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Introduction 

 We assume basic knowledge of topology; open and closed 

sets, closure , interior for different family of sets namely α-open 

sets, semi-open sets, pre-open sets, b-open sets and β-open sets. 

In metric spaces, properties such as continuity, closure and 

compactness can be stated completely in terms of sequences. 

This breaks down in general topological spaces, where 

sequences can’t even tell whether a set is closed. In 1922, Moore 

and Smith discovered a generalization of sequences, called nets 

which are ad- equate to describe those things. Despite their sheer 

dissimilarity nets are equivalent to filters in terms of results 

(which include Tychonoff ’s theorem, purported to be one of the 

hardest in topology). 

 Choquet[8] introduced an attractive theory of Grills, a 

collection satisfies  some condition in Topological space. The 

topology equipped with the grill collection is called Grill 

topology. 

This topic has an excellent potential for application in other 

branches of mathematics like compactifications, Proximity 

spaces, different types of extension problems etc. This subject 

was continued to study by general topologists Roy and 

Mukherjee [18], [19] in recent years. It was probably the two 

articles of M.K. Singal and Asha Mathur [20],[21] that initiated 

the study of nearly Compact spaces in general topology. 

 The purpose of this paper is to define and discuss the 

concepts of δ − convergence and δ − adherence of grills in the 

different family sets of X. 

Preliminaries 

Definition 2.1 :[19]  

A collection G of nonempty subsets of a set X is called a grill if  

1. A ∈ G and A ⊆ B ⊆ X implies that B ⊆ G, and 

2. A ∪ B ∈ G (A, B ⊆ X) implies that A ∈ G or B∈ G. 

Definition 2.2 :[19]  

A grill G on a set X is said to be a σ-grill if for any countable 

collection {A   : n ∈ N } of subsets of X,   A   G whenever A 

 G or each n ∈ N . 

Definition  2.3 :[26]  

A subset of a space is said to be regularly open, it is the 

interior of some closed set or equivalently, if it is the interior of 

its own closure. A set is said to be regularly closed if it is the 

closure of some open set or equivalently, if it is the closure of its 

own interior. 

Definition  2.4 :[24]  

Let (X, τ) be a space. Then the following hold. 

(a) For any grill (resp. filter) G on a space X, sec G is a filter 

(resp. grill) on X. 

(b) If F is a filter and G is a grill such that F ⊂ G, then there is 

an ultrafilter U on X such that F ⊂ U ⊂ G. 

Definition 2.5 :[16]  

A nonempty set A of a space (X, τ) is said to be µ-closed 

relative to X if for every cover {Vα; α ∈ Λ} of A by µ-open sets 

, there exists a finite subset Λt  of Λ such that  A ⊂ ∪{cµ(Vα); α 

∈ Λt }.  A space X is called µ-closed if A = X. 

Convergence and adherence of grills 

Definition 3.1    

 A grill G on X is said to be δ-adheres at x in X if for each U 

∈ τ containing x and each G ∈G, intcl (U ) ∩ G  ø.   

Definition 3.2  

 A grill G on X is said to be δ-converges at x in X if for each 

U ∈ τ containing x, there exists G ∈ G such that G ⊂ intclU . 

Clearly a grill G converges to x ∈ X if and only if G contains the 

collection {intcl Ux \ Ux  ∈ X }. 

Note 3.2.1  

Let (X, τ) be a space and P ={σ, π, b, β}.   For µ ∈ P, A grill G 

on X is said to be δµ − adheres at x in X if for each U ∈ µ 

containing x and each G ∈ G, intµ clµ(U ) ∩ G  ø G  is said to 

be δµ − converges to x ∈ X  if for each U ∈ µ containing x, there 

exists G ⊂ intµclµ(U ). Clearly, a grill G is δµ − converges to x ∈ 

X if and only if G contains the collection {intµclµ(U ) \ x ∈ A ∈ 

µ}. 

Definition 3.3  

 A filter F on a topological space (X, τ) is said to be δµ − 

adheres at x in X if for each U ∈ µ containing x and each F ∈ F , 

intµclµ(U ) ∩ F  ø, F is said to be δµ − converges to x ∈ X if 

for each U ∈ µ containing x, there exists F ⊂ intµclµ(U ). 

Definition 3.4  

Let G be a grill on the topological space (X, τ).  Then G (δµ, x) = 

{A ⊂ X ; x ∈ cδµ (A)}. 
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Definition 3.5  

Let (X, τ, G) be a grill topological space, then secG (δµ, x) =  

{A ⊂ X ; A ∩ G  ø for all G ∈ G (δµ, x)}.  

Theorem 3.6  

Let (X, τ) be a space with a grill G. If G, δµ − adheres at 

some point x ∈ X , then G is δµ − converge to x. 

Proof  

Suppose G,  δµ − adheres at x ∈ X . Then for each µ-open 

set U containing x and each G ∈ G,  intµclµ(U ) ∩ G   ø. ⇒ 

intµclµ(U ) ∈ sec G  for each µ-open set U containing x. 

Therefore X − intµclµ(U )  G whenever x ∈ U ∈ µ. Since X ∈ 

G and G is a grill on X, intµclµ(U ) ∈ G for each µ-open set 

containing x. Thus , G is δµ− convergent to x. 

Theorem 3.7  

Let G be a grill on a space (X, τ).  Then the grill G,  δµ − 

adheres at x ∈ X if and only if G ⊂ G (δµ, x). 

Proof 

If G, δµ − adheres at x ∈ X implies that intµclµ  ∩ G  ø for 

all G ∈G and for every µ-open set U containing x. Therefore, x 

∈ cδµ (G) for all G ∈ G and so G ∈ G (δµ, x) for all G ∈G. ⇒ G 

⊂ G (δµ, x).  Conversely  assume that G ⊂ G (δµ, x).  Then for 

every G ∈ G ,G ∈ G (δµ, x) and so x ∈ cδµ (G) ⇒ intµclµ(U ) ∩ G 

 ø for every U ∈ µ containing x. Hence G, δµ − adheres at the 

point x. 

Theorem 3.8  

Let G be a grill on a space (X, τ). Then G is δ − convergent 

to x ∈ X if and only if secG (δµ, x) ⊂ G. 

Proof  

Let G be a grill on X which δµ − converges to x ∈ X. Then 

for each µ-open set U containing x, there exists a G ∈ G such 

that G ⊂ intµclµ(U ). Since G is a grill on X, intµclµ(U ) ∈ G. Let 

A ∈ secG  (δµ, x).  Then A ∩ G  ø for all G ∈ G (δµ, x) and so 

X \A   G (δµ, x).⇒ x  cδµ (X − A) and so clµ(V ) ∩ (X − A) = 

ø for some V  ∈ µ containing x. ⇒ clµ(V ) ⊂ A which implies 

that A ∈ G. Thus secG (δµ, x) ⊂ G. Conversely let us assume 

that G does not δµ − converge to x ∈ X. Then there exists a µ-

open set U containing x such that intµclµ  G and intµclµ(U )  

secG (δµ, x).  Since intµclµ(U )  secG (δµ, x), there exists G ∈ 

secG  (δµ, x) , such that clµ(U ) ∩ G = ø. Since G ∈ secG  (δµ, x), 

x ∈ cδµ (G) and so intµclµ ∩ G  ø for all µ-open set U 

containing x, a contradiction. Hence G,  δµ − converges to x. 

Definition 3.9   

A nonempty set A of a space (X, τ) is said to be ASµ-set 

relative to X if for every cover {Vα; α ∈  Λ} of A by µ-open sets 

of X, there exists a finite subfamily Λ0 of Λ such that A ⊂ 

∪{intµclµ(Vα); α ∈ Λ0}. 

Definition 3.10 

(1)The set of all ASµ spaces is a subcollection of the family of µ 

closed spaces discussed in [16]. 

(2)A space X is ASµ space if A=X.  If µ = τ then the family of 

all ASτ – spaces coincides with the family of all nearly compact 

spaces. 

(3)If µ = π then the family of spaces are called ASp space.  

(4)If µ = β then the family of spaces are called ASβ space.  

(5)If µ = b then the family of spaces are called ASb space.  

(6)If µ = σ then the family of spaces are called ASs space. 

Theorem 3.11  

Let (X, τ) be a space and µ ∈ P. Then the following are 

equivalent.  

(a)X is ASµ space. 

(b) Every maximal filterbase δµ − converges to some point of X. 

(c)Every filterbase δµ − adheres at some point of X. 

(d) For every family {Vα; α ∈ Λ} of ASµ subsets such that 

∩{Vα; α ∈ Λ} = ø, there 

exists a finite subset Λ0 of Λ such that ∩{intµ(Vα); α ∈ Λ0} = ø . 

Proof   

(a)⇒(b).   Let F be a maximal filter base on X. Suppose that F 

does not δµ  − converge to any point  of X. For each x  ∈  X , 

there exists Fx   ∈  F and µ- open set Ux  containing x such that  

Fx  ∩ intµclµ(Ux)  = ø.  Now {Ux ; x  ∈  X } is a µ-open cover for 

X. By (a), there exists a finite subset {x1, x2,  .....xn} of X such 

that X  = ∪{intµclµ; 1 ⊆  i ⊆  n}. Since F is a filter base, there 

exists F ∈ F such that F ⊂ ∩Fxi . 

Now, ∩Fxi   = (∩Fxi ) ∩ (∪intµclµ(Uxi )) = ∪((∩Fxi ) ∩ intµclµ(Uxi 

)) = ø. Hence F = ø, a contradiction. 

(b)⇒(c). Let F be a filter base on X. Then there exists a maximal 

filter base F’ such that    F ⊂ F’.  By (b), F  δµ − converges to 

some point  x ∈  X .For every F  ∈  F and every U∈µ containing 

x, there exists F’ ∈  F’ such that F’ ⊂ intµclµ(U).  Now F’ ⊂ 

intµclµ(U) implies that F’∩ F⊂ intµclµ(U) ∩ F. Since F’ is a 

filterbase, F ∩ F’ ø and so F ∩ intµclµ(U )  ø. Hence F , δµ − 

adheres at x. 

(c)⇒(d). Let {Vα ; α ∈ Λ} be a family of ASµ- subsets of X such 

that ∩{Vα ; α ∈ Λ}= ø. Let I be a family of all finite subsets of 

Λ. Assume that AI  = ∩{intµ(Vα) ; α ∈ I }  ø for every I ∈ I.  

Then the family F ={AI ; I ∈ I } is a filter base on X. By, 

hypothesis, F  ,δµ−adheres at some point x ∈ X . Since {X − Vα ; 

α ∈ Λ} is a µ-open cover of X, x ∈ X − Vβ for some β ∈ Λ. 

Since intµclµ(X − Vβ ) ∩ intµ(Vβ ) = ø, we have a contradiction to 

the fact that F , δµ − adheres at x ∈ X . Thus ∩{intµ(Vα); α ∈ I } 

= ø for some I ∈ I. 

(d)⇒(a). Let {Vα; α ∈ λ} be a cover of X by µ-open sets of X. 

Then {X − Vα; α ∈ Λ} is a family of µ-closed  subsets of X such 

that  ∩{X − Vα; α  ∈  Λ}  = ø.  By (d), there exists a finite  

subfamily Λ0   of Λ such that  ∩{intµ(X  − Vα0 )}  = ø.    

Hence X − ∩{intµ(X − Vα); α  ∈  Λ0}  = X  which implies that  

∪{intµclµ(Vα); α  ∈  Λ} = X. Hence X is a ASµ-space. 

Theorem 3.12  

A space (X, τ) is a ASµ-space if and only if every grill on X 

δµ − converges in X. 

Proof  

Let G be a grill on a ASµ-space X. Then by the lemma 1.1, 

secG is a filter on X. Let B ∈ secG. Then B ∩ G ø for every 

G ∈ G, X − B  G. Hence B ∈ G, since G is a grill. Thus secG 

⊂ G. By lemma 1.1 , there is an ultra filter U on X such that 

secG ⊂ U . Since X is ASµ-space, by theorem 2.11, U δµ − 

converges to some point x ∈ X. Then for each µ-open set U 

containing x, there exists some G ∈ U such that G ⊂ 

intµclµ.Since intµclµ (U) ∈ U , intµclµ(U ) ∈ G for every U ∈ µ 

containing X. Hence G is δµ − adheres to x. Conversely, let U be 

an ultrafilter on X. Since every ultrafilter is a grill, U δµ − 

converges to some point of X. 

Corollary 3.13  

A space (X, τ) is nearly compact if and only if every grill G 

on X ,δ − converges in X. 

Theorem 3.14  
A subset A of a space (X, τ) is ASµ-subset relative to X if 

and only if every grill on X with a ∈ G, δµ − converges to a 

point in A. 

Proof  

Let A be ASµ-subset relative to X and G be a grill on X 
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such that A ∈ G and G does not δµ − converge to any point of A. 

Then, for each x ∈ A, there exists Ux ∈ µ containing x such that  

intµclµ(Ux)  G. Now {Ux; x ∈ A} is a cover of A by µ-open 

sets of X. Since A is ASµ subset relative to X, there exists a 

finite subset B of A such that A ⊂ ∪{intµclµ(Ux); x ∈ B}.  Since 

G is a grill, ∪{intµclµ(Ux); x ∈ B}  G. Hence A  G, a 

contradiction. Hence G δµ − converges to some point in A. 

Conversely let U ={Uα; α ∈ Λ} be a cover of A by µ-open sets 

of X. If A is not ASµ- subset relative to X, then for every finite 

subset λ0 of Λ,  A − ∪{intµclµ(Uα); α ∈ Λ0}  ø. Let F = {A − 

∪intµclµ(Uα); α ∈ Λ0, Λ0 ⊂ Λ is finite}.  Then F is a filterbase on 

X. The family F can be extended to an ultrafilter M on X. Then 

M is a grill on X. Since for every F ∈ F , F ⊂ A, we have A ∈ 

M.  But U is a cover of X, then for all x ∈ A, there exists β ∈  Λ 

such that x ∈  Uβ .  For any G ∈ M,  G ∩ (A − intµclµ(Uβ ))   ø. 

Hence G /⊂ intµclµ(Uβ ) for all G ∈ M and so M does not δµ − 

converge to any point A, a contradiction. Thus if every grill on 

X with a ∈ G, δµ − converges to a point in A, then the subset A 

of a space (X, τ ) is ASµ-subset relative to X. Hence the proof. 

Theorem 3.15  

Let (X, τ) be space such that every grill G on X with  the 

property ∩{cδµ (Gi); 1 ⊆ i⊆  n}  ø  for every finite subfamily 

{G1, G2, .......Gn}  of  G, δµ − adheres in X, Then X is a ASµ-

space. 

Proof   

Let U be any ultrafilter  on X. Then U is a grill on X. Also, 

for each finite subcollection {U1, U2, ....Un} of U , ∩{Ui; 1 ⊆ i 

⊆ n}  ø. Since ∩{Ui; 1 ⊆ i ⊆ n} ⊂ {cδµ (Ui); 1 ⊆ i ⊆ n} , 

∩{cδµ (Ui); 1 ⊆ i ⊆ n}   X. Therefore X is ASµ-space. ø. 

Hence by hypothesis, U δµ −adheres. 

Definition 3.16  

A grill G on the topological space (X, τ) is said to be δµ − 

linked if for any two members  A, B ∈ G,   cδµ (A) ∩ cδµ (B)  

ø. 

Definition 3.17  

A grill G on the topological space (X, τ) is said to be δµ − 

conjoint if every finite subfamily {A1, A2, .....An} of G, 

intµ(∩{cδµ (Ai); 1 ⊆ i ⊆ n})  ø. 

Remark 3.18  

(1)Every δµ − conjoint grill is δµ − linked. 

(2)If µ = π, we have p(δ) − linked grill and p(δ) − conjoint grill. 

Theorem 3.19  

Let (X, τ) be a ASµ-space. Then every δµ −conjoint grill δµ 

−adheres in X. 

Proof   

Let G be  a δµ  − conjoint  grill  on a ASµ-space  X. Since cδµ (A)  

is ASµ- space for every     A  ⊂  X, {cδµ (A); A  ∈  G } is a 

collection of ASµ-sets in X. But  G is δµ − conjoint, for  any 

finite  sub family{A1, A2, ....An} of G, intµ(∩{cδµ (Ai); 1 ⊆ i ⊆ 

n})  ø and so ∩{intµ(cδµ (Ai)); 1 ⊆ i ⊆ n})  ø. Hence ∩{cδµ 

(A); A ∈ G }  ø and so there exists x ∈ X  such that x ∈ cδµ 

(A) for every A ∈ G which implies that A ∈ G (δµ, x) for all A ∈ 

G which implies that G ⊂ G (δµ, x).  Therefore, G δµ − adheres 

at x in X. Hence the proof. 

Theorem 3.20  

Let (X, τ) be a ASµ-space where µ ∈ {σ, b, β}.Then every grill 

G on X, with the property that ∩{cδµ (Gi); 1 ⊆ i ⊆ n}  ø for 

every finite subfamily {G1, G2, ...., Gn} of G, δµ − adheres in X. 

 

Proof  

Let X be a ASµ-space.  G = {Gα; α ∈ Λ} be a grill on X with the 

property ∩{cδµ (Gα); α ∈  Λ0} /= ø for every finite subset Λ0  of 

Λ.  Consider the family F = {∩{ cδµ (Gα); α ∈ Λ0, Λ0 ⊂ Λ}}.  

Then F is a filtrbase on X. Since X is ASµ-space, F, δµ − adheres 

at some point x ∈ X implies that x ∈ cδµ (cδµ (G)) for every G ∈ 

G. Then x ∈ cδµ (G) for every G ∈ G. Hence G ⊂ G (δµ, x) and 

hence the proof. 

Corollary 3.21  

Let (X, τ) be a space where µ ∈ {σ, b, β}. Then the following 

are equivalent. 

(a) Every grill G on X, with the property that ∩{cδµ (Gi); 1 ⊆ i ⊆ 

n}  ø for every finite subfamily {G1, G2, ...., Gn} of G, δµ − 

adheres in X. 

(b) X is ASµ-space. 

Proof  

Using the theorems 2.20 and 2.15, we can prove this theorem. 

Definitions 3.22 

1. A space X is µN C compact where µ ∈ {τ, α, σ, π, b, β} if 

every cover U of X by µ-open sets of X has finite sub-collection  

such that the interiors of closures of whose members cover the 

space X.  

2. A grill G on X is said to be µD − converge to a point x ∈ X  if 

intµclµ(µ(x)) ⊂ G 

where µ(x) denote the family of all µ-open sets containing the 

point x. 

3.  A space X is δµ − regular  if for every grill on X which δµ  − 

converges must µD − converge. 

Theorem 3.23 

A space (X, τ) is µ-nearly compact if and only if every grill µD 

− converges. 

Proof   

Let G be  a grill  on a µ nearly compact space  X  such that  G 

does  not µD − converge to any point x ∈ X .  Then for each x ∈ 

X , there exists a µ-open set Ux  containing x with Ux   G.  

Since {Ux; x ∈  X } is a cover of the µ nearly compact X by µ-

open sets, there exist finitely many points {x1, x2, ..., xn} in X 

such that X  = ∪{Uxi ; 1 ⊆ i ⊆ n}.  Since X ∈ G, there exists Uxi 

∈ G for 1 ⊆ i ⊆ n a contradiction. 

Conversely, let every grill on X µD − converge.  Suppose X is 

not µ nearly compact. Then there exists a cover U of X by µ-

open sets of X having no subcover. Then F = {X − ∪ U 0; U 0 is 

a finite subcollection of U} is a filter base on X. Then F is 

contained in an ultrafilter  G and so G is a grill on X. By 

hypothesis, G ,µD − converges to to some point x ∈ X . Then for 

some U ∈ U , x ∈ U and hence U ∈ G. But  X − U ∈ F ⊂ G. 

Hence U and X − U both belongs to G, which is an ultrafilter, a 

contradiction. Therefore if every grill µD − converges then the 

space is µ-nearly compact. 

Theorem 3.24  

A µ-nearly compact space X is ASµ-space. The converse holds if 

X is δµ − regular. 

Proof  

Suppose G  is a grill on a ASµ-space X. Then G δµ − 

converges in X, by theorem 2.12. Since X is δµ − regular, G µD 

− converges. By theorem 2.24, X is µ-nearly compact. 

Theorem 3.25  
Every µ − regular space is δµ − regular. 

Proof  

Let G be a grill on a µ − regular space X. Suppose δµ − 

converges to a point x ∈ X .  For each U ∈ µ containing x, there 

exists a V ∈ µ containing x such that intµclµ(V ) ⊂ U. By 
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hypothesis, intµclµ U ∈ G and so U ∈G. Hence G ,µD − 

converges to x. Thus X is δµ − regular. 

Remark 3.26  

For a topological space X the following are equivalent.  

(1) X is µ-nearly compact. 

(2) X is ASµ-space. 

(3) Every family of δµ-closure of sets having finite  intersection 

property in grill 

δµ − adheres in X. 

(4) Every filter (filter-base) of µ-open sets has δ − adherent 

point. 

(5) Every ultrafilter(ultrafilter-base) of µ-open sets is δ − 

convergent. 

(6) Every grill of µ-open sets in the topological space X is δ − 

adherent in X. 
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