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Introduction 

The vibration of non-homogeneous transversely isotropic electro-magneto-elastic plate has been of great importance due to its 

property of coupling effect between electric and magnetic fields which are applied in smart material structures. These materials have 

the ability to transfer energy namely magnetic, electric and mechanical from one form to another. The composite consisting of 

piezoelectric and piezomagnetic components have found increasing application in engineering structures, particularly in 

smart/intelligent structure system. The electro-magneto-elastic materials are used as magnetic field probes, electric packing, acoustic, 

hydrophones, medical, ultrasonic, image processing, sensor and actuators with the responsibility of electro-magnetic-mechanical 

energy conversion. 

Wave propagation in arbitrary cross-sectional plates and cylinders were analyzed and to find out the phase velocities in different 

modes of vibration namely longitudinal, torsional and flexural by constructing frequency equation was derived by Nagaya [1-3]. He 

formulated the Fourier expansion collocation method for this purpose and the same method is used in this problem. Wang and Shen 

[4] discussed the two-dimensional problem of inclusion of arbitrary shape in magneto-electro-elastic composites. Buchanan [5] 

investigated free vibration of an infinite magneto-electro-elastic cylinder. Recently Abd-Alla et al. [6] studied the effect of magnetic 

field and non-homogeneous in various elastic media. Abd-Alla and Mahmoud [7, 8] investigated magneto-thermo elastic problems in 

rotating non-homogeneous orthotropic hollow cylindrical under the hyperbolic heat conduction model and the effect of the rotation on 

propagation of thermoelastic waves in non-homogeneous infinite cylinder of isotropic material. Chen and Chen [9] investigated the 

Love wave behavior in magneto-electro-elastic multilayered structures by the propagation matrix method. Using the propagator matrix 

and state-over approaches, an analytical treatment is presented for the propagation of harmonic waves in magneto-electro-elastic 

multilayered plates by Chen et al. [10]. Chen et al. [11, 12] studied the free vibration and general solution of non-homogeneous 

transversely isotropic magneto-electro-elastic hollow cylinder. Chen et al. [13] showed theoretically that there actually exists a class 

of vibration of which the frequencies depend on the elastic property only. Wei and Su [14] studied the wave propagation and energy 

transportation along cylindrical piezoelectric piezomagnetic material. Hou and Leung [15] obtained the analytical solution for the 

axisymmetric plane strain magneto-electro-elastic dynamics of hollow cylinder for axisymmetric flexural wave in piezoelectric – 

piezomagnetic cylinders. Later Hou et al. [16] discussed the transient response of non-homogenous plane strain problem. 
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Pan [17] derived an exact three-dimensional solution for a simply supported multilayered orthotropic magneto-electro-elastic 

plate. Pan and Heyliger [18] investigated the free vibration of piezoelectric – magnetostrictive plate. Chen et al. [19] derived the 

general solution for transversely isotropic magneto-electro-elastic-thermo-elasticity.Ponnusamy [20-22] investigated the vibration in a 

generalized thermo elastic solid cylinder of arbitrary cross-section and plate of polygonal cross-section using Fourier expansion 

collocation method and studied the wave propagation of piezoelectric solid bar of circular cross-section immersed in fluid using secant 

method. Late the same author [23] discussed the wave propagation in electro-magneto-elastic solid plate of polygonal cross-section 

using the Fourier expansion collocation method. 

In this article, the wave propagation of transversely isotropic non-homogeneous electro-magneto-elastic plate of arbitrary cross-

section is studied using the theory of elasticity. For arbitrary cross-sections the boundary is irregular, therefore Fourier collocation 

technique is applied to obtain the frequency equations. The roots of the frequency equations are obtained using the secant method 

applicable for complex roots. The computed non-dimensional frequencies are plotted in the form of dispersion curves and the 

behaviour of the curves is discussed. 

Formulation of the Problem 

We consider a transversely isotropic non-homogeneous electro-magneto-elastic plate of arbitrary cross-sections. The system 

displacements and stresses are defined by the polar coordinates r and  in an arbitrary point inside the plate and denote the 

displacements 
ru in the direction of r and u

in the tangential direction . The in-plane vibration and displacement of arbitrary cross-

sectional plate is obtained by assuming that there is no vibration and displacements along the z  axis in the cylindrical coordinate 

system  , ,r z . The two-dimensional stress equations of motion, electric and magnetic conduction equation in the absence of body 

forces are 
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The electric conduction equation is  
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The magnetic conduction equation is 
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Where, 

11 12 ,rr rrc e c e    

12 11 ,rrc e c e     

662 ,r rc e                                                                                                                                                               (4) 

11 11 ,r r rD E m H   

11 11 ,D E m H                                                                                                                                                      (5) 

11 11 ,r r rB m E H   

11 11 ,B m E H                                                                                                                                                      (6) 

Where , ,rr r    are the stress components, 
11 12 66, ,c c c are elastic constants, 

11 is the dielectric constants, 
11 is the magnetic 

permeability coefficients, 
11m is the electro-magneto material coefficients,  is the mass density of the material, ,rD D

are the electric 

displacements, ,rB B
are the magnetic displacement components. 
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The strain 
ije related to the displacements corresponding to the polar coordinates  ,r  are given by 
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Where ,ru u are the mechanical displacements along the radial, circumferential directions respectively. 

The electric field vector ,iE  ,i r  is related to the electric potential E as 
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 Similarly, the magnetic field vector ,iH   ,i r  is related to the magnetic potential H as 
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 Substituting Eqs. (7) – (9) to the Eqs. (1) – (6), we obtain 
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and 
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The elastic constants
11 12 66, ,c c c , magnetic permeability coefficient

11 , dielectric constants
11 , electromagnetic material 

coefficients
11m , density  are expressed as functions of the radial coordinates are 

  2

11 ,mc L V r 
2

12 ,mc Lr 2

66 ,
2

mVr
c 

2

11 ,mV r  2

11 11 ,mm m r 2

11 11 ,mr  
2

0 ,mr                                (12) 

Where , ,L V V  and 
0 are constants, m is the rational number, substituting Eq. (12) in Eqs. (10) – (11), we obtain the stress-

displacement equation for non-homogeneous materials 
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and 
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Substituting Eqs. (13) – (14) into Eqs. (1) – (3), we obtain the set of displacement equations as follows 
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The Eq. (15) is a coupled partial differential equation of two displacements, the electric potentials and magnetic potential 

components.  

Solutions of the Problem 

To uncouple Eq. (15), we seek the solutions in the following form 
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Where 1 2n  for 0,n  1n  for 1,n   , ,n r   , ,n r   , ,nE r   ,nH r  are the displacement potentials for the 

symmetric mode and  , ,n r   , ,n r   ,nE r  and  ,nH r  are the displacement potentials for the antisymmetric modes 

of vibrations. 

Substituting Eq. (16) in Eq. (15), we get 
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Where 2 2
2

1 2 2 2

1 1

r rr r 

  
   

 

. 

 We consider the free vibration of non-homogeneous transversely isotropic plate, so we assume the solutions as follows 

   , , cos ,m i t

n nr t r r n e      

   , , cos ,m i t

n nE r t r E r n e    

   , , cos ,m i t

n nH r t r H r n e                                                                                                                              (19) 

and 

   2, , cosm i t

n nr t r r n e     .                                                                                                                              (20) 

 Substituting Eqs. (19)-(20) in the Eqs.(17) and (18), we obtain 
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Eq. (21) is a Bessel equation of order  , its solution is 

     1 1 cos ,n n nr A J r A Y r n      
  

                                                                                                             (22) 

Where 
1nA and 

1nA  are the arbitrary constants,  J r  and  Y r  denote the Bessel functions of the first and second kind of order 

, respectively. 

Substitute Eq. (20) into the Eq. (18), we get  
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Eq. (23) is a Bessel equation of order , its solution is 

      4 4 sin ,n n nr A J kr A Y kr n   
                                                                                                            (24) 

Where 
4nA and 

4nA  are arbitrary constants and  J kr
and  Y kr

denote the Bessel function of the first and second kind of order 

 respectively. 

Substituting Eq. (19) into the Eqs. (17b) and (17c), we obtain 
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Where 2 2 2p m n  . 

Solving Eqs. (25) and (26), we get 
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The general solutions to the Eqs. (27) and (28) are 

   2 2, , cos ,p p i t

n n nE r t A r A r n e   
 

   3 3, , cos ,p p i t

n n nH r t A r A r n e   
                                                                                                                  (29) 

Where 
2 2 3 3, , ,n n n nA A A A  are the arbitrary constants. 

 The general solutions to the solid plate of arbitrary cross-sections are considered as 

   1, , cos ,n nr t A J r n                                                                                                                                      (30a) 

  2, , cos ,p

n nE r t A r n                                                                                                                                   (30b) 

  3, , cos ,p

n nH r t A r n                                                                                                                                   (30c) 

and 

   4, , sinn nr t A J kr n   .                                                                                                                       (30d) 

Boundary conditions and frequency equations 

In this problem, the free vibration of non-homogeneous transversely isotropic electro-magneto-elastic plate of arbitrary cross-

section is considered. Since the boundary is irregular in shape, it is difficult to satisfy the boundary conditions along the surface of the 

plate directly. Hence, the Fourier expansion collocation method is applied to satisfy the boundary conditions. For the plate, the normal 

stress 
xx and shearing stresses 

xy , the electric field 
xD and the magnetic field 

xB is equal to zero for the stress free boundary. Thus, 

the following types of boundary conditions are assumed for the plate of arbitrary cross-section is 

        0,xx xy x xi i ii
D B                                                                                                                              (31) 

Where  
i
is the value at the boundary

i . Since the vibration displacements are expressed in terms of the coordinates r and  , it is 

convenient to treat the boundary conditions when the derivatives in the equations of the stresses are transformed in terms of the 

coordinates r and  instead of the coordinates 
ix and 

iy .  

The relations between the displacements for the i  th segment of straight line boundaries are 
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   cos sin ,r r i iu u u        

   cos sin ,i r iu u u                                                                                                                                   (32) 

Since the angle 
i between the reference axis and normal of the i  th boundary has a constant value in a segment ,i we obtain 
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Using the Eqs. (32) and (33), the normal and shearing stresses are transformed as 
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Applying non-homogeneity to the Eq. (34), we get 
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Substituting Eqs. (30a) and (30d) in Eq. (31), the boundary conditions are transformed for stress free arbitrary cross-sectional plate as 

follows: 

    0,ai T
xxxx i i

S S e
  

 
 

    0,ai T
xyxy i i

S S e
  

 
 

    0,ai T
xx i i

E E e
  

 
 

    0,ai T
xx i i

H H e
  

 
 

Where 

   1 2 3 1 2 3 4
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   1 2 3 1 2 3 4

10 0 20 0 30 0 1 2 3 4

1

0.5 ,xy n n n n n n n n

n

S A f A f A f A f A f A f A f




      
 

   1 2 3 1 2 3 4

10 0 20 0 30 0 1 2 3 4

1

0.5 ,x n n n n n n n n

n

E A g A g A g A g A g A g A g




      
 

   1 2 3 1 2 3 4

10 0 20 0 30 0 1 2 3 4
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0.5 ,x n n n n n n n n

n

H A h A h A h A g A g A g A g




      
                                                                    (36) 

 4 1 2 3 4
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                                                                                       (37) 

The coefficients i
i

nne h
are given in the Appendix A. 

 Performing the Fourier series expansion to the Eq. (31) along the boundary, the boundary conditions along the boundary of 

the surface are expanded in the form of double Fourier series. When the plate is symmetric about more than one axis, the boundary 

conditions in the case of symmetric mode can be written in the form of a matrix as follows: 

1 2 3 1 1 2 2 3 3 4 4

00 00 00 01 0 01 0 00 0 01 0

1 2 3 1 1 2 2 3 3 4 4

0 0 0 1 1 1 1

1 2 3 1 1 2 2 3 3 4 4
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1 2 3 1 1 2
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 Similarly the matrix for the antisymmetric mode is obtained as 
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4 1 1 2 2 3 3 4 4

10 11 1 11 1 11 1 11 1

4 1 1 2 2 3 3 4 4

0 1 1 1 1
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Where 
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Solid circular plate 

The frequency equation for solid circular plate can be written in the form 

0,A                                                                                                                                                                      (42)  

where A is the 4 4 matrix with elements  , 1,2,3,4ija i j  are given by 

            
2

1 11 1 ,ia n n J r r J r L r J r            1,2,3i   

        14 11 ,a n n J kr kr J kr      

        2 12 1 , 1,2,3ia n n J r r J r i        

            
2

24 12 1 ,a n n n J kr kr J kr kr J kr        

Numerical results and discussions 

 The numerical analysis of the frequency equation is carried out for non-homogeneous transversely isotropic electro-magneto-

elastic plate of elliptic and cardioids cross-section. The electro-magnetic material constants based on graphical result of Aboudi [24] 

used for numerical calculations. The material constants are 9 2

11 218 10 / ,c N m   9 2

12 120 10 / ,c N m   9 2

66 49 10 / ,c N m   

9

11 0.4 10 / ,C Vm   6 2 2

11 200 10 /Ns c    and 9

11 0.0074 10 /m Ns VC  . Substituting 
iR and the angle ,i between the 

reference axis and the normal to the i  th boundary line, the integrations of the Fourier coefficients , , , ,i i i i

n n n ne f g h ,
i

ne ,
i

nf
i

ng
and 

i

nh
can be expressed in terms of the angle . Using the coefficients into Eqs. (39) and (41), the frequencies are obtained for non-

homogeneous transversely isotropic electro-magneto-elastic plates of arbitrary cross-sectional plate. 
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In the present problem, there are three kinds of basic independent modes of wave propagation have been considered namely 

longitudinal and two flexural (symmetric and antisymmetric) modes for geometries having more than one symmetry. For geometries 

having only one symmetry, two modes of wave propagation are studied since the two flexural (symmetric and antisymmetric) modes 

are coupled in this case. 

Longitudinal mode 

The geometrical relations for the elliptic cross-section given in Eq. (43) are used directly for the numerical calculations and three 

kinds of basic independent modes of wave propagation are studied. In case of longitudinal modes of elliptical cross-section, the cross-

section vibrates along the axis of the plate, so that the vibration and displacements in the cross-section is symmetrical about both 

major and minor axis. Hence, the frequency equation is obtained by choosing both terms of n and m as 0,2,4,6,… in Eq. (38) for the 

numerical calculations. Since the boundary of the cross-sections namely, elliptic and cardioids are irregular in shape, it is difficult to 

satisfy the boundary conditions along the curved surface in the range 0  and   is divided into 15 segments, such that the 

distance between any two segments is negligible and the integration is performed for each segment numerically by using the Gauss 

five-point formula. The non-dimensional frequencies are computed for 0 1.0 using the secant method (applicable for the 

complex roots Antia [25]). 

Flexural mode 

In the case of flexural mode of elliptical cross-section, the vibration and displacements are antisymmetrical about the major axis 

and symmetrical about the minor axis. Hence the frequency equations are obtained from Eq. (40) by choosing , 1,3,5,...n m  . Two 

kinds of flexural (symmetric and antisymmetric) modes are considered. The computed non-dimensional frequencies are presented in 

the form of dispersion curves. 

The same problem is solved for cardioidal cross-sectional plate using the geometrical relations given in Eq. (44) and (45), which 

are functions depending on a parameter S . Since a cardioid is symmetrical about only one axis, the longitudinal and flexural 

symmetric modes are carried out by choosing , 0,1,2,3,...n m  in Eq. (38) and flexural (antisymmetric) modes are obtained by 

choosing , 1,2,3,...n m  in Eq. (40). 

Elliptic cross-section 

0
x

y

2a

2b

 

Fig 1. Elliptic cross section 

The elliptic cross-section of the plate is shown in Fig. 2, and its geometric relations used for the numerical calculations given 

below are taken from Eq. (10) of Nagaya [2] as: 
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                                                                                                                    (43) 

Where a is the semi major axis and b is the semi minor axis of the elliptic plate and  1 / 2,i i i  

  iR is the coordinate r at the 

boundary, 
i is the angle between the normal to the segment and the reference axis at the i  th boundary. 

Cardioid cross-section 

The cardioid cross-section of the plate is shown in Fig. 3, and its geometrical relations used for the numerical calculations are 

given in the Eqs. (44) and (45) as follows;  

 

Fig. 2  Cardioid cross section 
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                                                                                                                                 (44) 

Where a is the radius of the circumscribing circle and  

  1 1
1

1 1

cos 2 cos 2
,

sin 2sin 2

s
G

 


 



 

 

,
2

i


 

for   0,iG     

  1tan ,
2

i iG


    
for   0,iG                                                                                                                  (45) 

  1tan ,
2

i iG


   
for   0,iG     

Where  1 / 2,i i i  

  is the mean angle of the segment i and 
iR is the coordinate r at the boundary, 

i is the angle between the 

normal to the segment and the reference axis at the i  th boundary. The parameter s represents a circle when 0s  and represents a 

cardioids when 0.5s  . 

Dispersion curves 

The results of longitudinal modes of vibrations are plotted in the form of dispersion curves, the notations Lm denotes longitudinal 

mode in all the graphs. The 1 refers the first mode and 2 the second and so on. From the graphs obtained, it can be noticed that the 

dispersion for the plates in the fundamental mode is high. But in higher modes, the dispersive curves are almost straight, along the 

direction of propagation. Hence it may be concluded it has a non-dispersive behaviors. It is also to be mentioned that the cross over 

points in various curves of different modes indicate that for a particular frequency of vibration, the mechanical energy is 
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communicative between its directions of wave propagation in the respective mode. A graph is drawn between aspect ratio 

1.5a b  and non-dimensional frequency  of elliptical cross-section of longitudinal modes of vibration and is shown in Fig. 3. From 

Fig. 3, it is observed that the non-dimensional frequency increases as aspect ratio increases. Also it is observed that the non-

dimensional frequency increases as modes of vibration increases. Graphs are drawn between the mode and non-dimensional frequency 

 of longitudinal modes of elliptical and cardioid cross-sectional plate and are shown in Figs. 4 and 5. From Figs. 4 and 5, it is 

observed that the non-dimensional frequency increases as modes of vibration increases. Further as the aspect ratio increases the 

dimensionless frequency also increases. The cross-over points represent the transfer of energy between the modes of vibration. 

 

Fig 3. Non-dimensional aspect ratio a/b=1.5 versus dimensionless frequency of elliptical cross-section of longitudinal modes of 

vibration 

 

Fig 4. Mode versus non-dimensional frequency Ω of elliptical cross-section of longitudinal modes of vibration 

 

Fig 5. Mode versus non-dimensional frequency  for longitudinal modes of cardioid cross-sections 
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Conclusions 

The vibration of non-homogeneous transversely isotropic electro-magneto-elastic plate of arbitrary cross-section is studied using 

the Fourier expansion collocation method. The frequency equations are obtained from the arbitrary cross-sectional boundary 

conditions, since the boundary is irregular in shape; it is difficult to satisfy the boundary along the surface of the plate directly. Hence, 

the Fourier expansion collocation method is applied along the boundary to satisfy the boundary conditions. The roots of the frequency 

equations are obtained by using the secant method applicable for complex roots. The computed non-dimensional frequencies are 

plotted in the form of dispersion curves and their characteristics are discussed. 
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