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Introduction 

 The spectral ratio method is widely used to determine an 

attenuation or Q factor from VSP data (Tonn, 1991). For two 

receivers at depths d1 and d2:Two fundamental properties 

associated with seismic wave propagation through subsurface 

materials are the energy dissipation of plane waves with high 

frequencies, and the velocity dispersion causing high-frequency 

plane waves to travel faster than low-frequency waves. 

Mathematically, these dissipation and dispersion effects of the 

viscoacoustic media may be represented by a specified quality 

factor, Q: 
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where w is the angular frequency, c(w) is the phase velocity and 

α(w) is the attenuation coefficient in units of inverse length. 

Equation (1.1) is a key formula for the earth Q model (Kolsky, 

1953; Mason, 1958; Futterman, 1962) and is valid under a low-

loss assumption, Q >>1. Such a small dissipation assumption is 

valid under most conditions of interest in geophysics. In 

geophysics literature, different earth Q models are expressed in 

terms of different definitions of the attenuation coefficient a(w) 

and different definitions of the phase velocity c(w). Before we 

start discussing the design and application of an inverse Q filter, 

we need first to specify a mathematical Q model. 

Kolsky's attenuation-dispersion model 

 The Kolsky model (Kolsky, 1953) assumes the attenuation 

α(w) to be strictly linear with frequency over the range of 

measurement: 
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And defines the phase velocity as (Kolsky 1956): 
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 Where cr and Qr   are the phase velocity and the Q value at a 

reference frequency wr. Kolsky’s model was derived from and 

fitted well with experimental observations. However, the basic 

Kolsky model does not satisfy the minimum delay condition in 

dispersive earth media. It is therefore necessary to modify it by 

the Kramers-Krônig dispersion relation to fully correct the 

velocity dispersion:  
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where H denotes the Hilbert transform and c∞ is the limit of c(w) 

as w approach infinity.This procedure is very well documented 

in Wang’s book. Briefly I can state that we take the attenuation 

coefficient (1.2) and compare it with phase velocity (1.3) using 

Kramers-Krônig dispersion relation. In general we can state that 

if we define an attenuation coefficient α , we can use the 

Kramers 

-Krônig dispersion relation and get a phase velocity that will 

give a damping-model that has a causal solution of the wave 

equation by introducing the Hilbert transformation in (1.4). 

Modification to the Kolsky model 

 The phase velocity formula given in the basic Kolsky model 

is now modified by setting an appropriate reference frequency, 

to minimize the phase errors in inverse Q filtering for seismic 

data processing (Wang and Quo, 2004b). Recall that in the 

Kolsky model, given the attenuation coefficient (1.2), the phase 

velocity is defined by equation (1.3). This expression, however, 

is merely an asymptotic formula for w>>wr (Futterman, 1962). 

For exploration seismic data, which have relative low 

frequencies (say, < 500 Hz), we propose to modify the preceding 

expressions (1.3) and (1.4) as follows: 
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where wh is a new, undetermined, tuning parameter. This tuning 

parameter still has units of frequency, but is no longer the 

smallest frequency of the seismic band. We now show that for 

seismic exploration, the tuning constant wh is the highest 

possible seismic frequency. The exact mechanism of seismic 

dispersion through the earth is unknown. If possible a generic 

model should be considered when designing an inverse Q filter. 

One such generic condition is the minimum delay described by 

the Kramers-Kronig dispersion relation. Given the attenuation 

coefficient (1.12), we now compare the phase velocity (1.15) in 

the modified Kolsky model with the phase velocity estimated 

using the Kramers-Kronig dispersion relation (1.14).  

Mathematical definition of Q-models 

 When a plane wave propagates through a homogeneous 

viscoelastic medium, the effects of amplitude attenuation and 

velocity dispersion may be combined conveniently into a single 

dimensionless parameter, Q, the medium-quality factor. The Q 

parameter can be expressed as follows: 
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As   the   Q   value   must   be   positive,   the   above   equation   

leads   to Assuming  
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the Q expression (3.1) is approximated to 
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 The above approximate expression has been presented 

earlier (equation 1.1) as the definition of Q. Considering this 

definition, the assumption (3.2) is equivalent to Q
-1

(w). With this 

small-dissipation assumption, Q
-1

(w) is often known as the 

dissipation factor. Such a small-dissipation assumption is valid 

under most conditions of interest in geophysics; for instance, 

Kolsky (1953, p. 106), Mason (1958, p.214) and Futterman 

(1962, eq.20). To intuitively understand the condition Q
-

1
(w)<<1 let us see two simple examples. For Q≈5, the accurate 

solution is Q = 0.5x (10-0.1) = 0.495. That is, for Q
-1

(w)≤ 0.2, 

the maximum error for the Q value is 1%. For Q ≈10, the 

accurate solution is Q = 9.975. That is, the maximum error is 

only 0.25% for Q
-1

(w)≤ 0.1. 

 We now show the derivation of equation (3.1) and 

approximation (3.3). We start from the stress-strain relation: 

∑(w) = M(w) E(w) where ∑(w) and ∑(w) are the stress and the 

strain components at frequency w, and are related by an 

appropriate elastic modulus M(w). Given a sinusoidally varying 

stress, the strain response will also be sinusoidal. The phase lag 

of strain behind the stress may define the dissipation factor 

(White, 1965) 
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 where MRe (w)  and MIm (w)  are the real and imaginary part 

of the complex modulus M(co).  The derivation of MRt(oo)  and 

M\m(a>)  is given as follows. A plane wave propagation may be 

expressed as 

U(x,w) = U0(w)exp[i(wt-kx)]   (3.6) 

where U0 (w) is the Fourier transform of the propagating pulse, 

and k is the wavenumber, and x and t are the travel distance and 

time, respectively. In viscoelastic media, wavenumber k 

becomes a complex function, defined as 
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where c(w) is the complex velocity: 


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and ρ is the density. Then the wave-propagation expression (3.6) 

becomes  

U(x,w) = U0(w)exp[-α(w)x]exp[iw(t-x/c(w))]     (3.9) 

This shows that α(w) is related to the amplitude attenuation, and 

w/c(w) is related to the phase change along the propagation 

distance x. Both α(w) and c(w) are real, positive and even 

functions of frequency w. From equations (3.7) and (3.8), we 

have the equation 
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 Substitution of equations (3.11) and (3.12) into equation 

(3.5) will result in the Q definition of equation (3.1) 

straightforwardly. Recall that in equation (3.1), the assumption 

of positive Q values leads to the relation [α(w)c(w)/w]
2
 <1. 

Therefore, MRe(w) in equation (3.11) is a positive and even 

function of w. The imaginary part MIm(w) in equation (3.12) is 

an odd function of co and is positive for w> 0. Note also that a 

natural limitation on α(w) is implied by the Wiener criterion: 

0
w
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From equations (3.11) and (3.12), we obtain the attenuation 

coefficient (Aki and Richards, 1980) 
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the phase velocity 
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where ξ is the dissipation factor defined by equation (3.5). For 

ξ=Q
-1

 <<1equations (3.14) and (3.15) can be approximated to 
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Combining these two approximations will also lead to the 

approximate formula (3.3). 

or the transmission response of the medium to be causal, the 

attenuation and the phase velocity must satisfy the Kramers-

Kronig relations. Dispersion relations of the Kramers-Kronig 

type (Kronig, 1926; Kramers, 1927), well known in electric 

circuit theory, determine, for example, the real part of the 
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propagation constant from the values of the imaginary part 

summed over the entire range of frequencies for wave motions 

that are linear. The Kramers-Kronig dispersion relations for the 

attenuation and phase velocity are given by 
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where H {.} denotes the Hilbert transform, c∞  is the limit of c(w) 

as w -> ∞, 

c∞= lim c(w)w->∞  = limw->∞  

)w(MRe

 is the limit of a(co) as 

a)—>0, and α(0) = lim c(w)w->∞ =0   

If the relations (3.18) and (3.19) are fulfilled, then the 

transmission response is minimum delay with respect to the first 

arrival time (e.g. Aki and Richards, 1980). 

For the application of inverse Q filtering to real seismic traces, 

we henceforth consider the complex 

Kolsky’s Q model and the complex wave number 

 The Kolsky model is used extensively in seismic inverse Q 

filtering because the  parameters involved are relatively easy to 

estimate from a seismic data t itself or some other seismic 

measurements. For the Kolsky model, given i attenuation 

coefficient (2.2) and the phase velocity (2.3), we may use ation 

(3.1) to derive the quality factor Q as 
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Where γ =(πQr)
-1  

    (3.24) 

 In the previous chapter, we discussed that it is necessary to 

modify the .sic Kolsky model so as to accurately represent the 

velocity dispersion effect. Given the modified phase velocity 

(2.7), the modified Kolsky Q model is expressed as 
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Using this expression, we may rewrite the attenuation coefficient 

as 
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Substituting this expression and the modified phase velocity 

(2.7) into equation (3.7), we may obtain the complex 

wavenumber as 
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This definition of complex wavenumber &(<y)  is the basis for 

designing a inverse Q filter throughout the rest of this book. 

 Comparison with different Q models 

 Although the Kolsky viscoelastic model is widely used in 

seismic data processing, for its simplicity, the basic Kolsky 

model does not rigorously satisfy the Kramers-Kronig dispersion 

relation. Several other expressions that satisfy the dispersion 

relationship can also be found in the literature. In this section, 

some of these models are stated briefly with explicit expressions 

for both the attenuation and the phase velocity functions. Each 

of these models is compared with the modified Kolsky model to 

find out how each model can be used interchangeably in an 

inverse Q filter. 

This section compares a total of eight earth Q models (including 

the modified Kolsky model) to reveal similarities and 

differences between them. They are: 

1) the modified Kolsky model (linear attenuation); 

2) the Strick-Azimi model (power-law attenuation); 

3) the Kjartansson model (constant Q); 

4) Azimi's second and third models (non-linear attenuation); 

5) Müller's model (power-law 0; 

6) the Zener model (the standard linear solid); 

7) the Cole-Cole model (a general linear-solid); and 

8) a new general linear model. 

 These eight models may be classified into two groups. The 

first group consists of models 1-5, and the other group includes 

models 6-8. The main difference between these two groups is 

the behaviour of the phase velocity when the frequency 

approaches zero, where the first group has a zero-valued phase 

velocity, and the second group has a finite, nonzero phase 

velocity. One exception is the Cole-Cole model, which can give 

either zero or nonzero phase velocity at zero frequency, 

depending upon an exponent that is chosen.The linear solid 

model, including the standard and general versions, may be 

preferred in finite-difference modelling algorithms because it 

gives additional differential equations that can be approximated 

by finite differences. One of the features of linear solid models is 

that they have finite phase velocity and attenuation coefficient at 

infinite frequencies. Conversely, the Kolsky model and 

Kjartansson's constant-Q model, for instance, assume c∞ = ∞ and 

α∞ = ∞ Throughout the comparison the parameters used for the 

calculation of the modified Kolsky model (are Qr=50, 

cr=2500ms and wh= 1000π i.e. the highest possible seismic 

frequency is about 500 Hz. 

 We will not discuss models 1-5. They are investigated by 

Wang and since our first attempt to introduce damping models 

where the Kelvin model, we will go further with the models 

introduced by Horton that is the standard linear solid model 

according to Wang. The basic idea with these models is that 

stress and strain are linked in the wave equation. 

 
Zener or standard linear solid model 

 The Zener (1948) or standard linear solid model is the most 

general linear equation that links the stress and strain as we have 

seen in (1.?). (Ben-Menahem and Singh, 1981).  It defines the 

attenuation coefficient as: 
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and the phase velocity as 
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 where c0 is the phase velocity c(w) for w -» 0, and τc and Qc 

are two constant parameters describing the attenuation property 

in the standard linear solid model: the attenuation at the peak of 

the attenuation function with respect to the frequency is Q
-1

c , 

and the (angular) frequency at this location is τc
-1

 

Mathematical outline is as following: 
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where 3  is the strain relaxation time, 3  is the stress relaxation 

time and MR is a deformation modulus with sub-index R denoting 

the relaxed modulus. 

The mechanical 'relaxation' means that the strain produced 

by the sudden application of a fixed stress to a material increases 

asymptotically with time. Similarly, the stress produced when 

the material is suddenly strained relaxes asymptotically (Kolsky, 

1953). It is found that stress waves whose periods are close to 

the 'relaxation times' of such a medium are severely attenuated 

when passing through it. 

Physically, the 'relaxed' elastic modulus MR is the final 

value of the ratio of stress to strain after relaxation has taken 

place, whereas a so-called 'unrelaxed' elastic modulus, Mv, is the 

initial value of the ratio of stress to strain, before relaxation has 

time to occur. Mathematically, the relaxed modulus MR is 

obtained from M(ca) for <a->0 (see equation 3.50). 

he unrelaxed modulus can be given by 

MU = lim M(w) = MR 
3 / 3   (3.51) 

Thus, MR and MU are also called the low- and the high-frequency 

moduli, respectively.A special case of the standard linear solid 

model is the Kelvin-Voigt viscoelastic model obtained when 4  

= 0, so that 

M(w) = MR (1 + iw 3 )   (3.52) 

The real part of the complex modulus M(w) in equation (3.50) 

may be written as 

4
22

43

2

RRe
iw1

iw1
M)w(M






  (3.53) and the attenuation Q
-1

 

is given by 4
22

431

iw1

)(w
)w()w(Q






 (3.54) 

which measures the lag of the strain behind the stress. We 

assume here τ3 > τ4. Substituting them into equations (3.16) and 

(3.17), we may obtain the attenuation 
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and the phase velocity 
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where c0 is the phase velocity for w -> 0, 

c0= 

)w(MRe

  = limw->∞  

)w(MRe

  (3.57)  

Attempting to use a single relaxation time, we may define two 

parameters as follows: 
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For the standard linear solid model, considering equation (3.51), 

this can be written as Q~
l
 = jAM, where AM is the modulus 

defect 

RU
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that is, the normalized difference between the unrelaxed and 

relaxed moduli. For the standard linear solid model, the 

attenuation at the peak of the attenuation function with respect to 

frequency is ~ AM and the (angular) frequency at this location is 

l/τc. 

The parameters τ3 and τ4  in (3.55) and (3.56) may be expressed 

as (Casula and Carcione, 1992): 
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obtained from the Qc and rc definition in (3.58). Therefore, we 

may rewrite expressions (3.55) and (3.56) as (2.32) for the 

attenuation and as (2.33) for the phase velocity. With these two 

expressions, Zener's Q model may be expressed as 
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To compare this standard linear solid model with the Kolsky 

model, as shown in Figure 2.10, we may first set  

h

c
w

1


     (3.6) 

since the highest frequency of the seismic band has the strongest 

attenuation.We then use the following two approximations: 
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Right side of equation 3.6 can be written: 







rr Q2

1
1

c

1

     (3.7) 

and 

 































2

h

Q

1
1

h

r

c

w

w
1

w

w
Q21

Q

r

   (3.8) 

The Cole-Cole model 

To generalize the standard linear solid model, the Cole and 

Cole (1941) model proposed for dielectrics can be used. In the 

Cole-Cole model, the attenuation coefficient may be expressed 

as 
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and the phase velocity may be expressed as   
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 To generalize the standard linear solid model, we may use 

the model  proposed for dielectrics by Cole and Cole (1941). 

Jones (1986) extended the Cole-Cole model to viscoelastic 

media for fitting laboratory data involving frequency-dependent 

absorption and dispersion, and found that it was more satisfying 

than the previously used dispersion-absorption relationships 

because of its generality and because its relaxation time was 

related to the petrophysical property of pore geometry 

(viscosity). In the Cole-Cole model, the complex modulus may 

be written as 
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When y = 1, this is the standard linear solid model. The 

unrelaxed modulus is given by 

MU = lim M(w) = MR  ( 3 / 4 )
γ    

(3.63) 

Therefore equation (3.62) may also be expressed as 
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which is the original formula presented in Cole and Cole (1941, 

eq.5). The real part of the complex modulus is 
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and the inverse Q function is given by 
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From these two expressions we use expression (3.16) to compute 

the attenuation coefficient,  
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and expression (3.17) for the phase velocity, 

)]
2

cos(|w|2|w|1[2

)]
2

cos(|w)[||w||w(|

1
c

1

)w(c

1

4

2

4

443

0 



















Based on 

the definition of τ3  and τ4  in equation (3.58), we have the 

following two approximate expressions (Ursin and Toverud, 

2002): 
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The attenuation coefficient (3.67) and the phase velocity (3.68) 

can be i approximated to expressions (2.37) and (2.38), 

respectively. Finally, the earth Q model may be expressed as 
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To compare the Cole-Cole model with the Kolsky model, we set 

τc = wh 
-1

, as we did in the Zener model. Meanwhile, we set 
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Figure 2.11 shows the attenuation and the phase velocity in 

the Cole-Cole model with (a) y = 1.0 and (b) y = 0.4. Compared 

with those in the Kolsky model, the Cole-Cole model with y = 

0.4 has a better fit than using y = 1.0, which is the standard 

linear solid or Zener model. 

A general linear model 

Finally, an alternative to the Cole-Cole model is introduced 

to generalize the linear solid model (Wang and Guo, 2004b). 

Mathematical outline follows here: 

 An alternative to the Cole-Cole model to generalize the Zener 

or standard linear solid model can be established using products 

and/or sums of different attenuation-dispersion models to obtain 

a more complicated behaviour as a function of frequency (Ben-

Menahem and Singh, 1981). For instance, Liu et al. (1976) used 

a sum of standard linear solids to obtain a model with constant Q 

over three orders of magnitude of frequency.  I now present an 

example of a general linear model, in which the complex 

velocity c(a>) is defined as (Wang and Guo, 2004b): 
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 where r   denotes a relaxation time constant. Considering  

c(co) =)l p, equation (3.71) is a standard linear solid model in 
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parallel with a non-rational function involving a square root, 

which also shows some similarity to the Cole-Cole model. 

This model is similar to Hanyga and Seredynska's (1999a, 

1999b) model, which they claimed was appropriate for wave-

propagation modelling in poro- and viscoelastic media. 

However, their model was without the factor l/vx. Here I 

introduce this 1/v^ factor so that both sides of the equation have 

physical units of inverse velocity. When ca — > 0 and a> — > 

oo, the phase velocities can be expressed as 












)ba1(
c

1

c

1
Re

0
   (3.72) 

And 










c

1

c

1
Re

0       (3.73) 

respectively. The general linear model (3.71) defines the 

attenuation coefficient as 
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and the phase velocity is defined as 
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 In the previous, we have shown that this general linear 

model is able to match the modified Kolsky model reasonably 

well (Figure 2.12). Conversely, Ursin and Toverud (2002) 

mentioned Hanyga and Seredynska's (1999a, 1999b) model as 

an example of a general linear solid model but did not compare 

it with other models, either analytically or numerically. For this 

new general linear model, whuch was first presented in Wang 

and Guo (2004b), the earth Q modl may be expressed as 
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 In this general linear model, the attenuation coefficient is 

defined as 
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and the phase velocity is defined as 
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where r is a constant denoting the relaxation time, and a and b 

are  two constant coefficients defining the general linear solid 

model.   

To match this general linear model to the Kolsky model, we set 

∞ = cr              a= - (8/7Qr ) and        b =13/7 Qr   (3.15) 

The basic Kolsky model is suitable for high-frequency waves. It 

is modified here by introducing a tuning parameter, which can 

be referred to as the highest possible frequency of the 

exploration and production seismic band, so that the model has 

an accurate representation about the velocity dispersion within 

the seismic frequency band. The investigation reveals that the 

modified Kolsky model can be fitted fairly well by any other 

model with a set of parameters derived analytically. Such 

matching exercises provide us with good confidence that when 

the Kolsky model is chosen for designing the inverse Q filter, 

the result should in principle be comparable with those using 

other different Q models.  

Results and Discussion 

 The QQI_P curve shows a negative slope from 200m to 

400m, which means that the amplitudes of high frequency 

components are increasing with depth. The possible reasons for 

this unphysical phenomen might be poor coupling between the 

casing and cement or between the cement and formation. The 

double-casing interval is a formidable complication. Therefore 

in this case, the FIRST trustable Qave is about 40 at about 445m 

depth. The Qave ~ 18 at about 200m may not be reliable. As the 

VSP is acquired from the bottom of the well up, the surface 

condition at the source location may be changing as the vibrator 

continues to shake and enhance its frequency contents. This, of 

course, violates the assumption of a constant source. It would be 

useful to have a monitor geophone. Confidently estimating Qs 

proved elusive in this data set. Looking at Figure 6, we can pick 

some good points between 200m to 750m and get a partial set of 

Qs. values. Below 750m, it’s hard to follow a positive slope.  

Conclusion 

 We use the spectral ratio method to calculate Q values. A 

reliable continuous interval Qp curve from about 450m to 

1050m in well 11-25 of Husky’s Ross Lake oilfield has been 

derived from a zero-offset VSP by this approach. Meanwhile, a 

quality indicator for Q factor estimation (QQI) has been 

established. This QQI curve reveals where the normal spectra 

ratio method gives us unstable Q values. The VSP-derived Qp 

curve demonstrates an inverse linear relationship with the VSP-

derived Vp/Vs curve. Finally, the bulk value of Qp, Vp/Vs and 

Vp are estimated for three main geological formations in this 

oilfield. 
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