26581

Available online at www.elixirpublishers.com (Elixir International Journal)

Organic Chemistry

Elixir Org. Chem. 73A (2014) 26581-26588

Vibrational analysis of 2-chloro-1-fluoro-4-nitrobenzene a joint FT-IR, FT-Raman and Scaled Quantum Chemical Study

P.Vennila^{1,*}, M.Govindaraju² and G.Venkatesh³ ¹Research and Development Centre, Bharathiar University, Coimbatore - 641 046, India.

²Department of Chemistry, Kongu Polytechnic College, Erode- 638052, India.

³Department of Chemistry, VSA Group of Institutions, Salem, Tamilnadu, India.

ARTICLE INFO

Article history: Received: 16 June 2014; Received in revised form: 18 August 2014; Accepted: 27 August 2014;

Keywords

Density Functional Theory, FT-Raman, FT-IR, HOMO, LUMO, NBO, First-order Hyperpolarizability, Electronic Excitation Energy.

ABSTRACT

Vibrational spectral analysis was carried out for 2-chloro-1-fluoro-4-nitrobenzene (CFNB) by using the FT-IR and FT-Raman spectroscopy in the range of 4000 cm⁻¹ to 400 cm⁻¹ and 4000 cm⁻¹ to 100 cm⁻¹ respectively. The theoretical computational density functional theory (DFT/B3LYP) was performed at 6-311+G** levels to derive equilibrium geometry, vibrational wavenumbers, infrared intensities and Raman scattering activities. The complete vibrational assignment was performed on the basis of the total energy distribution (TED), calculated with scaled quantum mechanics (SQM) method. Natural bond orbital (NBO) analysis was applied to study stability of the molecule arising from charge delocalization. Quantum chemical parameters such as the highest occupied molecular orbital energy (HOMO), the lowest unoccupied molecular orbital energy (LUMO), energy gap (Δ E), were calculated.

© 2014 Elixir All rights reserved.

Introduction

2-chloro-1-fluoro-4-nitrobenzene [CFNB] is also used in shoe and floor polishes, leather dressings, paint solvents, and other materials to mask unpleasant odors. Redistilled, as oil of mirbane, CFNB has been used as an inexpensive perfume for soaps [1,2]. A significant merchant market for CFNB used in the production of the analgesic paracetamol (also known as acetaminophen), used in Kerr cells, as it has an unusually large Kerr constant and used as an intermediate for organic compounds; pharmaceuticsals, pesticides and dyes.

FT-IR and FT-Raman spectra of CFNB have been recorded in the regions 4000-400 cm⁻¹ and 4000-100 cm⁻¹. Hence, the present work has been undertaken to give a complete description of the molecular geometry and molecular vibrations of the title compound. The complete vibrational analysis of CFNB was performed by combining the experimental and theoretical information using DFT based scaled quantum chemical approach.

Experimental Details

The compound CFNB was obtained from Lancaster Chemical Company, UK and used as such for the spectral measurements. The room temperature Fourier Transform infrared spectrum of the title compound was measured with KBr pellet technique in the 4000-400 cm⁻¹ region at a resolution of 1 cm⁻¹ using BRUKER IFS 66V spectrophotometer equipped with He-Ne laser source. The FT-Raman spectrum of CFNB was recorded on a BRUKER IFS-66V model interferometer equipped with an FRA-106 FT-Raman accessory in the 4000-100 cm⁻¹ stoke region using the 1064 nm line of a Nd:YAG Laser for excitation operating at 200mW power. The reported wave numbers are believed to be accurate within ± 1 cm⁻¹.

Computational Details

The entire quantum chemical calculations have performed at B3LYP/ 6-31G** and B3LYP/6-311+G** basis sets using the GAUSSIAN 09W program package [3].The optimized structural

parameters have been evaluated for the calculation of vibrational frequencies at Becke's three parameter hybrid model using the Lee-Yang-Parr [4,5] correlation functional (B3LYP) method by assuming C_s point group symmetry. As a result, the unscaled calculated frequencies reduced mass, force constant, infrared intensity and Raman activity, are obtained. In order to fit the theoretical frequencies to the experimental frequencies, an overall scaling factor has been introduced by using a leastsquare optimization of the computed to the experimental data. The assignments of the calculated normal modes have been made on the basis of the corresponding TEDs. The TEDs are computed from quantum chemically calculated vibrational frequencies using MOLVIB program version 7.0 written by Sundius [6]. Gauss view program [7] has been considered to get visual animation and also for the verification of the normal modes assignment.

The prediction of Raman intensities

The prediction of Raman intensities was carried out by following the procedure outlined below. The Raman activities (Si) calculated by the GAUSSIAN 09W program are adjusted during scaling procedure with MOLVIB were converted to relative Raman intensities (*Ii*) using the following relationship derived from the basic theory of Raman scattering [8-9].

$$I_{i} = \frac{f(v_{o} - v_{i})^{4} S_{i}}{v_{i} [1 - \exp(-hcv_{i} / KT)]}$$
(1)

Where υ_0 is the exciting frequency (in cm⁻¹), υ_i is the vibrational wavenumber of the normal mode; h, c and k are universal constants, and f is a suitably chosen common normalization factor for all peak intensities.

Results and discussion

Geometrical parameters

In order to find the most optimized geometry, the energy calculations were carried out for CFNB, using B3LYP/6- $311+G^{**}$ basis set for various possible conformers. The

optimized molecular structure of CFNB is shown in Fig 1. The total energies obtained for $B3LYP/6-311+G^{**}$ are listed in Table 1. The most optimized structural parameters were also calculated and they were depicted in Table 2.

Fig 1. The optimized molecular structure of CFNB Table1. Total energies of CFNB, calculated at DFT B3LYP/6-31G* and B3LYP/6-311+G** level

Method	Energies (Hartrees)
6-31G*	-995.35648921
6-311+G**	-995.57281237

Table 2. Optimized geometrical parameters of CFNB obtained by B3LYP/6–311+G** density functional calculations

	calculations							
Bond	Value(Å)	Bond angle	Value(Å)	Dihedral angle	Value(Å)			
length								
C2-C1	1.38599	C3-C2-C1	120.00023	C4-C3-C2-C1	0.00000			
C3-C2	1.38600	C4-C3-C2	120.00023	C5-C4-C3-C2	0.00000			
C4-C3	1.38599	C5-C4-C3	120.00160	C6-C5-C4-C3	0.00000			
C5-C4	1.38607	C6-C5-C4	119.99816	Cl7-C6-C5-C4	179.42860			
C6-C5	1.38600	Cl7-C6-C5	120.00047	F8-C1-C2-C3	179.42728			
Cl7-C6	1.75997	F8-C1-C2	119.99899	N9-C4-C3-C2	179.42810			
F8-C1	1.49005	N9-C4-C3	119.99899	H10-C5-C4-C3	179.42801			
N9-C4	1.44605	H10-C5-C4	119.99854	H11-C2-C1-C6	179.42803			
H10-C5	1.12197	H11-C2-C1	119.99647	H12-C3-C2-C1	179.42805			
H11-C2	1.12197	H12-C3-C2	120.00081	O13-N9-C4-C3	-139.42577			
H12-C3	1.12197	O13-N9-C4	119.99470	O14-N9-C4-C3	41.14849			
013-N9	1.13178	O14-N9-C4	119.99996					
014-N9	1.31596							

^{*}for numbering of atom refer Fig 1

Vibrational frequencies and normal coordinate analysis

The optimized structural parameter were used to compute the vibrational frequencies of CFNB at B3LYP/6-311+G** level of calculations. The molecule belongs to C_s point group symmetry. The CFNB molecule under investigation has 14 atoms give rise to 36 normal modes of fundamental vibrations, which span the irreducible representations: 25 A'+11 A", all the 36 fundamental vibrations are active in both IR and Raman.

Normal coordinate analysis was carried out to provide a complete assignment of the fundamental vibrational frequencies for the molecule. For this purpose, the full set of 49 standard internal coordinates containing 13 redundancies for CFNB were defined as given in Table 3. From these, a non-redundant set of local symmetry coordinates were constructed by suitable linear combinations of internal coordinates following the recommendations of Puley et al.[10] and they were presented in Table 4. The theoretically calculated DFT force fields were transformed to this later set of vibrational coordinates and used

in all subsequent calculations. The observed FT-IR and FT Raman spectra of the title compound were presented in Fig 2 and Fig 3, respectively which helps to understand the observed spectral frequencies. The detailed vibrational assignments of fundamental modes of CFNB along with calculated IR, Raman intensities and normal mode descriptions (characterized by TED) were reported in Table 5.

Root mean square (RMS) values of frequencies were obtained in the study using the following expression,

$$RMS = \sqrt{\frac{1}{n-1} \sum_{i}^{n} \left(\upsilon_{i}^{calc} - \upsilon_{i}^{exp} \right)^{2}}$$

The RMS error of the observed and calculated frequencies (unscaled / B3LYP/6-311+G^{**}) of CFNB was found to be 105 cm⁻¹. This is quite obvious; since the frequencies calculated on the basis of quantum mechanical force fields usually differ appreciably from observed frequencies.

(a) Calculated (b) Observed with B3LYP/6-311+G**

This is partly due to the neglect of anharmonicity and partly due to the approximate nature of the quantum mechanical methods. In order to reduce the overall deviation between the unscaled and observed fundamental frequencies, scale factors were applied in the normal coordinate analysis and the

RE

subsequent least square fit refinement algorithm resulted into a very close agreement between the observed fundamentals and the scaled frequencies. Refinement of the scaling factors applied in this study achieved a weighted mean deviation of 7.51 cm^{-1} between the experimental and scaled frequencies of the title compound.

C-H vibrations

For simplicity, modes of vibrations of aromatic compounds are considered as separate C-H vibrations. Substituted benzenes have large number of sensitive bands, i.e., bands whose position is significantly affected by the mass and electronic properties, mesomeric or inductive of the substituents. According to the literature [11], in infrared spectra, most aromatic compounds have three or four peaks in the region $3300-3100 \text{ cm}^{-1}$, these are due to the stretching vibrations of the ring CH bands. Accordingly, in the present study, the FT-IR bands identified at 3275, 3274, 3247, 3245 and 3243 cm⁻¹ and FT Raman bands at 3277, 3276 and 3273 cm⁻¹ are assigned to C-H stretching vibrations of CFNB which are in good agreement with calculated values by B3LYP/6-311+G**. The FT-IR bands at 1546, 1545, 1441, 1440 and 1439 cm⁻¹ and the FT Raman bands at 1442, 1440 and 1439 cm⁻¹ are assigned to C-H in-plane bending vibration of CFNB. The C-H out-of-plane bending vibrations of the CFNB are well indentified at 1278 and 1276 cm^{-1} in the FT IR and 1165, 1162 and 1159 cm^{-1} in the FT-Raman spectra which are found to be well within their characteristic region.

C-C vibrations

The ring C–C stretching vibrations, usually occur in the region 1680–1450 cm⁻¹ [12]. Hence in the present investigation, the FT-IR bands indentified at 1659, 1655, 1653, 1546, 1545, 1441 and 1440 cm⁻¹ and the FT-Raman bands at 1638, 1636, 1633, 1442 and 1439 cm⁻¹ are assigned to C–C stretching vibrations of CFNB. The band ascribed at 828, 824 and 821 cm⁻¹ in FT-IR and 732, 729 and 721 cm⁻¹ in FT-Raman spectra has been designated to C-C in-plane and out-of-plane bending mode. **Ring vibrations**

Several ring modes are affected by the substitution to the aromatic ring of CFNB. In the present study, the bands ascribed at 978, 976, 935, 932, 929, 926, 920, 828, 824, 821, 756, 748, 752, 732, 729, 721 and 700 cm⁻¹ for CFNB have been designated to ring in-plane and out-of-plane bending modes, respectively, by careful consideration of their quantitative descriptions. A small change in frequency observed for these modes are due to the changes in force constant/reduced mass ratio.

C-N vibrations

The IR and Raman bands appeared at 1441, 1439 cm⁻¹ and 1442, 1440 cm⁻¹ in CFNB have been designated to C-N stretching vibrations respectively. The in-plane and out-of-plane bending vibrations are observed at 1148, 1146, 1144, 935, 932, 929, 926 and 920 cm⁻¹ in this study are also supported by the literature [13,14]. The identification of C-N vibration is a difficult task since, it falls in a complicated region of the vibrational spectrum. However, with the help of force field calculations, the C-N vibrations were identified and assigned in this study.

Nitro group vibrations

The characteristics group frequencies of nitro group are relatively independent of the rest of the molecule, which makes this group convenient to identify. Nitro compounds have strong absorptions due to the asymmetric and symmetric stretching vibrations of the NO₂ group at 1680–1485 cm⁻¹ and 1390-1320 cm⁻¹, respectively [15]. The infrared and Raman band observed

at 1685, 1682 cm⁻¹ and 1638, 1636, 1633 cm⁻¹ have been designated to asymmetric and symmetric stretching modes of NO₂ group, respectively. The scissoring modes of NO₂ group have been designated to the band at 732, 729 and 721 cm⁻¹ in Raman. The band at 372 cm⁻¹ in Raman is attributed to NO₂ rocking mode. The bands observed at 356 and 354 cm⁻¹ have been designated to NO₂ wagging and NO₂ twisting modes, respectively.

C-F vibrations

The vibrations belonging to the bond between the ring and the halogen atoms are worth to discuss here, since mixing of vibrations is possible due to the presence of heavy atoms on the molecule [16]. In CFNB, the C–F stretching vibrations appeared at 1659, 1655, 1653, 1546 and 1545 cm⁻¹ in FT-IR and 1325, 1322 and 1319 cm⁻¹ in FT-Raman spectra. The C–F in-plane bending vibrations were found at 828, 824, 821, 702, 700, 697 cm⁻¹ and 850, 848, 846,732, 729, 721 cm⁻¹ in FT IR and FT-Raman spectrum. The C–F out-of-plane bending mode is recorded at 568, 564, 561, and 459 cm⁻¹ in FT-IR. The calculated values of C–F stretching, in-plane bending and out of-plane bending modes are found to be at 337, 334, 332, 261 and 259 cm⁻¹.

C–Cl vibrations

In the present investigation C–Cl stretching vibrations observed at 568, 564 and 561 cm⁻¹. The ring halogen stretching mode were observed as strong Raman and weak to medium IR bands at 850–560 cm⁻¹ range for chlorine [17]. As expected in our studies, the bands at 558, 554 and 550 cm⁻¹ are assigned to C–Cl stretching vibration with ring deformation vibration.

NBO Analysis

The NBO analysis is an effective tool for interpretation of intra- and intermolecular interaction; it also provides a convenient basis for investigating charge transfer or conjugative interaction in molecular system. The larger the E(2) (energy of hyper conjugative interactions) value, the more intensive is the interaction between electron donors and electron acceptors, i.e. the more donating tendency from electron donors to electron acceptors, the greater the extent of conjugation of the whole system. Delocalization of electron density between occupied Lewis-type (bond or lone pair) NBO orbitals and formally unoccupied (anti-bond or Rydgberg) non-Lewis NBO orbitals correspond to a stabilizing donor-acceptor interaction. NBO analysis has been performed on the title molecule at the DFT/B3LYP/6-311+G** level in order to explain the intra molecular, re-hybridization and delocalization of electron density within the molecule. The results of second order perturbation theory analysis of Fock matrix collected in Table 6 indicate the intra-molecular interactions due to the orbital overlap of π (C2-C3) over antibonding π *(C1-C6) with energies 23.88 kcal/mol, π (C1-C6) over π *(C2-C3) and π *(C4-C5) with stabilization energies 17.31 kcal/mol and 21.60 kcal/mol. The most important interactions in the title molecule having lonepair O13 and O14 with that of antibonding π^* (N9-O13) and σ^* (N9-O14) results to the stabilization of 93.0 kcal/mol and 30.2 kcal/mol.

First-order hyperpolarizability calculations

The first-order hyperpolarizabilities (β_0) of this novel molecular system, and related properties β_0 , α_0 and $\Delta\alpha$) of CFNB were calculated using B3LYP/6-311+G** basis set, based on the finite-field approach. In the presence of an applied electric field, the energy of a system is a function of the electric field. First-order hyperpolarizability is a third rank tensor that can be described by $3\times3\times3$ matrix.

No(i)	symbol	Туре	Definition
Stretching 1-6	r _i	C-C	C1-C2,C2-C3,C3-C4,C4-C5,C5-C6,C6-C1
7-9	Si	C-H	C2-H11,C3-H12,C5-H10
10	pi	C-F	C1-F8
11	Pi	C-Cl	C6-Cl7
12	Ni	C-N	C4-N9
13-14	\sum_{i}	N-O	N9-O13,N9-O14
Bending 15-20	α_i	C-C-C	C1-C2-C3,C2-C3-C4,C3-C4-C5, C4-C5-C6,C5-C6-C1,C6-C1-C2
21-26	θ_{i}	C-C-H	C1-C2-H11,C3-C2-H11,C2-C3-H12, C4-C3-H12,C4-C5-H10,C6-C5-H10
27-28	βi	C-C-F	C6-C1-F8, C2-C1-F8
29-30	Φ_{i}	C-C-Cl	C5-C6-Cl7, C1-C6-Cl7
31-32	μ_i	C-C-N	C3-C4-N9, C5-C4-N9
33-34	γ_i	C-N-O	C4-N9-O13, C4-N9-O14
35	ν _i	0-N-0	O13-N9-O14
Out-of-plane 36-38	ω _i	C-H	H11-C2-C1-C3, H12-C3-C2-C4, H10-C5-C4-C6
39	ξi	C-F	F8-C1-C2-C6
40	Ω_{i}	C-Cl	Cl7-C6-C1-C5
41	ε _i	C-N-O	C4-N9-O13-O14
42	ι _i	C-N	N9-C4-C3-C5
Torsion43-48	τ	C-C	C1-C2-C3-C4,C2-C3-C4-C5,C3-C4-C5-C6,C4-C5-C6-C1,C5-C6-C1-C2,C6-C1-C2,C3
49	τ_{i}	N-O	C3(C5)-C4-N9-O13(O14)

 Table 3. Definition of internal coordinates of CFNB

for numbering of atom refer Fig 1

Table 4. Definition of local symmetry coordinates and the value corresponding scale factors used to correct the force fields for CFNB

No.(i)	Symbol ^a	Definition ^b	Scale factors used in calculation
1-6	C-C	r1,r2,r3,r4,r5,r6	0.914
7-9	C-H	\$7,\$8,\$9	0.914
10	C-F	p10	0.992
11	C-Cl	P11	0.992
12	C-N	N12	0.992
13-14	N-O	$\sum_{i} 13, \sum_{i} 14$	0.992
15	C-C-C	$(\alpha 15 - \alpha 16 + \alpha 17 - \alpha 18 + \alpha 19 - \alpha 20)/\sqrt{6}$	0.992
16	C-C-C	(2α15-α16-α17+2α18-α19-α20)/ √12	0.992
17	C-C-C	(α16-α17+α19-α20)/2	0.992
18-20	С-С-Н	$(\theta 21 - \theta 22)/\sqrt{2}, (\theta 23 - \theta 24)/\sqrt{2}, (\theta 25 - \theta 26)/\sqrt{2}$	0.916
21	C-C-F	$(\beta 27 - \beta 28)/\sqrt{2}$	0.923
22	C-C-Cl	(Ф29-Ф30)/√2	0.923
23	C-C-N	(µ31-µ32)/√2	0.923
24	C-N-O	(y33-y34)/ V2	0.923
25	0-N-0	v35	0.923
26-28	C-H	ω36, ω37, ω38	0.994
29	C-F	ξ39	0.962
30	C-Cl	Ω40	0.962
31	C-N-O	γ41	0.962
32	C-N	142	0.962
33	tring	(\tau43-\tau44+\tau45-\tau46+\tau47-\tau48)/\dot{6}	0.994
34	tring	$(\tau 43 - \tau 45 + \tau 46 - \tau 48)/2$	0.994
35	tring	(-τ43+2τ44-τ45-τ46+2τ47-τ48)/√12	0.994
36	N-O	τ49/4	0.995

^a These symbols are used for description of the normal modes by TED in Table 5. ^b The internal coordinates used here are defined in Table 3.

Table 5. Detailed assignments of fundamental vibrations of CFNB by normal mode analysis based on SQM force field calculation

S.	Symmetry species C _s	Observed frequency (cm ⁻¹)		Calculated frequency (cm ⁻¹) with B3LYP/6-311+G ^{**} force field			ith	TED (%) among type of internal coordinates ^c
110.		Infrared	Raman	Unscaled	Scaled	IR ^a A _i	Raman ^b I _i	
1	Α'	3275		3276	3274	8.566	36.542	CH(99)
2	Α'		3276	3277	3273	3.936	81.192	CH(99)
3	Α'	3247		3245	3243	0.498	106.437	CH(99)
4	A'		1689	1685	1682	126.646	2.234	NOas(58),CC(20),bNO2r(11),bCCN(5)
5	Α'	1659		1655	1653	55.881	64.458	CC(67),bCH(14),bring(10),CF(5)
6	Α'		1636	1638	1633	82.567	12.304	CC(58),NOas(27),bring(7)
7	Α'	1546		1548	1545	100.816	7.186	CC(40),bCH(39),CF(13)
8	Α'	1441	1442	1440	1439	13.910	0.187	CC(57),bCH(24),bCCN(5)
9	Α'			1399	1398	323.237	177.472	NOss(65),CN(17),bNO2sc(16)
10	Α'	1377		1375	1372	15.292	4.919	CC(93)
11	Α'		1325	1322	1319	93.890	13.920	CF(47),bCH(23),CC(22),bring(5)
12	A'	1276		1278	1276	2.130	3.210	bCH(73),CC(15)
13	Α'		1165	1162	1159	38.639	7.862	bCH(61),CC(24),CCl(6)
14	A'	1148		1146	1144	34.175	21.109	CC(25),CN(23),bring(22),bCH(19)
15	Α'		1078	1079	1076	22.797	1.284	bring(30),CC(26),bCH(22),CCl(14)
16	A"	976		978	974	0.379	1.165	gCH(85),tring(12)
17	A"		935	932	929	18.816	0.912	gCH(78),tring(14),gCN(5)
18	A'	926		924	920	26.933	15.207	CC(20),bNO2sc(19),CN(19),bring(16),CCl(10),NOss(7)
19	A"		850	848	846	18.324	2.992	gCH(77),tring(9),gCF(7)
20	A'	828		824	821	3.696	1.547	bNO2sc(38),bring(34),CF(11),CC(9)
21	A"	748	756	754	752	29.793	2.196	gCNO(55),gCN(18),tring(15),gCH(9)
22	A'		721	732	729	61.614	10.142	CCl(27),bring(25),CC(16),bNO2sc(13),CF(6)
23	A"	700		702	697	0.063	0.293	tring(59),gCF(21),gCCl(12)
24	Α'		650	648	646	8.486	3.291	bring(63),bNO2sc(9),CN(9),CC(5)
25	Α'	568		564	561	1.420	1.966	bNO2r(48),bCCN(17),bCF(10),CC(8),bCCl(7)
26	A''		558	554	550	0.003	0.659	tring(51),gCN(22),gCF(13),gCCl(7)
27	A'	504		502	499	5.104	2.632	bCF(32),bNO2r(20),CCl(15),bCCl(12),bring(11),CC(9)
28	A"		459	456	454	1.759	0.022	tring(62),gCCl(20),gCF(9),gCH(6)
29	A'			372	371	0.163	5.330	bring(44),CCl(16),bCCl(12),bNO2r(11),CC(6)
30	A'			356	354	0.235	3.985	bring(41),CN(30),CC(13),bNO2sc(6)
31	A"		332	337	334	0.546	1.621	tring(27),gCN(24),gCF(19),gCCl(14),gCH(11)
32	A'			261	259	1.103	0.691	bCF(48),bCCl(31),bring(7),bCCN(5)
33	A'		186	180	178	2.479	0.602	bCCN(68),bCCl(17),CC(7)
34	A"			178	176	0.112	1.930	tring(36),gCCl(27),gCN(17),gCH(11),tNO(5)
35	A"		125	120	118	4.078	0.302	tring(61),gCN(17),gCH(15)
36	A''			60	58	0.076	0.377	tNO(86),tring(13)

Abbreviations used: b, bending; g, wagging; t, torsion; s, strong; vs, very strong; w, weak; vw, very weak;

^a Relative absorption intensities normalized with highest peak absorption

^bRelative Raman intensities calculated by Eq 1 and normalized to 100.

^c For the notations used see Table 4.

Table 6. Second order p	perturbation theory	analysis of Fock	matrix in NBO) basis for (CFNB
-------------------------	---------------------	------------------	---------------	---------------	------

Donor(I)	Types of Bond	Occupancy	Acceptor(J)	Type of Bond	Occupancy	E(2) Kcal/Mol	E(i)-E(j) a.u.	F(i,j)
C1-C2	σ	1.97605	C1-C6	σ*	0.03662	4.12	1.28	0.065
			C2-C3	σ*	0.01236	2.36	1.31	0.050
			C2-H11	σ*	0.01293	0.96	1.11	0.029
			C3-H12	σ*	0.01332	2.14	1.11	0.044
			C6-Cl7	σ*	0.02768	4.58	0.88	0.057
C1-C6	σ	1.98128	C1-C2	σ*	0.02310	3.44	1.31	0.060
			C2-H11	σ*	0.01293	1.92	1.13	0.042
			C5-C6	σ*	0.02306	3.27	1.32	0.059
			C5-H10	σ*	0.01391	2.08	1.12	0.043
C1-C6	π	1.66058	C2-C3	π^*	0.30806	17.31	0.31	0.066
			C4-C5	π^*	0.37553	21.60	0.30	0.073
C1-F8	σ	1.99311	C2-C3	σ*	0.01236	1.35	1.40	0.039
			C5-C6	σ*	0.02306	1.68	1.38	0.043
C2-C3	σ	1.96779	C1-F8	σ*	0.03982	4.83	0.85	0.057
			C3-C4	σ*	0.02218	2.78	1.28	0.053

			C4-N9	σ*	0.09752	3.97	1.03	0.058
C2-C3	π	1.65454	C1-C6	π^*	0.41243	23.88	0.26	0.072
C2-H11	σ	1.97281	C3-H12	σ*	0.01332	0.55	0.89	0.020
C3-C4	σ	1.97160	N9-O13	σ*	0.03815	1.92	1.36	0.046
C3-H12	σ	1.97465	C1-C2	σ*	0.02310	3.40	1.06	0.054
			C2-C3	σ*	0.01236	0.71	1.09	0.025
			C2-H11	σ*	0.01293	0.58	0.88	0.020
			C3-C4	σ*	0.02218	0.56	1.07	0.022
			C4-C5	σ*	0.37553	4.24	1.07	0.060
C4-C5	σ	1.96490	C6-C17	σ*	0.02768	4.35	0.87	0.055
	-		C3-H12	σ*	0.01332	2.25	1.11	0.045
			C4-N9	 σ*	0.09752	0.52	1.04	0.021
			C5-C6	<u>σ</u> *	0.02306	3.24	1.29	0.058
			C5-H10	<u>σ</u> *	0.01391	1.10	1.10	0.031
			N9-014	 σ*	0.09077	2.06	1.10	0.031
C4-C5	π	1 66510	C1-C6	π*	0.41243	18.36	0.28	0.065
0105		1.00510	C2-C3	π*	0.30806	21.10	0.20	0.072
			N9-013	π*	0.52728	15.48	0.20	0.052
C4-N9	σ	1 98743	C2-C3	π σ*	0.01236	1 37	1 40	0.032
0410	0	1.90745	C3-C4	0	0.02218	1.09	1.40	0.035
			C4-C5	0	0.02218	0.84	1.39	0.035
			C5-C6	0	0.02345	1.25	1.39	0.037
			N9-013	0	0.02300	0.86	1.39	0.037
C5 C6		1.07136	C1 C6	0	0.03662	3.67	1.40	0.052
0-00	0	1.97130	C1 F8	0	0.03082	1 38	0.87	0.002
			C1-F6		0.03982	4.30	1.21	0.055
			C4-C3		0.00752	3.23	1.51	0.055
C5 1110		1.07225	C1-N9	-*	0.09732	3.40	1.03	0.059
С3-п10	0	1.97223	C1-C0	<u> </u>	0.03002	5.95	1.07	0.038
			C3-C4	-*	0.02218	4.04	1.08	0.039
C6 C17		1 09511	C4-N9	-*	0.09732	1.15	0.82	0.028
N0 012	0	1.96511	C1-C2		0.02310	2.55	1.23	0.049
N9-015	0	1.99003	C4 N0		0.02218	0.02	1.61	0.030
N0 012		1.08010	C4-N9		0.09752	2.65	0.52	0.043
N9-015	л	1.96910	N0 012	π*	0.57555	2.03	0.32	0.030
N0 014		1 00330	C4 C5	π* σ*	0.02343	0.85	0.43	0.040
10-014	0	1.77557	C4-C5		0.02343	0.85	1.40	0.032
C17	I P(1)	1 00207		0	0.03652	0.51	1.23	0.023
C17		1.77277	C5-C6	0	0.02306	1.70	1.47	0.032
	I P(2)	1 96865	C1-C6	0	0.02500	1.70	0.85	0.045
	LI (2)	1.70005	C5-C6	0	0.02306	3.71	0.85	0.050
C17	I P(3)	1 02158	C1-C6		0.02300	13.22	0.30	0.051
E9	IP(1)	1.02107		π σ*	0.02310	1.07	0.50	0.002
10		1.33137	C1-C2	0	0.02510	0.84	1.04	0.033
E8	I P(2)	1.07000	C1-C0	0	0.03002	3.62	0.04	0.053
10	LI (2)	1.97999	C1-C2	0	0.02510	3.02	0.94	0.052
E0	I D(2)	1.04420	C1-C0	-*	0.03002	3.79	0.94	0.033
013	LF(3)	1.74430	C1-C0	n"	0.41243	5 11	1.09	0.000
015	$L\Gamma(1)$	1.9/000	N0 014		0.09732	1.00	1.08	0.008
012	LP(1)	1 85550	C4 NO	σ.	0.09077	1.99	1.07	0.042
013	LF(2)	1.03339	N0 014	0*	0.09732	10.12	0.00	0.094
014	I D(1)	1.09500	N9-014	σ	0.09077	2 55	0.00	0.122
014	LP(1)	1.98392	U4-N9	σ [*]	0.09/52	3.33	1.11	0.057
014	I D(2)	1.02201	N9-013	σ [*]	0.03815	1.94	1.43	0.047
014	LP(2)	1.93281	V0.012	σ*	0.09/52	8.72	0.56	0.063
			N9-013	σ*	0.03815	10.63	0.89	0.08/
014	LD(2)	1.51000	N9-013	π~	0.52728	0.63	0.18	0.011
014	LP(3)	1.51223	119-013	π~	0.52728	93.00	0.17	0.112

Table 7. The dipole moment (μ) and first-order <u>hyperpolarizibility</u> (β) of CFNB derived from DFT calculations

β_{xxx}	87.442
β_{xxy}	-524.69
β_{xyy}	-917.17
β_{yyy}	10.215
β_{zxx}	87.756
β_{xyz}	676.71
β_{zyy}	-18.709
β_{xzz}	19.936
β_{yzz}	25.707
β_{zzz}	60.949
β_{total}	1.6578
μ_{x}	0.58603649
μ_v	0.0944947
μ_z	0.01831499
μ	0.8359702

Dipole moment (μ) in Debye, hyperpolarizibility $\beta(-2\omega;\omega,\omega) \ 10^{-30}$ esu.

Table 8. Computed absorption wavelength (λ_{ng}) , energy (E_{ng}) , oscillator strength (f_n) and its major contribution

	n	λ_{ng}	Eng	f _n	Major contribution
	1	262.9	4.72	0.0043	H-6->L+0(+29%)
ĺ	2	221.7	5.59	0.0047	H-6->L+0(28%),
					H-3->L+0(+26%)
	3	202.6	6.12	0.0222	H-0->L+0(+49%),
					H-1->L+1(+24%)

(Assignment; H=HOMO,L=LUMO,L+1=LUMO+1,etc.)

The 27 components of the 3D matrix can be reduced to 10 components due to the Kleinman symmetry [18].

Fig 4. Representation of the orbital involved in the electronic transition for (a) HOMO (b) LUMO (c) Virtual

It can be given in the lower tetrahedral format. It is obvious that the lower part of the $3\times3\times3$ matrixes is a tetrahedral. The components of β are defined as the coefficients in the Taylor series expansion of the energy in the external electric field. When the external electric field is weak and homogeneous, this expansion becomes:

$$\mathbf{E} = \mathbf{E}^{0} - \mu_{\alpha}\mathbf{F} - 1/2\alpha_{\alpha\beta}F_{\alpha}F_{\beta} - 1/6\beta_{\alpha\beta\gamma}F_{\alpha}F_{\beta}F_{\gamma} + \dots$$

The total static dipole moment is

 $\mu = (\mu_x^2 + \mu_y^2 + \mu_z^2)^{1/2}$ and the average hyperpolarizability is $\beta_0 = (\beta_x^2 + \beta_y^2 + \beta_z^2)^{1/2}$ and

$$\beta_{x} = \beta_{x} + \beta_{xyy} + \beta_{xzz}$$
$$\beta_{y} = \beta_{yyy} + \beta_{xyy} + \beta_{xzz}$$
$$\beta_{x} = \beta_{x} + \beta_{xyy} + \beta_{xzz}$$

TheB3LYP/6-311+G** calculated first-order hyperpolarizability of CFNB is 1.6578×10^{-30} esu is shown in Table 7.

Fig 5. Representation of the orbital involved in the electronic transition for (a) HOMO-0 (b) LUMO+0 (c) HOMO-1 (d) LUMO+1 (e) HOMO-3 (f) HOMO-6 Electronic excitation energies, oscillator strength and nature of the respective excited states were calculated by the closed-shell singlet calculation method and are summarized in Table 8. Fig 4 shows the highest occupied molecule orbital (HOMO) and lowest unoccupied molecule orbital (LUMO) of CFNB. Orbital involved in the electronic transition for (a) HOMO–0 (b) LUMO+0 (c) HOMO-1 (d) LUMO+1 (e) HOMO-3 (f) HOMO-6 is represented in Fig 5. The NLO responses can be understood by examining the energetic of frontier molecular orbitals. There is an inverse relationship between hyperpolarizability and HOMO–LUMO.

HOMO energy = -0.386 a.u

LUMO energy = 0.040 a.u

HOMO-LUMO energy gap = 0.426 a.u

Conclusions

Based on the SQM force field obtained by DFT calculations at B3LYP/6-311+G** level, the complete vibrational properties of CFNB have been investigated by FT-IR and FT-Raman spectroscopies. The role of fluro, chloro and nitro groups in the vibrational frequencies of the CFNB has been discussed. The various modes of vibrations have unambiguously been assigned based on the results of the TED output obtained from normal coordinate analysis. The assignment of the fundamentals is confirmed by the qualitative agreement between the calculated and observed band intensities (especially with the large basis set) and the results confirm the ability of the methodology applied for interpretation of the vibrational spectra of the title molecules in the solid phase. The stability and intramolecular interactions have been interpreted by NBO analysis and the transactions give stabilization to the structure have been identified by second order perturbation energy calculations. The first-order hyperpolarizabilities (β_0) of this novel molecular system, and related properties β_0 , α_0 and $\Delta \alpha$) of CFNB were calculated using B3LYP/6-311+G** basis set, based on the finite-field approach. The first-order hyperpolarizability (β_{total}) of CFNB was calculated and found to be 1.6578×10^{-30} esu. Electronic excitation energies, oscillator strength and nature of the respective excited states were calculated by the closed-shell singlet calculation method. The NLO responses can be understood by examining the energetic of frontier molecular orbitals. There is an inverse relationship between hyperpolarizability and HOMO-LUMO.

References

1. S.J. Cyrin, Molecular Vibrations and Mean Square Amplitudes, Elsevier, Amsterdam, 1968.

2. L.A. Gribov, M.J. Orille-Thomas, Theory and Methods of Calculation of Molecular Spectra, Wiley, Chichester, 1988.

3. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B.

Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2009.

4. A.D. Becke, J. Chem. Phys., 98 (1993) 5648.

5. C. Lee, W. Yang, R.G. Parr, Phys. Rev., B37 (1988) 785.

6. T. Sundius, J. Mol. Struct. 218 (1990) 321.

7. A. Frisch, A.B. Nielson, A.J. Holder, Gaussview Users Manual, Gaussian Inc., Pittsburgh, PA, 2000.

8. G. Keresztury, S. Holly, J. Varga, G. Besenyei, A.V. Wang, J.R. Durig, Spectrochim. Acta 49A,2007 (1993).

9. G. Keresztury, in: J.M. Chalmers and P.R. Griffiths(Eds), Handbook of Vibrational Spectroscopy vol.1, John Wiley & Sons Ltd. p. 71, (2002).

10. P. Pulay, G. Fogarasi, F. Pong, J.E. Boggs, J. Am. Chem. Soc., 101 (1979) 2550.

11. V. Krishnakumar, V. Balachandran, Spectrochim. Acta 63A (2006) 464–476.

12. K. Furic, V. Mohacek, M. Bonifacic, I. Stefanic, J. Mol. Struct. 267 (1992) 39-44.

13. V.K. Rastogi, M. Alcolea Palafox, Rashmi Tomar and Upama Singh, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 110 (2013) 458-470.

14. B. Lakshmaiah, G. Ramana Rao, J. Raman Spectrosc. 20 (1989) 439.

15. M. Arivazhagan and S. Jeyavijayan, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 79 (2011) 376-383.

16. L.J. Bellamy, R.L. Williams, Spectrochim. Acta A (1957) 341–345.

17. V. Karunakaran and V. Balachandran, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 98 (2012) 229-239.

18. D.A. Kleinman, Phys. Rev. 1962;126,1977.