
Rajeev Kumar Gupta et al./ Elixir Comp. Sci. & Engg. 73 (2014) 26469-26472

26469

Introduction

Frequent pattern mining and Association rule mining(ARM)

plays a very important role in data mining. There are numerous

studies about the problems of frequent pattern mining and

association rule mining in large databases. These studies are

mainly categorized as based on their functionality and based on

their performance. The functionality means what kind of data to

mine either as a rule or as a pattern which is related to ARM and

FPM[5]. The performance means how to compute the frequent

patterns and association rules using efficient algorithms.

The algorithms used for frequent pattern mining is divided

into 2 categories : Apriori based algorithms and tree-structure

based algorithms. The apriori-based algorithms uses a generate-

and-test strategy(ie)they finds frequent patterns by constructing

candidate items and checking their support counts or frequencies

against the transactional database. Examples are: FP(Fast

Update)[11], UWEP(Update With Early Pruning)[12].

The tree-structure based algorithms follows a test only

approach(ie)there is no need to generate candidate items and

tests only the support counts or frequencies. Examples are FP-

tree and FP-growth, CAN-tree, CAST-tree, trie structure etc.

The data structures have to be chosen, if they are able to

support incremental mining. Generally apriori-based

incremental mining algorithms are not easily adoptable with

tree-structure based incremental mining algorithms. This

document is a template. An electronic copy can be downloaded

from the conference website. For questions on paper guidelines,

please contact the conference publications committee as

indicated on the conference website. Information about final

paper submission is available from the conference website.

FP-TREE (FREQUENT PATTERN TREE)

A tree structure in which all items are arranged in

descending order of their frequency or support count. After

constructing the tree, the frequent items can be mined using FP-

growth[1].

Creation of FP-Tree

First Iteration
Consider a transactional database which consists of set of

transactions with their transaction id and list of items in the

transaction. Then scan the entire database. Collect the count of

the items present in the database. Then sort the items in

decreasing order based on their frequencies (no. of occurrences).

Second Iteration:

Now, once again scan the transactional database. The FP-

tree is constructed as follows. Start with an empty root node.

Add the transactions one after another as prefix subtrees of the

root node. Repeat this process until all the transactions have

been included in the FP-tree. Then construct a header table

which consists of the items, counts and their head-of-node links.

Consider the transactional database shown in Table 1 with 5

transactions.

TABLE I

EXAMPLE OF TRANSACTIONAL DATABASE

tran. id items

t1 a,b,d,e

t2 a,c,d

t3 e,f,h,i

t4 a,b

t5 c,e,f

The frequent itemlist for the above database is given in Table 2.

TABLE III

FREQUENT ITEMLIST FOR THE TRANSACTIONAL DATABASE IN

TABLE1

Items Count

A 3

B 2

C 2

D 2

E 3

F 2

H 1

I 1

The items that does not meet the minimum threshold has

been eliminated. The frequent itemlist that support the minimum

support threshold is given in Table 3.

A Survey on Mining Frequent Patterns in data mining
Rajeev Kumar Gupta and Roshni Dubey

SRIT Jabalpur.

ABSTRACT

Frequent pattern mining is a process of mining data as a set of itemsets or patterns from a

transactional database which support the minimum support threshold. A frequent pattern is a

pattern (ie. a set of items, substructures, subsequences etc.) that occurs frequently in a

dataset. Association rule mining is a process of mining data as a set of rules from a

transactional database which support the minimum support and confidence. The

implementation methods uses special data structures to solve the problem of FPM and ARM.

This paper presents some of the data structures for FPM with their advantages and

disadvantages.

 © 2014 Elixir All rights reserved

.

ARTICLE INFO

Article history:

Received: 6 May 2013;

Received in revised form:

16 August 2014;

Accepted: 25 August 2014;

Keywords

Frequent Pattern Mining(FPM),

Association Rule Mining(ARM),

Itemsets,

Transactional Database,

Minimum Support and Confidence.

Elixir Comp. Sci. & Engg. 73 (2014) 26469-26472

Computer Science and Engineering

Available online at www.elixirpublishers.com (Elixir International Journal)

Tele:

E-mail addresses: errajeevgupta@yahoo.co.in

 © 2014 Elixir All rights reserved

Rajeev Kumar Gupta et al./ Elixir Comp. Sci. & Engg. 73 (2014) 26469-26472

26470

TABLE IIIII

FREQUENT ITEMLIST FOR THE TRANSACTIONAL DATABASE

THAT SUPPORT MINIMUM THRESHOLD

Items Count

A 3

E 3

B 2

C 2

D 2

F 2

The transactional database according to the frequent item list is

given in Table 4.

Fig. 1 Steps in Creating the FP-Tree.

TABLE IVV

SORTED AND ELIMINATED TRANSACTIONS OF THE DATABASE

IN TABLE 1

Tran. ID Items

T1 A,E,B,D

T2 A,C,D

T3 E,F

T4 A,B

T5 E,C,F

Fig. 2 FP-Tree with Header Table

Finding Frequent Patterns from FP-Tree

After the construction of FP-tree, the frequent patterns can

be mined using a iterative approach FP-growth. This approach

looks up the header table shown above and selects the items that

supports the minimum support. It removes the infrequent items

from the prefix-path of a existing node and the remaining items

are considered as the frequent itemsets of the specified item.

Consider the item D.Its prefix paths are

{((A,E,B):1),((A,C):1)}. After removing the infrequent

items,(A:2).So the frequent itemset for D is A.

Advantages and Disadvantages

This method is advantageous because, it doesn’t generate

any candidate items. It is disadvantageous because, it suffers

from the issues of spacial and temporal locality issues.

CAN-TREE (CANONICAL TREE)

A tree structure that arranges or orders the nodes of a tree

in some canonical order. It follows a tree-based incremental

mining approach. Like FP-tree approach, there is no need to

rescan the transactional database when it is updated. Because of

following the canonical order, frequency changes(if any) due to

incremental updates like insertion, deletion and modification of

the transactions will not affect the ordering of the nodes in CAN

tree[3]. After constructing the CAN tree, we can mine the

frequent patterns from the tree.

Creation of can tree consider the following database

TABLE VV

EXAMPLE OF TRANSACTIONAL DATABASE

TID items

DB Original database T1

T2

T3

{a,c,d,g}

{b,c,d,e}

{b}

DB1 1st group of insertions T5 {a,e,f}

DB2 2nd group of insertions T6

T7

{b,c}

{a}

Fig 3. Initial CAN-tree

Fig 4. CAN-tree after 1st group of insertions.

Fig 5. CAN-tree after 2nd group of insertions.

Finding Frequent Patterns from CAN-Tree

After constructing the CAN-tree, we have to mine the

frequent patterns by traversing the tree in a upward direction.

This can be done similar to FP-growth by constructing a header

table and finding only the frequent items.

Advantages and Disadvantages

This method is advantageous because it supports

incremental updates without any major changes in the tree.

Rajeev Kumar Gupta et al./ Elixir Comp. Sci. & Engg. 73 (2014) 26469-26472

26471

COFI-TREE

Cofi is much faster than FP-Growth and requires

significantly less memory. The idea of COFI is to build

projections from the FP-tree each corresponding to sub-

transactions of items co-occurring with a given frequent item.

These trees are built and efficiently mined one at a time making

the footprint in memory significantly small.

The COFI algorithm generates candidates using a top-down

approach, where its performance shows to be severely affected

while mining databases that has potentially long candidate

patterns that turns to be not frequent, as COFI needs to generate

candidate sub-patterns for all its candidates patterns and also

build upon the COFI approach to find the set of frequent

patterns but after avoiding generating useless candidates.

Creation of COFI-Tree
The basic idea of our new algorithm is simple and is and is

based on the notion of maximal frequent patterns. A frequent

item set X is said to be maximal if there is no frequent item set

X’ such that X€ X’.

Frequent maximal patterns are a relatively small subset of

all frequent item sets. In other words, each maximal frequent

item set is a superset of some frequent item sets. Let us assume

that we have an Oracle that knows all the maximal frequent

item sets in a transactional database. Deriving all frequent item

sets becomes trivial. All there is to do is counting them, and

there is no need to generate candidates that are doomed

infrequent. The oracle obviously does not exist, but we propose

a pseudo-oracle that discovers this maximal pattern using the

COFI-trees[4] and we derive all item sets from them. Consider

the following database,

TABLE IV

EXAMPLE OF TRANSACTIONAL DATABASE
d e

a b d f e h

a g d e c b

a g d f e c

a g e b f

a d h e f c

a g d b l

a b c f

a d b c g

a f b c e

a b c h

Fig 6. Creation of COFI Tree

Finding Frequent Patterns from COFI-Tree

After constructing the COFI tree, the frequent patterns in

the tree can be found by identifying the frequent path bases.

Then find the local maximal patterns of different sizes. Then

frequent patterns can be found from the identified local

maximal patterns.

Advantages and Disadvantages

This method is advantageous because the size of the

generated candidate item list is minimized. It is disadvantageous

because maximum effort is required for minimization.

ATS-TREE (COMPRESSED AND ARRANGED TRANSACTION

SEQUENCES TREE)

This tree extends the idea of FPTree to improve storage

compression and allow frequent pattern mining without

generation of candidate itemsets. CATS algorithms enable

frequent pattern mining with different supports without

rebuilding the tree structure. The algorithms allow mining with

a single pass over the database as well as efficient insertion or

deletion of transactions at any time.

Cats Tree And Cats Tree algorithms. Once CATS Tree is

built, it can be used for multiple frequent pattern mining with

different supports. CATS Tree and CATS Tree algorithms allow

single pass frequent pattern mining and transaction stream

mining. In addition, transactions can be added to or removed

from the tree at any time.

Creation of CATS Tree

Consider the transactional database,

TABLE VVII

EXAMPLE OF TRANSACTIONAL DATABASE

Fig 7. Steps in Creation of CATS tree

Finding Frequent Patterns from CATS-Tree

After constructing the CATS tree, the frequent patterns can

be found by following the frequency of an item by considering

its both upward and downward paths.

Rajeev Kumar Gupta et al./ Elixir Comp. Sci. & Engg. 73 (2014) 26469-26472

26472

Fig. 8. CATS tree after 1st group of insertions.

Fig. 9. CATS tree after 2nd group of insertions.

Advantages and Disadvantages

This method is advantageous because it requires only one

scan of the database and the trees are ordered according to their

local frequency in the paths. It is disadvantageous because lot of

computation is required to build the tree.

CONCLUSION

In this paper, we analysed the various data structures that

can be used to implement frequent pattern mining in large

databases. We have discussed about the structures like CAN-

tree, FP-tree, CATS-tree, and COFI with their merits and

demeits. Among the discussion on the above structures, CAN-

tree can be considered to be optimal because it scans the entire

transactional database only once and there is no need for

swapping the nodes in the tree. As well as, CAN-tree may be

suitable for any incremental updates done in the database.

REFERENCES

S. M. Metev and V. P. Veiko, Laser Assisted Microtechnology,

2nd ed., R. M. Osgood, Jr., Ed. Berlin, Germany: Springer-

Verlag, 1998.

J. Breckling, Ed., The Analysis of Directional Time Series:

Applications to Wind Speed and Direction, ser. Lecture Notes in

Statistics. Berlin, Germany: Springer, 1989, vol. 61.

S. Zhang, C. Zhu, J. K. O. Sin, and P. K. T. Mok, “A novel

ultrathin elevated channel low-temperature poly-Si TFT,” IEEE

Electron Device Lett., vol. 20, pp. 569–571, Nov. 1999.

M. Wegmuller, J. P. von der Weid, P. Oberson, and N. Gisin,

“High resolution fiber distributed measurements with coherent

OFDR,” in Proc. ECOC’00, 2000, paper 11.3.4, p. 109.

R. E. Sorace, V. S. Reinhardt, and S. A. Vaughn, “High-speed

digital-to-RF converter,” U.S. Patent 5 668 842, Sept. 16, 1997.

 (2002) The IEEE website. [Online]. Available:

http://www.ieee.org/

M. Shell. (2002) IEEE tran homepage on CTAN. [Online].

Available: http://www.ctan.org/tex-

archive/macros/latex/contrib/supported/IEEEtran/

FLEXChip Signal Processor (MC68175/D), Motorola, 1996.

“PDCA12-70 data sheet,” Opto Speed SA, Mezzovico,

Switzerland.

A. Karnik, “Performance of TCP congestion control with rate

feedback: TCP/ABR and rate adaptive TCP/IP,” M. Eng. thesis,

Indian Institute of Science, Bangalore, India, Jan. 1999..

Padhye, V. Firoiu, and D. Towsley, “A stochastic model of TCP

Reno congestion avoidance and control,” Univ. of

Massachusetts, Amherst, MA, CMPSCI Tech. Rep. 99-02,

1999.

Wireless LAN Medium Access Control (MAC) and Physical

Layer (PHY) Specification, IEEE Std. 802.11, 1997.

