
P. Ponnusamy and A. Amuthalakshmi/ Elixir Appl. Math. 72 (2014) 25473-25486 
 

25473 

Introduction 

The wave propagation in non-homogeneous transversely isotropic electro-magneto-elastic plate has gained considerable 

importance since last decade. The electro-magneto-elastic materials exhibit a desirable coupling effect between electric and magnetic 

fields, which are useful in smart structure applications. These materials have the capacity to convert one form of energy namely, 

magnetic, electric and mechanical energy to another form of energy. The composite consisting of piezoelectric and piezomagnetic 

components have found increasing application in engineering structures, particularly in smart/intelligent structure system. The electro-

magneto-elastic materials are used as magnetic field probes, electric packing, acoustic, hydrophones, medical, ultrasonic, image 

processing, sensor and actuators with the responsibility of electro-magnetic-mechanical energy conversion. 

Wave propagation in arbitrary cross-sectional plates and cylinders were analyzed and to find out the phase velocities in different 

modes of vibration namely longitudinal, torsional and flexural by constructing frequency equation was derived by Nagaya [1-3]. He 

formulated the Fourier expansion collocation method for this purpose and the same method is used in this problem. Pan [4] derived an 

exact three-dimensional solution for a simply supported multilayered orthotropic magneto-electro-elastic plate. Pan and Heyliger [5] 

investigated the free vibration of piezoelectric – magnetostrictive plate. Chen et al. [6] showed theoretically that there actually exists a 

class of vibration of which the frequencies depend on the elastic property only. Chen et al. [7] derived the general solution for 

transversely isotropic magneto-electro-elastic-thermo-elasticity. Hou and Leung [8] obtained the analytical solution for the 

axisymmetric plane strain magneto-electro-elastic dynamics of hollow cylinder for axisymmetric flexural wave in piezoelectric – 

piezomagnetic cylinders. Later Hou et al. [9] discussed the transient response of non-homogenous plane strain problem. Wei and Su 

[10] studied the wave propagation and energy transportation along cylindrical piezoelectric piezomagnetic material. Chen and Chen 

[11] investigated the Love wave behavior in magneto-electro-elastic multilayered structures by the propagation matrix method. Using 

the propagator matrix and state-over approaches, an analytical treatment is presented for the propagation of harmonic waves in 

magneto-electro-elastic multilayered plates by Chen et al. [12]. Abd-Alla and Mahmoud [13, 14] investigated magneto-thermo elastic 

problems in rotating non-homogeneous orthotropic hollow cylindrical under the hyperbolic heat conduction model and the effect of 

the rotation on propagation of thermoelastic waves in non-homogeneous infinite cylinder of isotropic material. Chen et al. [15, 16] 

studied the free vibration and general solution of non-homogeneous transversely isotropic magneto-electro-elastic hollow cylinder.
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Wang and Shen [17] discussed the two-dimensional problem of inclusion of arbitrary shape in magneto-electro-elastic 

composites. Buchanan [18] investigated free vibration of an infinite magneto-electro-elastic cylinder. Recently Abd-Alla et al. [19] 

studied the effect of magnetic field and non-homogeneous in various elastic media. Ponnusamy [20-22] investigated the vibration in a 

generalized thermo elastic solid cylinder of arbitrary cross-section and plate of polygonal cross-section using Fourier expansion 

collocation method and studied the wave propagation of piezoelectric solid bar of circular cross-section immersed in fluid using secant 

method. Late the same author [23] discussed the wave propagation in electro-magneto-elastic solid plate of polygonal cross-section 

using the Fourier expansion collocation method. 

This paper analyzes the vibration of transversely isotropic non-homogenous electro-magneto-elastic plate of polygonal cross-

section using the theory of elasticity. For polygonal cross-sections the boundary is irregular, therefore Fourier collocation technique is 

applied to obtain the frequency equations. The secant method is applied to determine the complex roots of frequency equation. The 

non-dimensional frequencies are computed and the numerical values are plotted in the form of dispersion curves. 

Formulation of the Problem 

We consider a transversely isotropic non-homogeneous electro-magneto-elastic plate of polygonal cross-sections. The system 

displacements and stresses are defined by the polar coordinates r and  in a polygonal point inside the plate and denote the 

displacements 
ru in the direction of r and u

in the tangential direction . The in-plane vibration and displacement of polygonal 

cross-sectional plate is obtained by assuming that there is no vibration and displacements along the z  axis in the cylindrical 

coordinate system  , ,r z . The two-dimensional stress equations of motion, electric and magnetic conduction equation in the absence 

of body forces are 
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                                                                                                                                (1) 

The electric conduction equation is  
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 

                                                                                                                                             (2) 

The magnetic conduction equation is 

1 1
0,r

r
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B

r r r






  

 

                                                                                                                                           (3) 

Where, 

11 12 ,rr rrc e c e    

12 11 ,rrc e c e     

662 ,r rc e                                                                                                                                                               (4) 

11 11 ,r r rD E m H   

11 11 ,D E m H                                                                                                                                                      (5) 

11 11 ,r r rB m E H   

11 11 ,B m E H                                                                                                                                                      (6) 

Where , ,rr r    are the stress components, 
11 12 66, ,c c c are elastic constants, 

11 is the dielectric constants, 
11 is the magnetic 

permeability coefficients, 
11m is the electro-magneto material coefficients,  is the mass density of the material, ,rD D

are the electric 

displacements, ,rB B
are the magnetic displacement components. 
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The strain 
ije related to the displacements corresponding to the polar coordinates  ,r  are given by 
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                                                                                        (7) 

Where ,ru u are the mechanical displacements along the radial, circumferential directions respectively. 

The electric field vector ,iE  ,i r  is related to the electric potential E as 

,r

E
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 1 E
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.                                                                                                                                          (8)  

Similarly, the magnetic field vector ,iH   ,i r  is related to the magnetic potential H as 
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                                                                                                                                          (9) 

 Substituting Eqs. (7) – (9) to the Eqs. (1) – (6), we obtain 

11 12

1
,r r
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                                                                                                                                    (10) 

and 
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.                                                                                                                                         (11) 

The elastic constants
11 12 66, ,c c c , magnetic permeability coefficient

11 , dielectric constants
11 , electromagnetic material 

coefficients
11m , density  are expressed as functions of the radial coordinates are 

  2

11 ,mc L V r 
2

12 ,mc Lr 2

66 ,
2

mVr
c 

2

11 ,mV r  2

11 11 ,mm m r 2

11 11 ,mr  
2

0 ,mr                                (12) 

Where , ,L V V  and 
0 are constants, m is the rational number, substituting Eq. (12) in Eqs. (10) – (11), we obtain the stress-

displacement equation for non-homogeneous materials 
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                                                                                                                              (13) 

and 
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2

11 11 ,m

r

E H
D r m

r r


      
  

 

2 11 11 ,m mE H
D r

r r




 

   
   
  
 

 

2

11 ,m

r

E H
B r m V

r r

      
  

 

2 11 ,m m E V H
B r

r r


 

   
   
  
 

                                                                                                                                  (14) 

Substituting Eqs. (13) – (14) into Eqs. (1) – (3), we obtain the set of displacement equations as follows 

 
   

 

22 2

2 2 2 2 2

2

0 2

2 2 31 1

2 22

2 1

r r r r

r r

L V L Vu uu u u uV
L V

r r r rr r r r

u u um u
L V L

r r r r t

 



 




      
      

     

     
      

    

 

   

 

2 2

2 2 2

2 2

02 2 2

2 2 31 1

2 2

1

r r

r

L V L Vu u u u uV

r r r rr r r

L V u u u uuVm

r r r rr t

  

   

 




     
    

    

    
     

   

 

2 2 2 2

11 11 11 112 2 2 2 2 2

1 1 1 1 2
0,

E E E H H H m E H
m m

r r r r r r rr r r r
 

 

                          
           

 

2 2 2 2

11 112 2 2 2 2 2

1 1 1 1 2
0,

E E E H H H m E H
m V m V

r r r r r r rr r r r 

                         
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                                        (15) 

The Eq. (15) is a coupled partial differential equation of two displacements, the electric potentials and magnetic potential 

components.  

Solutions of the Problem 

To uncouple Eq. (15), we seek the solutions in the following form 
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                                                                                                                           (16) 

Where 1 2n  for 0,n  1n  for 1,n   , ,n r   , ,n r   , ,nE r   ,nH r  are the displacement potentials for the 

symmetric mode and  , ,n r   , ,n r   ,nE r  and  ,nH r  are the displacement potentials for the antisymmetric modes 

of vibrations. 

Substituting Eq. (16) in Eq. (15), we get 
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1 02 2
2 0,n n
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 
  
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                                                                                  (17a) 
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2 2

11 1 11 1 11 11
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                                                                                      (17b) 

2 2

11 1 1 11

2
0,n n

n n

E Hm
m E V H m V
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          
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                                                                                                (17c) 

and 

2

1

1
0,

2

n n
n

V
Vm

r r r

 


 
    
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                                                                                                                           (18) 

Where 2 2
2

1 2 2 2

1 1

r rr r 

  
   

 

. 

We consider the free vibration of non-homogeneous transversely isotropic plate, so we assume the solutions as follows 

   , , cos ,m i t

n nr t r r n e      

   , , cos ,m i t

n nE r t r E r n e    

   , , cos ,m i t

n nH r t r H r n e                                                                                                                              (19) 

and 

   2, , cosm i t

n nr t r r n e     .                                                                                                                              (20) 

Substituting Eqs. (19)-(20) in the Eqs.(17) and (18), we obtain 

   
 

   
 
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 
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                                                                                                          (21)  

Where 

 

2 2
2 0 ,

a

L V

 
 



  

 

2 2

2
2m n L V mL

L V

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 




. 

 Eq. (21) is a Bessel equation of order  , its solution is 

     1 1 cos ,n n nr A J r A Y r n      
  

                                                                                                             (22) 

Where 
1nA and 

1nA  are the arbitrary constants,  J r  and  Y r  denote the Bessel functions of the first and second kind of order 

, respectively. 

Substitute Eq. (20) into the Eq. (18), we get  

       
2 2

2 20

2

21 1
4 4 0,n n n

a
r r m m n r

r V r

 
  

        
 

 

(i.e.) 
     2 2 21

0,n n nr r k r
r

       
                                                                                                            (23) 

Eq. (23) is a Bessel equation of order , its solution is 

      4 4 sin ,n n nr A J kr A Y kr n   
                                                                                                            (24) 

Where 
4nA and 

4nA  are arbitrary constants and  J kr
and  Y kr

denote the Bessel function of the first and second kind of order 

 respectively. 

Substituting Eq. (19) into the Eqs. (17b) and (17c), we obtain 
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   
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       
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           
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11 112 2

1 1
0,n n n n n n
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E r E r E r m H r H r H r
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

                
   

                                            (25) 

and 

   
 

     
 

 
2 2 2 2

11 2 2

1 1
0,n n n n n n

m n m n
m E r E r E r V H r H r H r

r rr r

    
            
   
   

 

(i.e.) 
           

2 2

11 2 2

1 1
0,n n n n n n

p p
m E r E r E r V H r H r H r

r rr r

               
   

                                             (26) 

Where 2 2 2p m n  . 

Solving Eqs. (25) and (26), we get 

     
2

2

1
0,n n n

p
E r E r E r

r r
   

                                                                                                                             (27) 

     
2

2

1
0,n n n

p
H r H r H r

r r
   

                                                                                                                       (28) 

 The general solutions to the Eqs. (27) and (28) are 

   2 2, , cos ,p p i t

n n nE r t A r A r n e   
 

   3 3, , cos ,p p i t

n n nH r t A r A r n e   
                                                                                                                  (29) 

Where 
2 2 3 3, , ,n n n nA A A A  are the arbitrary constants. 

The general solutions to the solid plate of polygonal cross-sections are considered as 

   1, , cos ,n nr t A J r n                                                                                                                                      (30a) 

  2, , cos ,p

n nE r t A r n                                                                                                                                   (30b) 

  3, , cos ,p

n nH r t A r n                                                                                                                                   (30c) 

and 

   4, , sinn nr t A J kr n   .                                                                                                                       (30d) 

Boundary conditions and frequency equations 

In this problem, the free vibration of non-homogeneous transversely isotropic electro-magneto-elastic plate of polygonal cross-

section is considered. Since the boundary is irregular in shape, it is difficult to satisfy the boundary conditions along the surface of the 

plate directly. Hence, the Fourier expansion collocation method is applied to satisfy the boundary conditions. For the plate, the normal 

stress 
xx and shearing stresses 

xy , the electric field 
xD and the magnetic field 

xB is equal to zero for the stress free boundary. Thus, 

the following types of boundary conditions are assumed for the plate of polygoanl cross-section is 

        0,xx xy x xi i ii
D B                                                                                                                             (31) 

Where  
i
is the value at the boundary 

i as shown in Fig 1. Since the vibration displacements are expressed in terms of the 

coordinates r and  , it is convenient to treat the boundary conditions when the derivatives in the equations of the stresses are 

transformed in terms of the coordinates r and  instead of the coordinates 
ix and 

iy .  
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Fig. 1 Geometry of the line segment 

The relations between the displacements for the i  th segment of straight line boundaries are 

   cos sin ,r r i iu u u        

   cos sin ,i r iu u u                                                                                                                                   (32) 

Since the angle 
i between the reference axis and normal of the i  th boundary has a constant value in a segment ,i we obtain 

 cos ,i

i

r

x
 


 



 
 

1
sin i

ix r


 


 



 

 sin ,i

i

r

y
 


 



 
 

1
cos i

iy r


 


 



.                                                                                                                    (33) 

Using the Eqs. (32) and (33), the normal and shearing stresses are transformed as 

         

 

2 2 2 2

11 12 11 12

66

1
cos sin sin cos

1
sin 2 0,

r
xx i i i i r

r
i

uu
c c c c u

r r

u uu
c

r r r



 

        


 


  
          

  

 
    

  

 

   66

1 1
sin 2 cos 2 0,r r r

xy i i

u u uu u u
c

r r r r r r

      
 

       
            

       

 

11 11 0,r r
x

E H
D m

r r


 
   

 

 

11 11 0x

E H
B m

r r


 
   

 

.                                                                                                                                     (34) 

Applying non-homogeneity to the Eq. (34), we get 

             

 

2 2 2 21
cos sin sin cos

1
sin 2 0,

2

r
xx i i i i r

r
i

uu
L V L L V L u

r r

u u uu

r r r



  

        


 


  
           

  

 
     

  
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   
1 1

sin 2 cos 2 0,
2

r r r
xy i i

u u uu u uV

r r r r r r

      
 

       
            

       

 

11 11 0,x

E H
D m

r r


 
   

 

 

11 11 0x

E H
B m

r r


 
   

 

.                                                                                                                                       (35) 

Substituting Eqs. (30a) and (30d) in Eq. (31), the boundary conditions are transformed for stress free polygoanl cross-sectional plate 

as follows: 

    0,ai T
xxxx i i

S S e
  

 
 

    0,ai T
xyxy i i

S S e
  

 
 

    0,ai T
xx i i

E E e
  

 
 

    0,ai T
xx i i

H H e
  

 
 

Where 

   1 2 3 1 2 3 4

10 0 20 0 30 0 1 2 3 4

1

0.5 ,xx n n n n n n n n

n

S A e A e A e A e A e A e A e




      
 

   1 2 3 1 2 3 4

10 0 20 0 30 0 1 2 3 4

1

0.5 ,xy n n n n n n n n

n

S A f A f A f A f A f A f A f




      
 

   1 2 3 1 2 3 4

10 0 20 0 30 0 1 2 3 4

1

0.5 ,x n n n n n n n n

n

E A g A g A g A g A g A g A g




      
 

   1 2 3 1 2 3 4

10 0 20 0 30 0 1 2 3 4

1

0.5 ,x n n n n n n n n

n

H A h A h A h A g A g A g A g




      
                                                                    (36) 

 4 1 2 3 4

40 1 2 3 40

1

0.5 ,n n n nxx n n n n

n

S e A A e A e A e A e




    
 

 4 1 2 3 4

40 1 2 3 40

1

0.5 ,n n n nxy n n n n

n

S f A A f A f A f A f




    
 

 4 1 2 3 4

40 1 2 3 40

1

0.5 ,x n n n nn n n n

n

E g A A g A g A g A g




    
 

 4 1 2 3 4

40 1 2 3 40

1

0.5 ,x n n n nn n n n

n

H h A A h A h A h A h




    
                                                                                       (37) 

The coefficients i
i

nne h
are given in the Appendix A. 

Performing the Fourier series expansion to the Eq. (31) along the boundary, the boundary conditions along the boundary of the 

surface are expanded in the form of double Fourier series. When the plate is symmetric about more than one axis, the boundary 

conditions in the case of symmetric mode can be written in the form of a matrix as follows: 
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1 2 3 1 1 2 2 3 3 4 4

00 00 00 01 0 01 0 00 0 01 0

1 2 3 1 1 2 2 3 3 4 4

0 0 0 1 1 1 1

1 2 3 1 1 2 2 3 3 4 4

00 00 00 01 0 01 0 00 0 01 0

1 2 3 1 1 2

0 0 0 1 1

0

0

0

0

N N N N

N N N N NN N NN N NN N NN

N N N N

N N N N NN N N

E E E E E E E E E E E

E E E E E E E E E E E

F F F F F F F F F F F

F F F F F F F

L L L L

M M M M M M M M M M M M

L L L L

L L L L

M M M M M M M M M M M M

L L 2 3 3 4 4

1 1

1 2 3 1 1 2 2 3 3 4 4

00 00 00 01 0 01 0 00 0 01 0

1 2 3 1 1 2 2 3 3 4 4

0 0 0 1 1 1 1

1 2 3 1 1 2 2 3 3 4 4

00 00 00 01 0 01 0 00 0 01 0

1 2

0 0

0

0

0

N N NN N NN

N N N N

N N N N NN N NN N NN N NN

N N N N

N N

F F F F

G G G G G G G G G G G

G G G G G G G G G G G

H H H H H H H H H H H

H H H

L L

L L L L

M M M M M M M M M M M M

L L L L

L L L L

M M M M M M M M M M M M

10

40

11

1

21

2

31

3 1 1 2 2 3 3 4 4
40 1 1 1 1

0

0

N

N

NN N NN N NN N NN N NN

A

A

A

A

A

A

A

AH H H H H H H H

   
   
   
   
   
   
   
   
   

   
   
   
   
   
   
   
   
        

M

M

M

M

L L L L

          (38) 

Where 

 
1

2
, cos ,

I
j jn

mn n i

i

E e R m d


  
 

 
  
 


 

 
1

2
, cos ,

I
j jn

mn n i

i

F f R m d


  
 

 
  
 


                                                                                                                     

 
1

2
, cos ,

I
j jn

mn n i

i

G g R m d


  
 

 
  
 


 

 
1

2
, cos ,

I
j jn

mn n i

i

H h R m d


  
 

 
  
 


                                                                                                                     (39) 

Similarly the matrix for the antisymmetric mode is obtained as 

4 1 1 2 2 3 3 4 4

10 11 1 11 1 11 1 11 1

4 1 1 2 2 3 3 4 4

0 1 1 1 1

4 1 1 2 2 3 3 4 4

10 11 1 11 1 11 1 11 1

4 1 1 2 2 3 3 4 4

0 1 1 1 1

4 1 1 2 2

10 11 1 11 1

N N N N

N N NN N NN N NN N NN

N N N N

N N NN N NN N NN N NN

N N

E E E E E E E E E

E E E E E E E E E

F F F F F F F F F

F F F F F F F F F

G G G G G

L L L L

M M M M M M M M M

L L L L

L L L L

M M M M M M M M M

L L L L

L L
3 3 4 4

11 1 11 1

4 1 1 2 2 3 3 4 4

0 1 1 1 1

4 1 1 2 2 3 3 4 4

10 11 1 11 1 11 1 11 1

4 1 1 2 2 3 3 4 4

0 1 1 1 1

N N

N N NN N NN N NN N NN

N N N N

N N NN N NN N NN N NN

G G G G

G G G G G G G G G

H H H H H H H H H

H H H H H H H H H

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

L L

M M M M M M M M M

L L L L

L L L L

M M M M M M M M M

L L L L

10

11

1

21

2

31

3

4

0,

N

N

N

N

A

A

A

A

A

A

A

A

 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 

  
   

M

M

M

M

                                 (40) 

Where 

 
1

2
, sin ,

I
j j

n
mn n i

i

E e R m d


  
 

 
  
 


 

 
1

2
, sin ,

I
j j

n
mn in

i

F f R m d


  
 

 
  
 


 

 
1

2
, sin ,

I
j j

n
mn in

i

G g R m d


  
 

 
  
 


 

 
1

2
, sin

I
j j

n
mn n i

i

H h R m d


  
 

 
  
 


.                                                                                                                         (41) 
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Numerical results and discussions 

The numerical analysis of the frequency equation is carried out for non-homogeneous transversely isotropic electro-magneto-

elastic plate of polygonal cross-section. The electro-magnetic material constants based on graphical result of Aboudi [24] used for 

numerical calculations. The material constants are 9 2

11 218 10 / ,c N m   9 2

12 120 10 / ,c N m   9 2

66 49 10 / ,c N m   

9

11 0.4 10 / ,C Vm   6 2 2

11 200 10 /Ns c    and 9

11 0.0074 10 /m Ns VC   . Substituting 
iR and the angle ,i between the 

reference axis and the normal to the i  th boundary line, the integrations of the Fourier coefficients , , , ,i i i i

n n n ne f g h ,
i

ne ,
i

nf
i

ng
and 

i

nh
can be expressed in terms of the angle . Using the coefficients into Eqs. (39) and (41), the frequencies are obtained for non-

homogeneous transversely isotropic electro-magneto-elastic plates of polygonal cross-sectional plate. 

In the present problem, there are three kinds of basic independent modes of wave propagation have been considered namely 

longitudinal and two flexural (symmetric and antisymmetric) modes for geometries having more than one symmetry. For geometries 

having only one symmetry, two modes of wave propagation are studied since the two flexural (symmetric and antisymmetric) modes 

are coupled in this case. 

Polygonal cross-sections 

The geometry of the polygonal cross-sections used in the numerical calculations are shown in the Fig. 2, the geometric relations 

for the polygonal cross-sections given by Nagaya [25] as 

 
1

cosi iR b  


   
                                                                                                                                          (42) 

 

Fig.  2. Geometry of polygonal cross sections a) Triangle  b) Square  c) Pentagon  and  d) Hexagonal cross sections 

where b is the apothem The relation given in Eq. (42) is used directly for the numerical calculation. The dimensionless wave 

numbers, which are complex in nature, are computed by fixing   for 0 1.0  using secant method. The basic independent modes 
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like longitudinal and flexural modes of vibration are analyzed and the corresponding non-dimensional wave numbers are computed. 

The polygonal cross-sectional bar in the range 0   and   is divided into many segments for convergence of wave number in 

such a way that the distance between any two segments is negligible. The computation of Fourier coefficients given in Eq. (39) is 

carried out using the five point Gaussian quadrature. The results of longitudinal and flexural (symmetric and antisymmetric) modes 

are plotted in the form of dispersion curves.  

Triangular and Pentagonal cross-sections 

The triangular and pentagonal cross-sectional cylinders the vibration and displacements are symmetrical about the x axis for the 

longitudinal mode and antisymmetrical about the y axis for the flexural mode since the cross-section is symmetric about only one axis. 

Therefore n and m are chosen as 0, 1, 2, 3… in Eq. (38) for the longitudinal mode and n, m=1, 2, 3 … in Eq. (40) for the flexural 

mode and the complex wave number   are calculated by fixing the dimensionless frequency .  

Square and Hexagonal cross-sections 

In case of longitudinal vibration of square and hexagonal cross-sectional cylinders, the displacements are symmetrical about both 

major and minor axes since both the cross-sections are symmetric about both the axes. Therefore the frequency equation is obtained 

by choosing both terms of n and m are chosen as 0, 2, 4, 6… in Eq. (38). During flexural motion, the displacements are 

antisymmetrical about the major axis and symmetrical about the minor axis. Hence the frequency equation is obtained by choosing n, 

m=1, 3, 5,… in Eq. (40).   

Dispersion curves 

The results of longitudinal modes of vibrations are plotted in the form of dispersion curves, the notations Lm denotes longitudinal 

mode in all the graphs. The 1 refers the first mode and 2 the second and so on. From the graphs obtained, it can be noticed that the 

dispersion for the plates in the fundamental mode is high. But in higher modes, the dispersive curves are almost straight, along the 

direction of propagation. Hence it may be concluded it has a non-dispersive behaviors. It is also to be mentioned that the cross over 

points in various curves of different modes indicate that for a particular frequency of vibration, the mechanical energy is 

communicative between its directions of wave propagation in the respective mode. A comparison between the different modes of non-

dimensional frequency spectrum for longitudinal modes of triangular cross-sectional plates is shown in Fig 3. From the Fig. 3, it is 

observed that, the non-dimensional frequencies are increases by increasing the modes of vibrations. A dispersion curve is drawn 

between different modes of vibrations versus non-dimensional frequency  for a square cross-sectional plate, it is shown in Fig.4. 

From the Fig.4, it is observed that the non-dimensional frequency is increases by increasing its modes of vibration. Graphs are drawn 

between mode and non-dimensional frequency of longitudinal modes of triangular and hexagonal cross-sectional plate and are shown 

in Figs. 5 and 6. From Figs. 5 and 6, it is observed that the non-dimensional frequency  increases as modes of vibration increases for 

a particular period. At some points the energy level decreases as modes of vibration increases. The cross over points in the trend line 

indicates that the mechanical energy is transferred between the modes of vibrations.    

 

Fig 3. Mode versus non-dimensional frequency for longitudinal mode of triangular cross-sectional plate 
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Fig 4. Mode versus non-dimensional frequency for longitudinal mode of square cross-sectional plate 

 

Fig 5. Mode versus non-dimensional frequency for longitudinal mode of triangular cross-sectional plate 

 

Fig 6. Mode versus non-dimensional frequency for longitudinal mode of hexagonal cross-sectional plate 

Conclusions 

Wave propagation in non-homogenous transversely isotropic electro-magneto-elastic plate of polygonal cross-section is studied 

using the Fourier expansion collocation method. The frequency equations are obtained from the polygonal cross-sectional boundary 

conditions, since the boundary is irregular in shape; it is difficult to satisfy the boundary along the surface of the plate directly. Hence, 
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the Fourier expansion collocation method is applied along the boundary to satisfy the boundary conditions. The roots of the frequency 

equations are obtained by using the secant method applicable for complex roots. The computed non-dimensional frequencies are 

plotted in the form of dispersion curves and their characteristics are discussed. 
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