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Introduction

In sample surveys, it is well known that the use of the auxiliary information increases the efficiency of the estimators. We can use
the knowledge of the auxiliary variable x for estimating the study variable y. When the correlation between the study variate and the
auxiliary variate is positive ratio method of estimation is most effective and when this correlation is negative product method of
estimation can be employed effectively. Let x and z denote the study variates taking the values (x;,z;).

In order to have an estimate of the study variable y. Isaki (1983) and Singh et al. (2007) proposed following estimators

2 (1.2)
SX
t2 :Sy g
) g2 _g? (1.3)
2 5 _SE a4
t4 =syexp 2 g

The Bias and MSE expression’s of the estimator’s t, (i=1, 2, 3, 4) up to the first order of approximation are, respectively, given by
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B(t“):%[%_%_g} (18)
MSE(tl):%[Sl +8,— 28, (2.9)
MSE(tZ)z%i[zsl +8, — 28] (1.10)
MSE(t,) = %{51 +%z _s, _ﬂ (1.11)
MSE(t, )= Sn_‘yl[gl +57:1 5, _ﬂ (112)

Following Naik and Gupta (1996) and Singh et al. (2007), we propose the estimators ts and ts as

Oy oo 113
(S8 w
57 Yy SZ Sz

o S)Z(_Si By i_si B2 (1.14)
M g e P

where and are real constants.
oy, 05,0, B,

BIAS AND MSE of t_andt_
To obtain the bias and MSE of t, and tg to the first degree of approximation, we define
2 2 2 2 2 2
i =Si(l+e,)s: =Si(1+e,)s =S (1+e,)

Suchthat, E(e;)=0; i=0,1 2.
Also,

P e = ) R

E(ece,) = (SST_I), E(eye,) = @, E(e,e,) = (Ssn_l)’

Expressing equation (1.13) in terms of e’s, we have

ts =Sj [(1+ e Nl+e,) “(L+e,)™ ] = S§{1+ e, — 0,8, — 0,8, + al(aé +1) el + o,(e; +1) e? +0,0,8,8, — 1,€,8, — azeoez}

2
2.1)
Subtracting Yy from both the sides of equation (2.1) and then taking expectation of both sides, we get the bias of the estimator

ts, Up to the first order of approximation, as

e O A R ) I

From (2.1), we have

(ts —Y) = Y]eg — gy —apes] 23)
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Squaring both sides of (2.3) and then taking expectation, we get, MSE of the estimator t, »Up to the first order of approximation, as

a (2.4)
MSE(t,)= 2 (6, 1)+ 0206, ~1)+ 35, ~1) + 26, ~1) 20,5, ~1) - 20,(6, 1]

To obtain the bias and MSE of tg, to the first order of approximation, we express equation (1.14) in term of e’s, as

By B2
— —e e
t.=Y|1l+e,+e Lle 2
® 0 Xp(2+elj Xp[2+e2]

:?{14_% _ B12e1 + iff + Bzzez _ B1B24_ele2 + %fg + Bzezoez _ Blezoel:|

(2.5)

Subtracting Y from both sides of equation (2.5) and then taking expectation of both sides, we get the bias of the estimator t, up

to the first order of approximation, as

S | B : (2.6)
st | 6,0+ 5 60 56,969 s o)
From (2.5), we have
(ta _V) = \_([eo —% +B2ﬁ:| 2.7)
2 2

Squaring both sides of (2.7) and then taking expectation, we get the MSE of the estimator t, up to the first order of

approximation, as

4 2 2 (2.8)
mse() = 6,0+ 5608 6,0+ B 6,2 Ps 6, - B )

3. ANOTHER ESTIMATOR
Following Naik and Gupta (1996) and Singh et al. (2007), we propose another improved estimator t, as

, , SZ O SZ ) , SZ—SZ By 2—82 B2 (31)
tp=WOSy+Wlsy(S_;j (s_;j +W25yeXp[S;—s§] exp[ngrS;J

X z X z

where 0,0y, Bl and Bz are real constants and Wi(' =0’1,2) are suitably chosen constants whose values are to be

determined later.

Expressing (3.1) in terms of e’s, we have

S “ . —B.e B,e (3.2)
t, =Y(1+e0){w0 +w,(l+e, ) (1+e,)™ +w2exp( 21 1)exp( zzzﬂ
Expanding the right hand side of equation (3.2) and retaining terms, up to second power of e’s, we have
t, = \_{H ey + Wl(al(lg ) e’ + %(1; aZ)eg — 0,8, — 0,8, + 0,0,8,8, — 0,€,8, — azeoezj
3.3)

+W 12612 _Blel _Bleoel _BlBZeleZ + iei +Bze2 +B2eoez _
2\ 4 2 2 4 4 2 2
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subtracting Y from both sides of (3.3) and then taking expectation of both sides, we get the bias of the estimator tp’ up to the first

order of approximation as

S Ma,(1+a o, (1+a o a0
Bl ) w, 2 S5, ) lr)(s, ). 05, )0

(6 -1)+ % 6.1

2 g2 ? 3.4)
o 2 B 6,0 865,24 B 6,0 P 6,00+ )
from (3.3), we have
o (3.5)
(t,-Y)= Y[eO + W, (—o,e, —a,e, )+ wz(—%JSZ%H

Squaring both sides of (3.5) and then taking expectation, we get MSE of the estimator  up to the first order of approximation, as
P

st (3.6)
MSE(t, )= Fy (5, 1)+ W?P, + W2P, — 2wW,P, —W,P, +W,w,P,|
Where, 4P2P3 _ p4p5 (3.7
W [ E—
' 4PP,-P?
W, - 2PP, —2P32P5
4PP, —P;
and
P, = O‘12 (62 _1)+ a5(64 _1)"' 20,01, (86 _1) (38)

Pz = % [Blz (82 _1)"' B§(84 _1)_ 2B1B2(86 _1)]

Py = 0‘1(83 _1)+ 0‘2(85 _1)

I:)4 = 31(53 _1)_62(85 _1)

Py = 0‘1[51(82 _1)_ a2B2(84 _1)+ 0‘231(66 _1)_ 0‘1]32(66 _1)

Double Sampling

In certain practical situations when S2 is not known a priori, the technique of two-phase sampling is used. This scheme requires
X

collection of information on x and z the first phase sample of size n' (n'<N) and on y for the second phase sample of size n (n<n')

from the first phase sample.

The estimator’s t, tp, t3 and t4 in two-phase sampling take the following form

tdl = Sy S_Z

12 (42)
t. = Sz[s—zj
d2 y Sz

t,,=s2e (s'i—sij -
a3 = yXp 2 2




26490 Sachin Malik et al./ Elixir Statistics 73 (2014) 26486-26494

) SlZ_sZ (44)
tu =syexp[ .5_53]
The bias and MSE expressions of the estimators tqg, taz, ta3 and tgs up to first order of approximation, are respectively given as
B(tdl) = 832/ [f182 + f283] (4.5)
g2 (4.6)
B(tdz): _y[84 _65]
S S 4.7
B(tys)= Si{fl 52 +1, ﬂ
) ) (4.8)
B(t,,)= Si{fl 54 +1, ﬂ
5, -1 (4.9)
MSE(t,,) =S, 1n +f,(5, 1)+ 2f, (8, —1)}
S, — — (4.10)
MSE(,)- i) St S 20
n n
s, — (4.11)
MSE(t,;) =S, 51n 1+%(52 ~1)+f,(3, —1)}
5, -1 f (4.12)
MSE(L) =) 2 6, -2)1,6,-1)
where,
f-2) 5o LS k)
Sz:._ Z|_Z' SIZI.— X —i‘ ,
n'-1 i=1 “n —1;( I )
1 1 1 1
f="_- f ==—_=
“non’ % non

The estimator’s ts and tg, in two phase sampling, takes the following form

= | 2 4.13
td5 - SZ SI)Z( m Si m ( )
15) e

— n n 414
o=, [si-st)" (s2-82)" (444
yxp 12 2 Xp 12 SZ
S —Sx S,

where ms:m,-n, and n, are real constants.

BIAS AND MSE OF { _and ¢
d5 dé
To obtain the bias and MSE of t, and tg to the first degree of approximation, we define
2 2 12 2 1 12 2 |
2 =Si(l+e,)s%=Si(L+e,)s2=S(L+¢€,)

Such that, E(e,)=0; i=0,1,2.
Also,
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8, —1)

E(e?) = (5ln‘1), eery= 0D gzy_ L

n n

(85 _1)’ E(e-l elz ) _ (66 _1)
—n, )

Ee,e’) = (SSTT]-)' Eese’,) =

Expressing equation (4.13) in terms of e’s, we have
tis=Y(+e, Ni+e )" Q+e,)™L+e,)™
Expanding the right hand side of above equation and retaining terms up to second power of e’s, we have

my(m, -1 6

m,(m, +1) ,

2 2 '
tys = Sy{l+ e, —me, + e; —m;ee,+

m,(m, +1)

1 1 12 1 1
+me,—m,e,+ e,—me.e, +me,e,—m,e,e 2:‘

Subtracting Y from both sides of (5.1) and then taking expectation, we get the bias of the estimator 45, UP to the first order of

approximation, as

B(tds) — Si{ml(”;l +1) (Szn_l) . m12 (SGn._l) N ml(l’gl —1) (SZn'—]_)

+m2(m2+1) (84 _1) m (83_1)+m

2 nl 1 n 1 n 2 nu

N
——m
From (5.1), we have
2 2 ( |
(td5 _Sy) = Sy [eo —-mg, +me,—m,e 2] (53)
Squaring both sides of (5.3) and then taking expectations, we get MSE of the estimator tgs, up to the first order of approximation,
as

(5.4)

MSE(t, )= s“y{(ﬁlT_l) +m?f,(5, —1)+ m? (an'— Y +2m,f,(8, —1)—2m, (5, —1)}

Now to obtain the bias and MSE of ty to the first order of approximation, we express equation (4.14) in terms of e’s

‘ ' (5.5)
v n.e -n.e n.e
b= V(L +e, o[ M1 oo 1 g 1
2 2 2
Expanding the right hand side of equation (5.5) and retaining terms up to second power of e’s, we have
: 2.2 : 2 (5.6)
t, =Y 1+e, + ne ne + n€ + n,e, n n,e; n n1e0e1 _Ni€8 + nzeoe,z
2 4 2 4 2 2 2

subtracting Y from both sides of (5.6) and then taking expectations, we get the bias of the estimator tye up to the first order of

approximation, as

n? (5,-1) n3(3,-1) n n (5.7)
B(t,)=S24—++2—F 424 4 Lf (5, -1)+—2(5, -1
) =55{ Bty O, B 5,0 25,
From (5.6), we have
ne ne, n,e’ (5.8)
(td6—S§)=S§(eo+ 121— 121+ Zzzj

squaring both sides of (5.8) and then taking expectations, we get the MSE of t4 up to the first order of approximation, as
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_ 2 _ _ _ (5.9)
61 1)+ n1f1(62 1)+n2 (54 1)+2n1f2(53 _1)+ 2n2(6? 1)}

MSE(t,,) sy{ - 1 - .

IMPROVED ESTIMATOR t, IN TWO-PHASE SAMPLING

The estimator t, in double sampling is written as

m m n n 6.1
t  =h,s?+s2 S| (S 2+szexp 5, S, 1exp 535, | o
pd 0%y ~ %y S)z( Sui y S')Z(—Sf( 3'3—35

Where, m,,m,,n,, and n,are real constants and h (i=012) are suitably chosen constants whose values are to be

determined later.

Expressing (6.1) in terms of e’s, we have

tpd =hoy+hyy(+er)™ (L+ey) ™ (1+e5) M

6.2)
nie; —nge; noe) (
+hayep| == |exp exp| —=
2 2
Expanding the right hand side of (6.2) and retaining terms up to second power of e’s as
V m,(m, +1 comym, =12 - .
ty= Y{1+ e, + h{% e; —m,e, —M,ee, —msee + 1(—1)e1 +me,
o my(me)
+me,e, —Mm,e, —M,e,e, + T €,

(6.3)

! 2.2 ! 12 [ [
h nlel _ r]lel + nlel + n2e2 + n2e2 + nleOel _ nleoel + nzeoez
22 2 4 2 4 2 2 2

Subtracting Y from both the sides of (6.3) then taking expectations on both the sides, we get the bias of the estimator t, up to the

first order of approximation as

_ ) m12 ) m% m, (6.4)
B(tpd)zY h1f3Cp 5 +—+ lepb +hlf2C > +T—m2kpb2
chgfyc? (MM My g c2 (03 np np
3pg g 2 T2 g g 2 P2
From (6.3), we have
_ ‘ | - : (6.5)
tpd -Y= Y{eo + hl(_ m.e, + m,e, _mzez)+ hz(nlzel - nlzel + n2262 j:|

Squaring both sides of (6.5) and then taking expectations, we get MSE of the estimator tp up to first order of approximation as

s (6.6)
MSE(t,, )= Fy[(é‘)l —1)+h?B, +h2B, - 2h,B, —h,B, +h,h,B,]

where,
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o _48,B; —B,B; .7
' 4BB,-B?
_ 2B,B, - 2B,B,
’  4BB,-B?
and
5, —1 1 1 (6:8)
Bl = m; ( 4n' ) + m12(62 —1)[H—Ej
1 5, —1 1 1
B, :Z{ng %Jf n; (3, _1)(H_Eﬂ

B, = n1(1_1.)(62 -1)- n, M
n n n

(64 _1)

1 1 6,1
Bs = ml(ﬁ_ﬁj(az _1)"‘ m, (4n—)

1 1
B = nlml(ﬁ _E](Sz —-1)-n,m,

Empirical study
To illustrate the performance of various estimators of g2, we consider the data given in Murthy (1967, p.-226). The variates are
y

Y: output, X: number of workers, z: fixed capital
N=80, n'=25, n=10
51 =2.2667 ,52 =3.65, 53 =2.3377 54 =2.8664 , 55 =2.2208 , 56 =3.14

The percent relative efficiency (PRE) of various estimators of g2 with respect to conventional estimator 2 has been computed
y y

and displayed in the given table.
Table 7.1 PRE of different estimators of g2 with respect to g2
y y

Choice of scalars |
Wo W1 Wo o, a, B, B, Estimator PRE’S
1 0 0 g2 100
y
0 1 0 1 0 tg 102.04
0 1 t, 183.18
-1 1 ts 25.61
0 0 1 1 0 ts 214.15
0 1 ty 42.87
1 -1 tg 104.78
Wy W1 Wy 1 1 1 1 tp 282.39

In table 7.2 PRE of various estimators of in two-phase sampling are displayed.
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Table 7.2: PRE of different estimators of g2 with respect to g2
y y

Choice of scalars
h, h, h, mq mo Ny n, | Estimator | PRE’S
1 0 0 §2 100
y
0 1 0 1 0 t,, 1260.71
0 1 t 1033.90
d2
1 1 td5 1287.04
0 0 1 1 0 tdS 1270.76
0 1 t 513.85
d4
1 1 t 1380.62
d6
h, h, h, 1 1 1 1 tpd 1472.25

Conclusion:

In this paper, we have suggested a class of estimators in single and double sampling for estimating population variance using two
auxiliary variables. From Table 7.1 and Table 7.2, we infer that the proposed estimator t, and its double sampling version tyq, performs
better than other estimators considered in this paper.
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