alpha-\beta}(x t) j_{\alpha-\beta}(\eta t)\left(h_{\alpha, \beta} \psi\right)(a t) d \sigma(t)\right) \\
& \times\left(\int_{0}^{\infty} j_{\alpha-\beta}(y \xi) j_{\alpha-\beta}(\eta \xi)\left(h_{\alpha, \beta} \psi\right)(a \xi) d \sigma(\xi)\right) Q_{a}(z, \eta) d \sigma(\eta) \\
& =\int_{0}^{\infty} h_{\alpha, \beta}\left[j_{\alpha-\beta}(x t)\left(h_{\alpha, \beta} \psi\right)(a t)\right](\eta) h_{\alpha, \beta}\left[j_{\alpha-\beta}(y \xi)\left(h_{\alpha, \beta} \psi\right)(a \xi)\right](\eta) Q_{a}(z, \eta) d \sigma(\eta) \\
& =\int_{0}^{\infty} \int_{0}^{\infty} h_{\alpha, \beta}\left[j_{\alpha-\beta}(x t)\left(h_{\alpha, \beta} \psi\right)(a t) \# j_{\alpha-\beta}(y \xi)\left(h_{\alpha, \beta} \psi\right)(a \xi)\right](\eta) \\
& \times j_{\alpha-\beta}(w \eta) j_{\alpha-\beta}(w z)\left[\left(h_{\alpha, \beta} \psi\right)(a w)\right]^{-1} d \sigma(w) d \sigma(\eta) \\
& =\int_{0}^{\infty}\left[j_{\alpha-\beta}(x \cdot)\left(h_{\alpha, \beta} \psi\right)(a \cdot) \# j_{\alpha-\beta}(y \cdot)\left(h_{\alpha, \beta} \psi\right)(a \cdot)\right](w) \\
& \times j_{\alpha-\beta}(w z)\left[\left(h_{\alpha, \beta} \psi\right)(a w)\right]^{-1} d \sigma(w) .
\end{aligned}
$$

Now, set $F_{a}(t)=j_{\alpha-\beta}(x t) h_{\alpha, \beta} \psi(a t)$ and assume that

$$
\underset{w}{\inf }\left|\left(h_{\alpha, \beta} \psi\right)(a w)\right|=B_{\psi}(a)>0 .
$$

Since $\left|j_{\alpha-\beta}(z)\right| \leq 1,[2, p .336]$, we have

$$
\left|D_{a}(x, y, z)\right| \leq \frac{1}{B_{\psi}(a)} \int_{0}^{\infty}\left|\left(F_{a} \# F_{a}\right)(w)\right| d \sigma(w)
$$

Using (1.6), we have

$$
\begin{aligned}
\left|D_{a}(x, y, z)\right| & \leq \frac{1}{B_{\psi}(a)} \int_{0}^{\infty}\|F\|_{1, \sigma}\|F\|_{1, \sigma} \\
& \leq \frac{1}{B_{\psi}(a)}\left[\int_{0}^{\infty}\left|j_{\alpha-\beta}(x v)\left(h_{\alpha, \beta} \psi\right)(a v)\right| d \sigma(v)\right]^{2} \\
& \leq \frac{1}{B_{\psi}(a)}\left[\int_{0}^{\infty}|\psi(a v)| d \sigma(v)\right]^{2} \\
& \leq \frac{1}{B_{\psi}(a)}\left[\left\|\psi_{a}\right\|_{1, \sigma}\right]^{2} \\
& \leq \frac{a^{4 \beta-2}}{B_{\psi}(a)}\left[\left\|\psi_{a}\right\|_{1, \sigma}\right]^{2}
\end{aligned}
$$

In order to obtain Plancheral formula for the Bessel type wavelet transform, we define the space

$$
W^{2}(I \times I)=\left\{g(b, a):\|g\|_{W^{2}}=\left(\int_{0}^{\infty} \int_{0}^{\infty}|g(b, a)|^{2} \frac{d \sigma(b) d \sigma(a)}{a^{4 \alpha}}\right)^{\frac{1}{2}}<\infty\right\}
$$

Theorem 2.3: Let $f \in L_{\sigma}^{2}(I), \psi \in L_{\sigma}^{2}(I)$. Then

$$
\left\|\left(B_{\psi} f\right)(b, a)\right\|_{W^{2}}=\sqrt{C_{\psi}}\|f\|_{2, \sigma}
$$

Proof: Putting $f=g$ in (1.15), we prove the above theorem.
Theorem 2.4: Let $f, g \in L_{\sigma}^{2}(I)$ and let $\psi \in L_{\sigma}^{2}(I)$ be a Bessel wavelet which satisfies

$$
C_{\psi}=\int_{0}^{\infty}\left|\left(h_{\alpha, \beta} \psi\right)(a w)\right|^{2} \frac{d \sigma(a)}{a^{4 \alpha}}>0
$$

Then

$$
\|f \otimes g\|_{2, \sigma} \leq\|f\|_{2, \sigma}\|g\|_{2, \sigma}\|\psi\|_{2, \sigma} .
$$

Proof: Using Theorem 2.3 and (2.1)

$$
\begin{align*}
\sqrt{C_{\psi}}\|f \otimes g\|_{2, \sigma}= & \left\|B_{\psi}(f \otimes g)\right\|_{W^{2}} \\
= & \left\|B_{\psi} f(b, a) B_{\psi} g(b, a)\right\|_{W^{2}} \\
& =\left(\int_{0}^{\infty} \int_{0}^{\infty}\left|B_{\psi} f(b, a) B_{\psi} g(b, a)\right|^{2} \frac{d \sigma(a) d \sigma(b)}{a^{4 \alpha}}\right)^{\frac{1}{2}} . \tag{2.7}
\end{align*}
$$

From (1.14) and (1.9), we have

$$
\begin{equation*}
\left|B_{\psi} g(b, a)\right| \leq|(g(a .) \# \psi(\cdot))(b / a)| \leq\|g\|_{2, \sigma}\|\psi\|_{2, \sigma} \tag{2.8}
\end{equation*}
$$

Applying (2.7) and (2.8), we get

$$
\sqrt{C_{\psi}}\|f \otimes g\|_{2, \sigma} \leq\|g\|_{2, \sigma}\|\psi\|_{2, \sigma}\left(\int_{0}^{\infty} \int_{0}^{\infty}\left|B_{\psi} f(b, a)\right|^{2} \frac{d \sigma(a) d \sigma(b)}{a^{4 \alpha}}\right)^{\frac{1}{2}}
$$

From Theorem 2.3, we obtain

$$
\sqrt{C_{\psi}}\|f \otimes g\|_{2, \sigma} \leq\|g\|_{2, \sigma}\|\psi\|_{2, \sigma} \sqrt{C_{\psi}}\|f\|_{2, \sigma}
$$

Hence

$$
\|f \otimes g\|_{2, \sigma} \leq\|g\|_{2, \sigma}\|\psi\|_{2, \sigma}\|f\|_{2, \sigma}
$$

Thus proof is completed

Weighted Sobolev Space:

In this section we study certain properties of the Bessel type wavelet convolution on a weighted Sobolev space defined below.
Definition 3.1: The Zemanian space $H_{\alpha, \beta}(I), I=(0, \infty)$ is the set of all infinitely differentiable functions ϕ on $(0, \infty)$ such that

$$
\rho_{m, k}^{\alpha, \beta}(\phi)=\operatorname{Sup}_{x \in(0, \infty)}\left|x^{m}\left(x^{-1} \frac{d}{d x}\right)^{k} x^{2 \beta-1} \phi(x)\right|<\infty
$$

for all $m, k \in \mathbb{N}_{0}$. Then $f \in H_{\alpha, \beta}^{\prime}(I)$ is defined by the following way:

$$
\langle f, \phi\rangle=\int_{0}^{\infty} f(x) \phi(x) d x, \quad \phi \in H_{\alpha, \beta}(I)
$$

Definition 3.2: Let $k(w)$ be an arbitrary weight function. Then a function $\Phi \in\left[H_{\alpha, \beta}(I)\right]^{\prime}$ is said to belong to the weighted Sobolev space
$G_{\alpha, \beta, k}^{p}(I)$ for $(\alpha-\beta) \in \mathbb{R}, 1 \leq p<\infty$, if it satisfies
$\|\Phi\|_{p, \alpha, \beta, \sigma, k}=\left(\int_{0}^{\infty}\left|k(w)\left(h_{\alpha, \beta} \Phi\right)(w)\right|^{p} d \sigma(w)\right)^{\frac{1}{p}}$,
where $a>0$ and $\Phi \in L_{\sigma}^{p}(I)$.
In what follows we shall assume that $k(w)=\left|\left(h_{\alpha, \beta} \psi\right)(a w)\right|$ for fixed $a>0$.
Theorem 3.1: Let $f \in G_{\alpha, \beta, k}^{1}(I)$ and $g \in G_{\alpha, \beta, k}^{p}(I), p \geq 1$. Then

$$
\|f \otimes g\|_{p, \alpha, \beta, \sigma, k} \leq\|f\|_{1, \alpha, \beta, \sigma, k}\|g\|_{p, \alpha, \beta, \sigma, k}
$$

Proof: In view of (3.1) we have

$$
\|f \otimes g\|_{p, \alpha, \beta, \sigma, k}=\left(\int_{0}^{\infty}\left|k(w) h_{\alpha, \beta}(f \otimes g)(w)\right|^{p} d \sigma(w)\right)^{\frac{1}{p}}
$$

By (1.8) and (2.6) we have

$$
\begin{align*}
\|f \otimes g\|_{p, \alpha, \beta, \sigma, k} \leq\left\|F_{a}(w)\right\|_{1, \alpha, \beta, \sigma, k}\left\|G_{a}(w)\right\|_{p, \alpha, \beta, \sigma, k} \\
\leq\left\|\left(h_{\alpha, \beta} \psi\right)(a w)\left(h_{\alpha, \beta} f\right)(w)\right\|_{1, \alpha, \beta, \sigma, k} \tag{3.2}\\
\times\left\|\left(h_{\alpha, \beta} \psi\right)(a w)\left(h_{\alpha, \beta} g\right)(w)\right\|_{p, \alpha, \beta, \sigma, k}
\end{align*}
$$

From Definition 3.2, we get

$$
\begin{equation*}
\|f \otimes g\|_{p, \alpha, \beta, \sigma, k} \leq\|f\|_{1, \alpha, \beta, \sigma, k}\|g\|_{p, \alpha, \beta, \sigma, k} \tag{3.3}
\end{equation*}
$$

This completes the proof.
Theorem 3.1: Let $f \in G_{\alpha, \beta, k}^{p}(I)$ and $g \in G_{\alpha, \beta, k}^{q}(I)$ with $1 \leq p, q<\infty$ and $1 / r=\frac{1}{p}+\frac{1}{q}-1$. Then

$$
\begin{equation*}
\|f \otimes g\|_{r, \alpha, \beta, \sigma, k} \leq\|f\|_{p, \alpha, \beta, \sigma, k}\|g\|_{q, \alpha, \beta, \sigma, k} \tag{3.4}
\end{equation*}
$$

Proof: Using (1.10) and (3.1) we get (3.4).
Approximation properties of the Bessel type wavelet convolution are given next.
Theorem 3.2: Let $\psi_{n, a}(w)=\psi_{n}(a w), n=0,1,2, \ldots \ldots$ be the sequence of basic wavelet functions such that

1. $\psi_{n, a}(w) \geq 0, \quad 0<w<\infty$,
2. $\int_{0}^{\infty} \psi_{n, a}(w) d \sigma(w)=1$,
3. $\lim _{n \rightarrow \infty} \int_{\varepsilon}^{\infty} \psi_{n, a} d \sigma(w)=0$, for each $\varepsilon>0$,
4. $\left(h_{\alpha, \beta} \psi_{n, a}\right)(w) \in L_{\sigma}^{1}(I)$
5. $h_{\alpha, \beta}^{-1}\left[\left(h_{\alpha, \beta} \psi_{n, a}\right)(w)\right]=\psi_{n, a}(w)$.

Then

$$
\lim _{n \rightarrow \infty}\left\|f(b)-\left(B_{\psi_{n}} f\right)(b, a)\right\|_{1, \sigma}=0 .
$$

Proof: Proof can be completed by following [3, pp. 315-316]
Theorem 3.3: Let $\quad k_{n}(w)=\left(h_{\alpha, \beta} \psi\right)(a w)\left(h_{\alpha, \beta} g_{n}\right)(w)$ for fixed $\quad a>0, n \in \mathbb{N}$, and $\phi(w)=$ $\left(h_{\alpha, \beta} \psi\right)(a w)\left(h_{\alpha, \beta} f\right)(w)$ satisfy.

1. $k_{n}(w) \geq 0,0<w<\infty$,
2. $\int_{0}^{\infty} k_{n}(w) d \sigma(w)=1, w=0,1,2,3, \ldots \ldots$,
3. $\lim _{n \rightarrow \infty} \int_{\delta}^{\infty} k_{n}(w) d \sigma(w)=0$, for each $\delta>0$,
4. $\phi(w) \in L_{\sigma}^{\infty}(I)$,
5. ϕ is continuous at w_{0} and $\left(h_{\alpha, \beta} \psi\right)\left(a w_{0}\right) \neq 0$ for $w_{0} \in[w-\delta, w+\delta], \delta>0$.

Then

$$
\lim _{n \rightarrow \infty} h_{\alpha, \beta}\left(f \otimes g_{n}\right)\left(w_{0}\right)=\left(h_{\alpha, \beta} f\right)\left(w_{0}\right) .
$$

Proof : In view of relation (2.6), we have

$$
\left(h_{\alpha, \beta} \psi\right)(a w) h_{\alpha, \beta}\left(f \otimes g_{n}\right)(w)=\left(\phi \# k_{n}\right)(w):
$$

Now using Theorem 1.1, we have

$$
\begin{aligned}
\lim _{n \rightarrow \infty}\left(h_{\alpha, \beta} \psi\right)\left(a w_{0}\right) h_{\alpha, \beta}\left(f \otimes g_{n}\right)\left(w_{0}\right)= & \lim _{n \rightarrow \infty}\left(\phi \# k_{n}\right)\left(w_{0}\right) \\
= & \phi\left(w_{0}\right) \\
& =\left(h_{\alpha, \beta} \psi\right)\left(a w_{0}\right)\left(h_{\alpha, \beta} f\right)\left(w_{0}\right) .
\end{aligned}
$$

This implies that
$\lim _{n \rightarrow \infty} h_{\alpha, \beta}\left(f \otimes g_{n}\right)\left(w_{0}\right)=\left(h_{\alpha, \beta} f\right)\left(w_{0}\right)$.
Thus proof is completed.
Theorem 3.4: Let $f, \psi \in L_{\sigma}^{1}(I)$, and $k_{n}(w)$ be the same as Theorem 3.3 which satisfies all the four properties of Theorem 3.2. Then

$$
\lim _{n \rightarrow \infty}\left\|\left(h_{\alpha, \beta} \psi\right)\left(a w_{0}\right)\left(h_{\alpha, \beta} f\right)\left(w_{0}\right)-\left(h_{\alpha, \beta} \psi\right)\left(a w_{0}\right) h_{\alpha, \beta}\left(f \otimes g_{n}\right)\left(w_{0}\right)\right\|_{1, \sigma}=0 .
$$

Proof: Using (2.6), we have

$$
\begin{aligned}
& \lim _{n \rightarrow \infty}\left\|\left(h_{\alpha, \beta} \psi\right)\left(a w_{0}\right)\left(h_{\alpha, \beta} f\right)\left(w_{0}\right)-\left(h_{\alpha, \beta} \psi\right)\left(a w_{0}\right) h_{\alpha, \beta}\left(f \otimes g_{n}\right)\left(w_{0}\right)\right\|_{1, \sigma} \\
& =\lim _{n \rightarrow \infty}\left\|\left(h_{\alpha, \beta} \psi\right)\left(a w_{0}\right)\left(h_{\alpha, \beta} f\right)\left(w_{0}\right)-\left[\begin{array}{c}
\left(h_{\alpha, \beta} \psi\right)(a \cdot)\left(h_{\alpha, \beta} f\right)(\cdot) \\
\times \#\left(h_{\alpha, \beta} \psi\right)(a \cdot)\left(h_{\alpha, \beta} g_{n}\right)(a \cdot)
\end{array}\right]\left(w_{0}\right)\right\|_{1, \sigma} \\
& =\lim _{n \rightarrow \infty}\left\|\phi\left(w_{0}\right)-\left(\phi \# k_{n}\right)\left(w_{0}\right)\right\|_{1, \sigma} . \\
& \quad \text { Since } f, \psi_{a} \in L_{\sigma}^{1}(I), \phi(w)=\left(h_{\alpha, \beta} f\right)\left(h_{\alpha, \beta} \psi_{a}\right)=h_{\alpha, \beta}\left(f \# \psi_{a}\right) \in L_{\sigma}^{1}(I) .
\end{aligned}
$$

Therefore using the tools of [3, Corollary $2 c, p p .313$ - 314], we have

$$
\lim _{n \rightarrow \infty}\left\|\left(h_{\alpha, \beta} \psi\right)\left(a w_{0}\right)\left(h_{\alpha, \beta} f\right)\left(w_{0}\right)-\left(h_{\alpha, \beta} \psi\right)\left(a w_{0}\right) h_{\alpha, \beta}\left(f \otimes g_{n}\right)\left(w_{0}\right)\right\|_{1, \sigma}=0 .
$$

Reference:

1. Cholewinski F.M., A Hankel Convolution Complex Inversion Theory, Mem. Amer. Math. Soc., Vol.58, 1965.
2. Haimo D.T., Integral equations associated with Hankel convolution; Trans. Amer. Math. Soc. 116(1965), 330-375.
3. Hirschman Jr. I.I., Variation diminishing Hankel transform, J. Analyse Math. 8 (1960-1961), 307-336.
4. Kanjin Y., A translation theorem for the Hankel transformation on the Hardy space. Tohoku Math. J. 57(2005), 231-246.
5. Pathak R.S., The Wavelet Transform, Atlantis Press / World scientific 2009.
6. Pathak R.S. and Dixit M.M., Continuous and discrete Bessel wavelet transforms, J. Comput. Appl. Math 160, 1-2 (2003), 241-250.
7.B.B.Waphare, Sobolev type spaces and its characterization associated with Bessel type operators, Bulletin of Pure and Applied Mathematics Vol.6, No. 1 (2012), 145-163.
7. Zemanian A.H. Generalized Integral Transformations, Interscience publications, New York 1968.
