Asadullah Mirasi et al./ Elixir Agriculture 72 (2014) 25440-25444

Available online at www.elixirpublishers.com (Elixir International Journal)

Elixir Agriculture 72 (2014) 25440-25444

An assessment of energy efficiency for wheat production in Iran

Asadullah Mirasi¹, Mousarrezasamadi², Ehsan Kamran³ and Mohammad Bagher Taghipoor⁴

¹Department of Farm Machinery, Faculty of Biosystems Engineering, Islamic Azad University, Shahrecord Branch, Lordegan center, Shahrecord, Iran.

²Department of Agricultural Machinery, Faculty of Biosystems Engineering, University of Tabriz, Iran.

³Department of Farm Machinery, Faculty of Agriculture, Islamic Azad University, Ilam Branch, Ilam, Iran.

⁴Department of Agricultural Machinery, Faculty of Biosystems Engineering, Islamic Azad University, Shahrecord Branch, Lordegan

center, Shahrecord, Iran.

ARTICLE INFO

Article history: Received: 6 June 2014; Received in revised form: 19 June 2014; Accepted: 1 July 2014;

Keywords

Energy Use, Energy Efficiency, Cobb–Douglas, Wheat.

ABSTRACT

The objectives of this study were to determine the energy consumption and evaluation of relationship between inputs and output for wheat production in Shahrkord region, Iran. For this propose data were collected from 60 wheat farms using a face to face questionnaire. The results revealed that total energy input for wheat production was found to be 31188.25 MJ ha⁻¹ that the share of non-renewable energy form (89%) was more than renewable energy form (11%).Electricity has the highest share by 38.25% followed by total fertilizers and diesel fuel. Energy use efficiency, energy productivity, and net energy were 3.03, 0.21 kg MJ⁻¹, and 65012.08 MJ ha⁻¹, respectively. The regression results revealed that the contribution of energy inputs on crop yield (except for diesel fuelenergies) was significant. Machinery energy was the most significant input (0.798) which affects the output level.It indicates that a 1% increase in the energy machinery input led to 0.798% increase in yield in these circumstances. The results also showed the impacts of indirect and renewable energy on yield are negative. It was concluded that additional use of machinery, and increasing mechanization level, would result more yield in the area.

© 2014 Elixir All rights reserved

Introduction

Besides water, food, education, diseases and environmental issues, energy has become one of the main priorities of humankind during the last century. In developing countries, energy is the fundamental factor for population fulfillment and development purposes. Technology advancement and socialeconomic development are in debt of fossil fuel consumption and this fact that fossil fuel resources run out soon has become one of the main concerns of humankind (Hosseini et al., 2013).The need to increase food production has resulted in the increased consumption of energy and natural resources because farmers have little knowledge of or few incentives to use more energy efficient methods (Esengun et al., 2007).

It uses large quantities of locally available non-commercial inputs, such as seed, manure and animate energy, and commercial inputs directly and indirectly in the form of fuel, electricity, fertilizer, plant protection, chemicals, irrigation water and machinery. They all can be converted and stated in the form of energy units. Efficient use of energies helps to achieve increased production and productivity and contributes to the economy, profitability and competitiveness of agriculture sustainability in rural living (Royan et al., 2012). A significant objective in agricultural production is to decrease costs and increase yield. In this respect, the energy budget is important. Energy input–output analysis is usually used to evaluate the efficiency and environmental impacts of production systems. It is also used to compare the different production systems (Salehi et al., 2014).

Several researches have been conducted on energy use in different agricultural crops (Esengun et al., 2007; Mohammadi

et al., 2008; Rafiee et al., 2010;Mohammadshiraziet al., 2012; Abdi et al., 2013; Mobtaker et al., 2013).

In a research conducted in Spain, energy use and economic evaluation were considered for winter wheat, winter barley, spring barley and vetch production. The spring barley showed highest energy consumption since a larger number of tillage operations were required and a larger amount of herbicides for weed control (Hernanz et al., 1995). Khan et al., (2009) studied the energy inputs in wheat, rice and barley production for reducing the environmental footprint of food production in Australia. The results showed that barley crop seems more efficient in terms of energy and water use jointly. Heidari and Omid (2011) studied energy use patterns of major greenhouse vegetable productions in Iran and found that impact of human labor for cucumber and chemicals for tomato was significant at 1% levels. Pishgar-Komleh et al. (2012) determined energy consumption and CO₂ emissions of potato production in three different sizes of farms in Esfahan province, Iran. The result of this paper revealed total energy consumption and GHG emission in potato production are 47 GJ ha⁻¹ and 993 kg CO_{2eq} ha⁻¹, respectively. Sonietal. (2013) considered the energy use index and CO₂ emissions in rain fed agricultural production systems of Northeast Thailand. In this study, system efficiency, total energy input and corresponding CO2 eq. emissions were estimated and compared for different crops. Soltani et al. (2013) analyze energy use and greenhouse gases (GHG) emissions in various wheat production scenarios in north eastern Iran. The results indicate that the seed bed preparation, sowing and applications of nitrogen fertilizer are the key factors which are related to energy use and GHG emissions.

25440

Wheat (Triticumaestivum L.) is among the oldest and most extensively grown of all crops. It is a main cereal cultivated throughout the world along with rice, barley, maize, rye, sorghum, oats and millet. Nowadays, wheatcultivars have been developed for different qualities in accordance with the development of genetic recombination. Wheat is grown under irrigated as well as rain-fed conditions worldwide. Under rainfedconditions the developing grains are frequently exposed to mild to severe stressat different stages of grain development (Abdi et al., 2013).

The present study investigated the energy consumption in wheat production in Shahrkord region. Also the relationship betweenenergy inputs and vield was studied using Cobb-Douglas production function. Also in last part of study the relationship betweenenergy form and yield was studied.

Materials and methods

The research was done in Shahrkordregion which is located in the west south of Iran. The data were collected from 60wheat farms using a face to face questionnaire. The simple random sampling method was used to determine the survey volume as (Kizilaslan, 2009):

$$n = \frac{N(s \times t)^2}{(N-1)d^2 + (s \times t)^2}$$
(1)

where n is the required sample size; s, the standard deviation; t, the t value at 95% confidence limit (1.96); N, the number of holding in target population and d, the acceptable error (permissible error5%). consequently calculated sample size in this study was 60.

The inputs used in the production of wheat were specified in order to calculate the energy equivalences in the study. The input energy was also divided into direct and indirect and renewable and non-renewable forms (Esengun et al 2007).Direct energy constituted of human labour, diesel fuelandelectricity, whereas, indirect energy include chemical fertilizers, biocides, seedand machinery. Renewable energy consists of human labour and seed and non-renewable energy includes machinery, diesel fuel, chemical fertilizers and biocides. Inputs in wheat production were: human labour, machinery, diesel fuel, chemical fertilizers, biocides, seed and electricity and output was wheat. The units in Table 1 were used to calculate the energy equivalentof input.

The input and output were calculated per hectare and then, these input and output data were multiplied by the coefficient of energy equivalent. Following the calculation of energy input and output values, the energy indexes of wheat were calculated(Mandal et al., 2002; Mohammadi et al., 2008). These indexes are showed in table 2.

In order to obtain a relationship between inputs and yield, a mathematical function needs to be specified. For this purpose Cobb-Douglas production function was selected; because it produced better results (yielded better estimates in terms of statistical significance and expected signs of parameters). The Cobb-Douglas production function is frequently used in both energy and economics studies to show the relationship between input factors and the level of production (Mohammadi and Omid, 2010; Mobtaker et al., 2010). The Cobb-Douglas production function is expressed as:

$$Y = f(x)exp(u)$$

This function has been used by several authors to examine the relation between energy inputs and yield (Singh et al., 2004; Hatirli et al., 2006; Banaeian et al., 2011). The linear form of Eq. (6) can be written as:

$$\ln Yi = \alpha_0 + \sum_{j=1}^{n} \alpha_j \ln(x_{ij}) + e_i \qquad i=1,2.3,...,n$$
(7)

Where Y_i denotes the yield level of the *i*'th farmer, X_{ii} is the vector inputs used in the production process, α_0 is the constant term, α_i represents coefficients of inputs which are estimated from the model and e_i is the error term.

Using Eq. (7), the effect of energy inputs on wheat yield for each input was studied. On the other hand, wheat yield (endogenous variable) was assumed to be a function of human labor, diesel fuel, machinery, chemical fertilizers, biocides, electricity and seed energy (exogenous variables).

Similarly, the effect of direct, indirect, renewable and nonrenewable energies on production was also studied. For this purpose, Cobb-Douglas function was determined as Eqs. (8) and (9):

$$\ln Y_i = \beta_0 + \beta_1 \ln DE + \beta_2 \ln IDE + e_i$$

$$\ln Y_i = \gamma_0 + \gamma_1 \ln RE + \gamma_1 \ln NRE + e_i$$
(8)
(9)

where Y_i is the *i*th farmer's yield, β_0 and γ_0 are the constant terms, β_i and γ_i are coefficients of exogenous variables and e_i is the error term. DE, IDE, RE and NRE are direct, indirect, renewable and non-renewable energies respectively. Basic information on energy inputs and wheat yield were entered into Excel's spreadsheet and simulated using SPSS 19 software.

Result and Discussion

As it can be seen in the Table 3, 100.86 h of labour, 126.65 1 of diesel fuel and 17.67 hof machinery per hectare are used for the production of wheat in Shahrkord region. The total energy input for various processes in the wheat production was calculated to be 31188.25 MJ ha⁻¹. The average wheat output were found to be 6544.24 kg ha⁻¹ in the enterprises that were analyzed. The energy equivalent of this is calculated as 96200.33MJha⁻¹. The highest energy input is provided by electrical (999.96 kWh) followed by chemical fertilizers. Electricity used for irrigation proposes. The shares of nitrogen and phosphorus energy were 85% and 15%, respectively, from the total energy of chemical fertilizer used. Abdi et al. (2013) concluded that the input energy for wheat production in Kermanshah province of Iran were to be 16762.80 MJ ha⁻¹. Mohammadi et al. (2014) reported total energy input for wheat was to be 26.2 GJ ha⁻¹in north Iran. The inputs energy consumption was least for biocides(216.44 MJ ha⁻¹) which accounted for about 0.69% of the total energy consumption.

The share of wheat input can be seen in Fig. 1.With respect to the obtained results, the shares of energy consumption in wheat production consist of 38.25% electricity, 23.60%, fertilizer22.87% diesel fuel, 10.41% seed, 3.55% machinery, 0.69% biocides and 0.63% human labor.

Fig 1. The share of energy inputs for wheat production Energy use efficiency, energy productivity, specific energy and net energy gain are listed in Table 4.

Table 1. Energy coefficients of different inputs and outputs used in agriculture production				
Inputs/Output	Units	Energy coefficients (MJ unit ⁻¹)	Reference	
A. Inputs				
1) Human labor	h	1.96	Mohamadi et al., 2008; BeheshtiTabar et al., 2010	
2) Machinery	h	62.7	Mobtaker et al., 2010; Nabavi-Pelesaraei et al., 2014	
3) Diesel fuel	L	56.31	Mobtaker et al., 2010	
4) Electricity	kWh	11.93	Mobtaker et al., 2010;Mohammadi et al., 2014	
5) Chemical	kg			
fertilizers				
a) Nitrogen (N)		66.14	Esengun et al., (2007); Mousavi-Avval et al., 2011	
b) Phosphate (P_2O_5)		12.44	Esengun et al., (2007); Mousavi-Avval et al., 2011	
c) Potassium (K_2O)		11.15	Esengun et al., (2007); Mousavi-Avval et al., 2011	
6) Biocides	kg	120	Mobtaker et al. (2010);Naderloo et al., 2012	
7) Seed	kg	14.7		
B. Output				
1) Wheat	kg	14.7	BeheshtiTabar et al., 2010; Mohammadi et al., 2014	

Table 2. Indices of energy in Agriculture production (Mandal et al., 2002; Mohammadi et al., 2008)			
Indicator	Definition Un		
E	Energy output (MJ/ha)		
Energy use eniciency	Energy input (MJ/ha)	rano	(2)
En anov, one dy ativity	Yield (kg/ha)		(2)
Energy productivity	Energy input (MJ/ha)	Kg/MJ	
Specific operate	Energy input (MJ/ha)		(4)
Specific energy	Yield (kg/ha)	IVIJ/Kg	
Net energy gain	Energy output (MJ/ha) – Energy input (MJ/ha)	MJ/ha	(5)

Table 3. Amounts of inputs and output with their equivalent energy.			
Inputs (unit)	Quantity per unit area (ha)	Total energy equivalent (MJ ha ⁻¹)	
A. Inputs			
1. Human labor (h)	100.86	197.69	
2. Diesel fuel (l)	126.65	7131.44	
3. Machinery (kg)	17.67	1107.79	
4. Chemical fertilizers (kg)	183.30	7358.80	
5. Biocides (kg)	1.80	216.44	
6. Electricity (kWh)	999.96	11929.56	
7. Seed (m^3)	220.85	3246.53	
Total energy input(MJ)	-	31188.25	
B. Output			
1.Wheat(kg)	6544.24	96200.33	

Table 4. Some energy parameters in wheat production.			
Items	unit	Quantity	
Energy use efficiency	-	3.08	
Energy productivity	kgMJ ⁻¹	0.21	
Specific energy	MJ kg ⁻¹	4.77	
Net energy gain	MJ ha ⁻¹	65012.08	
Direct energy	MJ ha ⁻¹	19258.69 (62%)	
Indirect energy	MJ ha ⁻¹	11929.56 (38%)	
Renewable energy	MJ ha ⁻¹	3444.22 (11%)	
Non-renewable energy	MJ ha ⁻¹	27744.03 (89%)	
Total energy input	MJ ha ⁻¹	3246.53 (100%)	

Table 5. Econometric estimation results of inputs.			
Endogenous variable: yield	Coefficient	t–ratio	
Exogenous variables			
Eq7: $\ln Y_i = \alpha_1 \ln X_1 + \alpha_2 \ln X_2 + \alpha_3 \ln X_3 + \alpha_4 \ln X_4 + \alpha_5 \ln X_5 + \alpha_6 \ln X_6 + \alpha_7 \ln X_7 + e_i$			
Human labor	0.262	4.18^{*}	
Diesel fuel	0.226	1.12	
Machinery	0. 798	3.42*	
Chemical fertilizers	0.241	2.87^{**}	
Biocides	0.137	2.09^{**}	
Electricity	0.277	2.46^{**}	
Seed	0.308	2.06^{**}	
\mathbb{R}^2	0.98		
[*] Indicates significance at 1% level.			
** Indicates significance at 5% level			

**** Indicates significance at 10% level.

Table 6. Econometric estimation results of direct, indirect, renewable and non-renewable energies			
Endogenous variable: energy output	Coefficient	t–ratio	
Exogenous variables			
Eq8: $\ln Y_i = \beta_1 \ln DE + \beta_2 \ln IDE + e_i$			
Direct energy	2.138	5.61*	
Indirect energy	-1.035	-8.50**	
R^2	0.99		
Eq9: $\ln Yi = \gamma 1 \ln RE + \gamma 2 \ln NRE + ei$			
Renewable energy	-0.751	-1.9*	
Non-renewable energy	1.711	5.42***	
R^2	0.99		
*Indicates significance at 1% level.			
**Indicates significance at 5% level.			
*** Indicates significance at 10% level.			

Energy use efficiency in wheat production was calculated as 3.08, showing the inefficiency use of energy in the greenhouse button mushroom production. It is concluded that the energy use efficiency can be increased by raising the crop yield and or by decreasing energy input consumption. Several authors have been reported the energy use efficiency for different crops such as 1.16 for apple in Iran (Rafiee et al., 2010), 0.32, 0.19, 0.31 and 0.23, for tomato, pepper, cucumber and eggplant greenhouse vegetables, respectively, in Turkey (Canakciand Akinci, 2006).

The average energy productivity of wheatwas 0.21 kg MJ^{-1} . This means that 0.21 units output was obtained per unit energy. The specific energy and net energy gain of wheat production are 4.77 MJ kg^{-1} and $65012.08 \text{ MJ ha}^{-1}$, respectively. Net energy gain is positive. Therefore, it can be concluded that in wheat production, energy is gain.

Also the distribution of inputs used in the production of wheat according to the direct, indirect, renewable and non-renewable energy groups, are given in Table 4. It is seen that the ratios of direct energy resources are more than indirect energy (62% and 38%). Also the ratios of non-renewable energy are more than renewable energy (89% and 11%). Therefore, it is clear that wheat production depended on non-renewable energy consumption. Similar results have been reported by other researchers for different crop (Yilmaz et al., 2005; Erdal et al., 2007; Kizilaslan, 2009; Mobtaker et al., 2010).

In order to estimate the relationship between energy inputs and wheat yield, Cobb–Douglas production function was chosen and assessed using ordinary least square estimation technique. The R^2 value was determined as 0.98 for Eq. 7, implying that around 0.98 of the variability in the energy inputs was explained by this model. Regression results for Eq. (7) were estimated and are shown in Table 5. As can be seen from Table 5, all exogenous variables had a positive impact and were found statistically significant on wheat yield (expected biocides and seed energy).

Machinery had the highest impact (0.798) among other inputs and significantly contributed on the productivity at 1% level. It indicates that a 1% increase in the energy machinery input led to 0.798% increase in yield in these circumstances. The second important input was found as electricity with 0.277 elasticity followed by human labour with 0.262 elasticity. Hatirli et al. (2006) developed an econometric model for greenhouse tomato production in Antalya province of Turkey and reported that human labour, chemical fertilizers, biocides, machinery and water energy were important inputs significantly contributed to yield. Tabatabaieet al.(2013) reported that humanlabor, gasoline, chemical fertilizers, farmyard manure, electricity and irrigation water had significant influence on prune yield.

For the Eqs. (8) and (9) the statistic variables are presented in Table 6. As can be seen, regression coefficients of direct and renewable energies are significant at 1% probability level. The results showed the impacts of indirect and renewable energy on yield are negative. The assessed trends of direct and nonrenewable energy were positive, showing the positive impacts on the output level. The R^2 value was 0.99 for both these estimated models.

It is concluded that impact of non-renewable energy was higher than that of renewable energy in wheat production. Impact of nonrenewable energy was 1.711 and had positive impact on wheat yield and impact of renewable energy was -0.751 and had negative impact on the wheat yield. Similar results have been reported in the literatures (Mohammadi and Omid, 2010; Unakitan et al., 2010).

Conclusion

The aim of this study was to analyze impact of a particular energy input level on wheat yield in Shahrkord region, Iran. Based on the results of the investigations, the following conclusions were drawn:

1. Total energy input for wheat production was found to be $3246.53 \text{ MJ ha}^{-1}$ and energy output was calculated as $96200.33 \text{ MJ ha}^{-1}$. Electricity showed as the most energy consuming input followed by chemical fertilizers and diesel fuel.

2. Energy use efficiency, energy productivity, and net energy were 3.03, 0.21 kg MJ⁻¹, and 65012.08 MJ ha⁻¹, respectively.

3. The ratios of non-renewable energy are more than renewable energy (89% and 11%). Therefore, it is clear that wheat production depended on non-renewable energy consumption.

4. The impact of energy inputs could have positive effect on yield (except for diesel fuel energies).

5. It was concluded that additional use of machinery, and increasing mechanization level, would result more yield in the area.

References

1. Abdi R, ZareiShahamat E, Hematian A, Mobtaker HG. Optimization of energy required for wheat production in Kermanshah Province of Iran. International Journal of Agriculture: Research and Review2013;3(2): 414–22.

2. Banaeian N, Omid M, Ahmadi H.Energy and economic analysis of greenhouse strawberry production in Tehran province of Iran. Energy Conversion and Management 2011;52(2): 1020–5.

3. BeheshtiTabar I, Keyhani A, Rafiee S. Energy balance in Iran's agronomy(1990–2006). Renewable and Sustainable Energy Reviews 2010; 14: 849–55.

4. Canakci A, Akinci I. Energy use pattern analyses of greenhouse vegetable production. Energy 2006; 31: 1243–1256.

5. Erdal G, Esengun K, Erdal H, Gunduz O. Energy use and economical analysis of sugar beet production in Tokat province of Turkey. Energy 2007;32: 35–41.

6. Esengun K, Gunduz O, Erdal G. Input-output energy analysis in dry apricot production ofTurkey, Energy Conversion and Management2007; 48: 592–8.

7. Hatirli SA, Ozkan B, Fert C. Energy inputs and crop yield relationship in greenhouse tomato production. Renewable Energy 2006; 31: 427–38.

8. Heidari MD, Omid M, Energy use patterns and econometric models of major greenhouse vegetable productions in Iran. Energy 2011; 36: 220–5.

9. Hernanz JL, Giron VS, Cerisola C. Long-term energy use and economic evaluation of three tillage systems for cereal and legume production in central Spain. Soil and Tillage Research 1995; 35: 183–98.

10. Hosseini SE,Mahmoudzadeh-AndwariA, Abdul-WahidM, BagheriG. A review on green energy potentials in Iran. Renewable and Sustainable Energy Reviews 2013; 27: 533–45.

11. Khan S, Khan MA, Hanjra MA, Mu J. Pathways to reduce the environmental footprints of water and energy inputs in food production. Food Policy2009; 34: 141–9.

12. Kizilaslan H. Input–output energy analysis of cherries production in Tokat Province of Turkey. Applied Energy 2009; 86(7-8): 1354–8.

13. Mandala KG, Sahab KP, Ghosha PK, Hatia KM, Bandyopadhyaya KK. Bio energy and economic analysis of soybean-based crop production systems in central India. Biomass Bioenergy 2002; 23: 337–45.

14. Mobtaker HG, Keyhani A, Mohammadi A, Rafiee S, Akram A. Sensitivity analysis of energy inputs for barley production in Hamedan Province of Iran. Agriculture, Ecosystems and Environment2010; 137(3–4): 367–72.

15. Mobtaker HG, Taki M, Salehi M, ZareiShahama E. Application of non-parametric method to improve energy

productivity and CO₂ emission for barley production in Iran. Agricultural Engineering International: CIGR Journal.2013; 15(4): 84–93.

16. Mohamadi A, Tabatabaeefar A, Shahan S, Rafiee S, Keyhani A. Energy use and economical analysis of potato production in Iran a case study: Ardabil province. Energy Conversion and Management2008; 49: 3566–70.

17. Mohammadi A, Omid M.Economical analysis and relation between energy inputs and yield of greenhouse cucumber production in Iran.Applied Energy 2010; 87(1): 191–6.

18. Mohammadi A, RafieeSh, Jafari A, Keyhani A, Mousavi-Avval SH, Nonhebel S. Energy use efficiency and greenhouse gas emissions of farming systems in north Iran. Renewable and Sustainable Energy Reviews 2014; 30: 724–33.

19. Mohammadshirazi A, Akram A, Rafiee S, Mousavi–Avval SH, BagheriKalhorE.An analysis of energy use and relation between energy inputs and yield in tangerine production. Renewable and Sustainable Energy Reviews 2012; 16: 4515–21. 20. Mousavi-Avval SH, Rafiee S, Jafari A, Mohammadi A. Optimization of energy consumption for soybean production using Data Envelopment Analysis(DEA) approach. Applied Energy 2011; 88: 3765–72.

21. Nabavi-Pelesaraei A, Abdi R, Rafiee S, Mobtaker HG. Optimization of energy required and greenhouse gas emissions analysis for orange producers using data envelopment analysis approach. Journal of Cleaner Production2014;65: 311–17.

22. Naderloo L,Alimardani R, Omid M, Sarmadian F, Javadikia P, Torabi MY, Alimardani F. Application of ANFIS to predict crop yield based on different energy inputs. Measurement 2012; 45: 1406–13.

23. Pishgar-Komleh SH, Ghahderijani M, Sefeedpari P. Energy consumptionand CO_2 emissions analysis of potato production based on different farm sizelevels in Iran. Journal of Cleaner Production 2012; 33: 183–191.

24. Rafiee S, Mousavi–Avval SH, Mohammadi A. Modeling and sensitivityanalysis of energy inputs for apple production in Iran. Energy 2010; 35: 3301–6.

25. Royan M, Khojastehpour M, Emadi B, Mobtaker HG. Investigation of energy inputs for peach production using sensitivity analysis in Iran. Energy Conversion and Management 2012; 64: 441–6.

26. Salehi M, Ebrahimia R, Maleki A, Mobtaker HG. Modeling and sensitivity analysis of energy inputs and input costs for button mushroom production in Iran. Journal of Cleaner Production2014; 64: 377–83.

27. Singh G, Singh S, Singh J. Optimization of energy inputs for wheat crop in Punjab. Energy Conversion and Management 2004; 45: 453–65.

28. Soltani A, Rajabi MH, Zeinali E, Soltani E. Energy inputs and greenhouse gases emissions in wheat production in Gorgan, Iran. Energy 2013;50(1):54–61.

29. Soni P,TaewichitC,SalokheVM.EnergyconsumptionandCO₂ emissions inrainfed agricultural production systems of Northeast Thailand. Agricultural Systems2013;116:25–36.

30. Tabatabaie SMH, Rafiee S, Keyhani A, Ebrahimi A. Energy and economic assessment of prune production in Tehran province of Iran. Journal of Cleaner Production 2013; 39: 280–284.

31. Unakitan G, Hurma H, Yilmaz F. An analysis of energy use efficiency of canola production in Turkey. Energy 2010; 35, 3623–3627.

32. Yilmaz I, Akcaoz H, Ozkan B. An analysis of energy use and input costs for cotton production in Turkey. Renewable Energy2005; 30: 145–155.