
26347 V.Jayaraj and N.Saravana Raman/ Elixir Comp. Engg. 73 (2014) 26347-26352

Introduction

Software defects detected by customers ensure a major cost

penalty for software companies. So, knowledge of how many

defects to anticipate in a software product at any stage during

development is a valuable asset. The ability to estimate defects

will improve decision processes about releasing a software

product considerably. Also, it improves software products

production process through employing a prediction model that

considers software production processes dynamic nature and

reliably predicts defects [1].

A software defect is a mistake, error, bug, flaw, failure, or

fault in a computer program/system that can generate an

inaccurate/unexpected outcome, or preclude software from

behaving as intended. A project team plans to create a quality

software product with zero/little defects. High risk components

in a software project are caught quickly to enhance software

quality. Software defects incur cost regarding quality and time.

Also, identifying/rectifying defects is time consuming and

expensive. It is practically impossible to eliminate every defect

but reducing defects magnitude and their adverse effect on

projects is possible [2].

Software metrics describe program complexity and estimate

software development time. “How to predict software quality

through software metrics, before being deployed” is a key

question, triggering much research to uncover an answer. There

are many papers supporting statistical models and metrics which

profess to answer quality questions. Usually, software metrics

elucidate software product‟s quantitative measurements or its

specifications. Defects are defined in disparate ways but are

generally aberrations from specifications or ardent expectations

which lead to procedure failures. Defect data analysis is of two

types; Classification and prediction that can extract models to

describe significant defect data classes or predict future defect

trends.

Software metrics are a broad range of computer software

measurement applicable to software processes with the aim of

improving it continuously. Measurement is used to assist quality

control, estimation, productivity assessment and project control.

Measurement helps software engineers to assess technical work

products quality and to assist in tactical decision making as

project proceeds. There are many metrics based on source code

analysis developed during the last decades for different

programming paradigms like structural programming and

Object-Oriented Programming (OOP). An important step in

establishing a measurement program is measures selection for

use [3]. Metrics selected should fit the process used and directly

impact delivered software quality. Different metrics are

appropriate for different products/processes within the same

organization. Metrics validation is another topic in software

measures as their acceptance depends on whether they can

predict important qualities.

 Defect prevention is performed at all Software

Development Life Cycle (SDLC) stages. Major activities related

to software defect prevention include: creation of a software

defect prevention plan, defect inspection, defect causal analysis,

classification of defects, defect prioritization and detection.

Suma and Nair [4] consider defect pertains to an inaccuracy or

blemish in a software product/process. The term usually refers to

errors, bugs, faults or failures [5]. The terms error, fault and

failure can be elaborated as „action that leads to incorrect result‟,

„erroneous decision caused by wrong interpretation of available

information‟ and „lack of ability to meet expected performance‟

respectively. Defect prevention aims at prohibiting defects

occurring beforehand [4]. Defect prevention can also be defined

as quality improvement process through defects identification

and root causes analysis and formulating effective

corrective/preventive measures to prevent such defects from

recurring [5,8].

Casual analysis is used for Root Cause Analysis (RCA) [9,

5] a technique for risks identification associated with distinctive

defects. IBM devised Orthogonal Defects Classification (ODC),

a common technique to unearth and classify defects in software

products [10-12]. Bean [12] recommends Performance and

Continuous Re-Commissioning Analysis Tool (PACRAT) to

create, revise and archive during defect prevention. Due to

software products diversified nature, there are no perfect/ideal

solutions to preclude defects [14].

Improved prediction of software defects through perceptrons
V.Jayaraj

*
 and N.Saravana Raman

Bharathidasan University, Trichy.

ABSTRACT

Occurrences of certain defects are inevitable despite meticulous planning, proper process

control, and good documentation during software development. Such defects lead to quality

degradation which can be the underlying reason for failure. Conscious efforts are required to

control and minimize software engineering defects, but this costs money, time and resources.

Predicting defective software module facilitates maintenance and corrective measures. In

Software Defect Prediction (SDP), predictive model estimation is based on code attributes to

assess software modules containing errors likelihood. This study proposes improved

activation function based on cubic spline for Multi-Layer Perceptron Neural Networks

(MLPNN) to classify SDP. The proposed method is evaluated using KC1 dataset.

 © 2014 Elixir All rights reserved

ARTICLE INFO

Article history:

Received: 21 June 2014;

Received in revised form:

25 July 2014;

Accepted: 8 August 2014;

Keywords

Software Defect Prediction (SDP),

Multi-Layer Perceptron Neural

Network (MLPNN),

Back-propagation algorithm.

Elixir Comp. Engg. 73 (2014) 26347-26352

Computer Engineering

Available online at www.elixirpublishers.com (Elixir International Journal)

Tele:

E-mail addresses: jaya_v2000@yahoo.com

 © 2014 Elixir All rights reserved

26348 V.Jayaraj and N.Saravana Raman/ Elixir Comp. Engg. 73 (2014) 26347-26352

MLPNN consists of units arranged in layers [14]. Each layer

has nodes and in a connected network, as considered here, each

node connects every node in subsequent layers. Each MLP has a

minimum of 3 layers including the input layer, one/more hidden

layers and the output layer. The input layer distributes inputs to

subsequent layers. Linear activation functions are present in

input layers but no thresholds. In addition to weights, each

hidden unit node and output node have thresholds associated

with them. Hidden unit nodes have nonlinear activation functions

and outputs linear activation functions. So, each signal feeding

into a node in subsequent layers has original input multiplied by

a weight with threshold added and passed through activation

function that is either linear or nonlinear (hidden units).

This study proposes to investigate classification accuracy of

MLPNN for a Software Defect Prediction (SDP) and proposes

improved activation function based on cubic spline for MLPNN.

The rest of the paper is organized as follows: section 2: literature

survey, section 3: Methodology, Section 4: results and discussion

and section 5: conclusion.

Related Work

Application of novel resampling strategies to SDP was

suggested by Pelayo and Dick [15] which focused on Synthetic

Minority Oversampling Technique (SMOTE) technique, a

method of over-sampling minority-class examples. The goal was

determining if SMOTE improved defect-prone modules

recognition, and cost involved. Experiments proved that after

SMOTE resampling, it was more balanced classification which

found 23% improvement in average geometric mean

classification accuracy on 4 benchmark datasets. The resulting

classifiers would never predict faulty minority class. This

machine learning problem was referred to as learning from

unbalanced datasets. It examined stratification, a technique to

learn unbalanced data that received little attention in software

defect prediction

A SDP models critique was presented by Fenton and Neil

[16]. Careful analysis of past/new results showed the conjecture

to lack support and that some models were misleading. Holistic

models were recommended for SDP, using Bayesian belief

networks was discussed. It also argued for research into a

software decomposition theory to test hypotheses about defect

introduction and help construct better software engineering

science.

A rough set model for SDP was proposed by Yang and Li

[17], where defect detectors focused on SDP datasets. A rough

set model to deal with the data sets of SDP attributes was

presented. Applying this model to a famous public domain data

set created by NASA's metrics data program showed its great

performance.

A hybrid approach to coping with high dimensionality and

class imbalance for SDP was proposed by Gao, et al., [18] where

the author applied it to datasets group in a SDP context which

used two classification learners and six feature selection

techniques. It compared technique to an approach where feature

selection and data sampling were used as also the case where

feature selection was used singly. Experimental results showed

that select Random Under-Sampling (RUS) Boost technique to

be more effective compared to the other approaches in improving

classification performance.

A novel evaluation method for defect prediction in software

systems was proposed by Wang, et al., [19], where the author

proposed evaluation metrics. It was applied to a dependency

graph from the target software system, and got a list of classes

ordered by their predicted defect degree under that metric. By

using actual defect data from a subversion database and

evaluating each metric‟s quality through a weighted reciprocal

ranking mechanism. This method revealed evaluated metrics

overall quality and also quality of prediction result for each class,

especially costly ones. Evaluation results and analysis showed

the method‟s efficiency and rationality.

A Neural Network (NN) based approach to model defects

severity in function based software systems was proposed by

Jianhong, et al., [20], where five NN based techniques were

explored. Comparative analysis was performed to model faults

severity present in function based software systems. NASA's

public domain defect dataset was used for modelling.

Comparison of various algorithms was made based on Mean

Absolute Error, Root Mean Square Error and Accuracy Values.

It concluded that of the five NN based techniques Resilient Back

propagation algorithm based NN was best to model software

components to varied fault severity levels. So, the proposed

algorithm can identify modules with major faults needing

immediate attention.

A constructive Radial Basis Function (RBF) NN to estimate

defects probability in software modules was proposed by

Bezerra, et al., [21].A new constructive RBF neural network

based algorithm was introduced aimed at predicting error

probability in fault-prone modules called RBF-Dynamic Decay

Adjustment (DDA) with probabilistic outputs. This method‟s

advantage was that it informs the test team of defect probability

in a module, instead of indicating whether the module was fault-

prone. Experimental results showed the new method

outperformed Pairwise Opposite Class-Nearest Neighbor (POC-

NN) algorithms and was equal to KNN regarding performance

and also produced less complex classifiers.

Efficient prediction of software fault proneness in modules

using Support Vector Machines (SVM) and probabilistic neural

networks was proposed by Al-Jamimi and Ahmed [22], that

focused on evaluating high-performance SVMs and Probabilistic

Neural Networks (PNNs) based fault predictors. Five public

NASA datasets from PROMISE repository were used to make

these models repeatable, refutable, and verifiable. According to

results, PNNs provided best prediction performance for most

datasets regarding accuracy rate.

Application of NN to predict software development faults

using object-oriented design metrics was proposed by Thwin and

Quah [23]. Object-oriented metrics are used to estimate quality.

Quality estimation in practice means estimating

reliability/maintainability. In an object-oriented metrics work

context, reliability was measured as number of defects. The

study was conducted on 3 industrial real-time systems having

many natural faults reported for three methods.

A survey ON SDP using software metrics was done by

Punitha and Chitra [24], which focused on identifying defective

modules and so the scope of software needing examination for

defects can be prioritized. This allowed developer to run test

cases in predicted modules using test cases. The new

methodology helps identify modules needing immediate

attention and so software reliability can be improved quicker as

higher priority defects are handled first. The aim of this

investigation is to increase classification accuracy of Data

mining algorithms. To start, it was initially planned to evaluate

existing classification algorithms based on its weakness.

Cost-sensitive boosting NN for software defect prediction

was proposed by Zheng [25], where three cost-sensitive boosting

algorithms were studied to boost NN for software defect

prediction. The first algorithm based on threshold-moving

attempts to shift classification threshold to non-fault prone

modules so that more fault prone modules are correctly

26349 V.Jayaraj and N.Saravana Raman/ Elixir Comp. Engg. 73 (2014) 26347-26352

classified. The other two weight updating based algorithms

incorporated misclassification costs in a weight update rule to

boost procedure so that algorithms boost more weights on

samples associated with misclassified defect-prone modules.

Performances of the three algorithms were evaluated using four

NASA projects datasets regarding a singular measure, the

Normalized Expected Cost of Misclassification (NECM).

Experimental results revealed that threshold-moving was best to

build cost sensitive software defect prediction models with

boosted NN among the three algorithms studied, especially for

datasets from projects developed by object-oriented language.

A robust recurrent NN modelling for software fault

detection and correction prediction was proposed by Hu, et al.,

[26] in which the author proposed the following approach. First,

recurrent NN were applied to model both processes. A

systematic networks configuration approach was developed

within the framework, with Genetic Algorithm (GA) according

to prediction performance. To ensure robust predictions, an extra

factor characterizing dispersion of prediction repetitions was

incorporated into performance function. Comparisons with feed

forward and NN analytical models were developed with regard

to a real data set.

An effort prediction framework for software defect

correction was proposed by Hassouna and Tahvildari [27] which

has four enhancements: Data Enrichment, Majority Voting,

Adaptive Threshold and Binary Clustering. This uses issues of

common properties to form clusters which produced predictions.

Numerical results showed a noticeable improvement over other

methods proposed.

A study of subgroup discovery approaches for defect

prediction was proposed by Rodriguez, et al., [28], where the

author used a descriptive approach for defect prediction instead

of precise classification techniques usually used. This allowed

characterisation of defective modules with simple rules that

could be easily applied by practitioners and deliver a practical

result instead of highly accurate results. Results showed that

generated rules can guide testing effort to improve software

development projects quality. Such rules indicate metrics,

threshold values and relationships between defective modules

metrics.

Methodology

Identification/removal of software defects is tedious and

time consuming. Improperly planned projects have defects and

time to spot and fix them is more than code development time.

Identification of modules necessitating re-engineering is a

reverse engineering sub-area focusing on faulty modules

prediction based on present information sources like

documentation/source code. Predicting defective module is

important in maintenance and reuse by simplifying system

working with information/reusable parts localization. Predictive

models estimation in software defect prediction is based on code

attributes to assess software modules with a likelihood of errors.

This study- investigates classification accuracy of Boosting

techniques for software defect prediction based on KC1 dataset.

KC1 Dataset

KC1 dataset is a public, NASA Metrics Data Program [29].

KC1 dataset is used to verify and improve predictive software

engineering models. KC1 is a C++ system implementing storage

management for ground data receipt and processing. The dataset

includes McCabe and Halstead features code extractors. The

measures are module based.

Defect detectors are assessed as follows:

a = When Classifier predicts no defects, module has no error.

b= When Classifier predicts no defects, module actually has

error.

c = When Classifier predicts some defects, module actually has

no error.

d = When Classifier predicts some defects, module actually has

error.

The accuracy, detection probability (pd) or recall,

probability of false alarm (pf), precision (prec) and effort are

calculated as

 (1)

 (2)

 (3)

 (4)

 (5)

The KC1 dataset includes 2109 instances, 22 different

attributes which are 5 different LOC, 3 McCabe metrics, 12

Halstead metrics, a branch count and 1 goal-field. Dataset

attribute information is as follows: McCabe's line count of code,

design complexity, cyclomatic complexity, effort, program

length, Halstead, total operands, class and others.

Examples from dataset:

Example 1 - 1.1, 1.4, 1.4, 1.4, 1.3, 1.3, 1.3, 1.3, 1.3, 1.3, 1.3, 1.3,

2, 2, 2, 2, 1.2, 1.2, 1.2, 1.2, 1.4, false

Example 2 - 1,

true

Example 3 - 83, 11, 1, 11, 171, 927.89, 0.04, 23.04, 40.27,

21378.61, 0.31, 1187.7,65, 10,6, 0,18, 25, 107, 64, 21, true.

Multilayer Perceptron Neural Network (MLPNN)

The MLPNN Model has three layers. The first is input layer,

the middle layer is a hidden layer and last layer is an output

layer. All layers consist of “n” neurons. All input layer neurons

are connected to middle layer neurons. The hidden layer neurons

outputs are connected to output layer neurons. The weights by

which they are connected are adjustable and adapt according to

inputs fed and trained [2]. Input layer consists of vector(x1...xp)

which is fed as input. Each variable‟s value is standardized

between „-1‟ to „1‟. A constant input called Bias of value 1.0 is

fed to each hidden layer; bias is multiplied by a weight and

added to sum going into neuron. At hidden layer, value from

each input neuron is multiplied by a weight (wji), and resulting

weighted values are added producing a combined value uj. The

weighted sum (uj), is fed into a transfer function, σ, which

outputs a value hj. Outputs from hidden layer are fed to neurons

of output layer. At output layer, each value from hidden layer is

multiplied by weight (wkj), and resulting weighted values are

added producing a combined value vj. Weighted sum (vj) is fed

into a transfer function, σ, which outputs value yk. The output of

model is “y”. The weights between input and hidden units

determine when each hidden unit is active, and by modifying

weights, a hidden unit chooses what it represents.

The purpose of training NN is to find set of weights that

approximates output of NN very close to target values. So it is

very important to decide on the hidden layers required, on

number of neurons to be used in each layer etc. In most NN, only

one hidden layer is used. Two/more hidden layers are used to

model data with discontinuities. Using two/more hidden layers

have no effect on results; instead they increased risk of

converging to local minima. The next issue is deciding how

26350 V.Jayaraj and N.Saravana Raman/ Elixir Comp. Engg. 73 (2014) 26347-26352

many neurons are needed in network‟s hidden layer. When

inadequate neurons are used, it may not fully train network and

also not yield good results. If too many neurons are used, time

needed to train may be too long and model may begin producing

noise [30].

Back propagation is a widely used algorithm for supervised

learning with multi-layered feed-forward networks. The idea of

back propagation learning algorithm [3l] is repeated application

of chain rule to compute each weight‟s influence in network

regarding an arbitrary error function E as shown in figure 1.

The back-propagation algorithm consists of the following

steps:

Each Input is multiplied by a weight that would

inhibit/excite input. The weighted sum of inputs is calculated

first, it computes total weighted input Xj, using formula:

 (6)

where yi is activity level of jth unit in previous layer and

Wij is weight of connection between ith and jth unit.

Figure 1: Back Propagation Network

Then weighed Xj is passed through a sigmoid function that

scales output in between a 0 and 1. Next, unit calculates activity

yj using some function of total weighted input. Sigmoid function

is used:

 (7)

Once output is calculated, it is compared to required output

and total Error E computed.

Once activities of output units are determined, the network

computes error E, defined by expression:

 (8)

where yj is activity level of ith unit in top layer and dj is desired

output of ith unit. Now error is propagated backwards.

1. Compute how fast error changes as activity of output unit

changes. This Error Derivative (EA) is difference between actual

and desired activity.

 (9)

2. Compute how fast error changes as total input received by

output unit changes. This (EI) is the answer from step 1

multiplied by rate at which output of a unit changes as its total

input changes.

 (10)

3. Compute how fast error changes as weight on connection into

an output unit changes. This (EW) is the answer from step 2

multiplied by activity level of unit from which connection

emanates.

 (11)

4. Compute how fast error changes as a unit‟s activity in

previous layer changes. This step allows application of back

propagation to multi-layer networks. When a unit‟s activity in a

previous layer changes, it affects activities of all output units

connected to it. So to compute overall effect on error, all separate

effects on output units are added. Each effect is simple to

calculate. It is the answer in step 2 multiplied by weight on

connection to output unit.

 (12)

By using steps 2 and 4, convert the EA‟s of one layer of

units into EA‟s for previous layer. This procedure is repeated to

get EA‟s for as many previous layers as needed. Once a unit‟s

EA is known, steps 2 and 3 are used to compute EW‟s on

incoming connections [32].

It is proposed to implement an improved activation function

based on cubic spline.

The proposed spline activation function reproduces shape of

whole cubic spline along directions specified by weight wj,

j=1,..,n and written as:

 
3

1

N

j i j ij

i

w x c w x 



 (13)

The new activation function can be written as:

   
1

n

j j j

j

f x w x 



 (14)

 and wj j are found using back propagation, thus

optimal set of parameters and coordinates are located.

The tracts in spline are described by a coefficients

combination. Local spline basis functions controlled by only 4

coefficients represent activation function. Catmull-Rom cubic

spline is used and its ith tract expressed as:

 
 

 
, 3 2

,

1
1

2

x i

i

y i

F u
F u u u u

F u

 
     

 

 (15)

Results and Discussion

The KC1 Dataset is used for the performance evaluation of

the proposed technique, 2107 samples was used of which 1391

samples are used as training set and 716 samples are used for

testing. The software complexity measures such as LOC

measure, Cyclomatic complexity, Base Halstead measures and

Derived Halstead measures are used to classify the software

modules. The proposed spline activation function reproduces the

shape of whole cubic spline along the directions specified by

weight wj, j=1,..,n. The Neural Network is made up of 20 input

neurons and two hidden layers. The results obtained for

classification accuracy, precision and recall are shown from

figure 2-4.

Figure 2. Classification accuracy

26351 V.Jayaraj and N.Saravana Raman/ Elixir Comp. Engg. 73 (2014) 26347-26352

Figure 2 show that the proposed MLPNN achieves an

increased classification accuracy of 1.08% than the existing

MLPNN.

Figure 3. Precision

Figure 3 shows that the proposed MLPNN achieves

increased precision of 0.5%than the existing MLPNN.

Figure 4. Rrecall

From figure 4 it is shown that the proposed MLPNN

achieves a high recall percentage of 00.9202.

Conclusion

Software Defect Prediction (SDP) helps developers identify

defects based on present software metrics through data mining

techniques. It is a major requirement to enhance software quality.

It helps reduce software development cost in

development/maintenance phases. In this paper proposes to

investigate classification accuracy of MLPNN for a SDP and

proposes improved activation function based on cubic spline for

MLPNN. The proposed MLPNN shows 1.08% increased

classification accuracy, 0.5% precision and 0.11% recall than the

existing MLPNN. Further investigation can be carried out in the

direction of probability recurrences of neural network.

References

[1] Bergander, T., Luo, Y., & Ben Hamza, A. (2007, August).

Software defects prediction using operating characteristic curves.

In Information Reuse and Integration, 2007. IRI 2007. IEEE

International Conference on (pp. 713-718). IEEE.

[2] Rawat, M. S., &Dubey, S. K. (2012). Software Defect

Prediction Models for Quality Improvement: A Literature Study.

International Journal of Computer Science Issues(IJCSI), 9(5).

[3] Scotto, M., Sillitti, A., Succi, G., &Vernazza, T. (2004).

Dealing with Software Metrics Collection and Analysis: a

Relational Approach. Stud. Inform. Univ.,3(3), 343-366.

[4] V. Suma and T. R. G. K. Nair, “Effective Defect Prevention

Approach in Software Process for Achieving Better Quality

Levels,” World Academy of Science, Engineering and

Technology (WASET), 42, pp. 258_262, 2008.

[5] B. Clark and D. Zubrow, How Good Is the Software: A

review of Defect Prediction Techniques, sponsored by the U.S.

department of Defense by Carnegie Mellon University, version

1.0, page 5, 2001.

[6] C. P. Chang and C. P. Chu., Defect prevention in software

processes: An action based approach, The Journal of Systems

and Software 80, 559–570, 2007.

[7] S. Kumaresh and R. Baskaran, Defect Analysis and

Prevention for Software Process Quality Improvement,

International Journal of Computer Applications, Volume 8–

No.7, pp. 42_47, 2010.

[8] M. Kalinoski, G. H. Travassos and D. N. Card., “Towards a

Defect Prevention Based Process Improvement Approach,” 34th

Euromicro Conference Software Engineering and Advanced

Applications (SEAA), IEEE Computer Society, pp. 199_206,

2010.

[9] P. Trivedi. & S. Pachori, Modeling and Analysis of Software

Defect Prevention Using ODC, International Journal of

Advanced Computer Science and Applications (IJACSA), Vol.

1, No. 3, pp. 75_77, 2010.

[10] A. Shenvi, “Defect Prevention with Orthogonal Defect

Classification,” International Software Engineering Conference

(ISEC‟09), ACM, pp. 83_87, 2009.

[11] P. Tiejun, Z. Leina and F. C. bin., “Defect Tracing System

Based on Orthogonal Defect Classification,” International

Conference on Computer Science and Software Engineering

(CSSE), IEEE, pp. 574_577, 2008.

[12] E. Bean, Defect Prevention and Detection in Software for

Automated Test Equipment,” Instrumentation & Measurement

Magazine, IEEE, Volume: 11 Issue: 4, pp. 16_23, 2008.

[13] Faizan, M., Khan, M. N. A., &Ulhaq, S. (2012).

Contemporary Trends in Defect Prevention: A Survey Report.

International Journal of Modern Education and Computer

Science (IJMECS), 4(3), 14.

[14] Nazzal, J. M., El-Emary, I. M., &Najim, S. A. (1818).

Multilayer perceptron neural network (MLPs) For analyzing the

properties of Jordan oil shale. World Applied Sciences Journal.

ISSN, 4952, 546-552.

[15] Pelayo, L., & Dick, S. (2007, June). Applying novel

resampling strategies to software defect prediction. In Fuzzy

Information Processing Society, 2007. NAFIPS'07. Annual

Meeting of the North American (pp. 69-72). IEEE.

[16] Fenton, N. E., & Neil, M. (1999). A critique of software

defect prediction models. Software Engineering, IEEE

Transactions on, 25(5), 675-689.

[17] Yang, W., & Li, L. (2008, October). A Rough Set Model for

Software Defect Prediction. In Intelligent Computation

Technology and Automation (ICICTA), 2008 International

Conference on (Vol. 1, pp. 747-751). IEEE.

[18] Gao, K., Khoshgoftaar, T. M., & Napolitano, A. (2012,

December). A Hybrid Approach to Coping with High

Dimensionality and Class Imbalance for Software Defect

Prediction. In Machine Learning and Applications (ICMLA),

2012 11th International Conference on (Vol. 2, pp. 281-288).

IEEE.

[19] Wang, W., Ding, X., Li, C., & Wang, H. (2010, December).

A Novel Evaluation Method for Defect Prediction in Software

Systems. In Computational Intelligence and Software

Engineering (CiSE), 2010 International Conference on (pp. 1-5).

IEEE.

26352 V.Jayaraj and N.Saravana Raman/ Elixir Comp. Engg. 73 (2014) 26347-26352

[20] Jianhong, Z., Sandhu, P. S., & Rani, S. (2010, August). A

Neural network based approach for modeling of severity of

defects in function based software systems. In Electronics and

Information Engineering (ICEIE), 2010 International Conference

On (Vol. 2, pp. V2-568). IEEE.

[21] Bezerra, M. E., Oliveira, A. L., &Meira, S. R. (2007,

August). A constructive rbf neural network for estimating the

probability of defects in software modules. In Neural Networks,

2007. IJCNN 2007. International Joint Conference on (pp. 2869-

2874). IEEE.

[22] Al-Jamimi, H. A., & Ahmed, M. (2013, June). Machine

learning-based software quality prediction models: state of the

art. In Information Science and Applications (ICISA), 2013

International Conference on (pp. 1-4). IEEE.

[23] Thwin, M. M. T., &Quah, T. S. (2005). Application of

neural networks for software quality prediction using object-

oriented metrics. Journal of systems and software, 76(2), 147-

156.

[24] Punitha, K., &Chitra, S. (2013, February). Software defect

prediction using software metrics-A survey. In Information

Communication and Embedded Systems (ICICES), 2013

International Conference on (pp. 555-558). IEEE.

[25] Zheng, J. (2010). Cost-sensitive boosting neural networks

for software efect prediction. Expert Systems with Applications,

37(6), 4537-4543.

[26] Hu, Q. P., Xie, M., Ng, S. H., &Levitin, G. (2007). Robust

recurrent neural network modeling for software fault detection

and correction prediction. Reliability Engineering & System

Safety, 92(3), 332-340.

[27] Hassouna, A., &Tahvildari, L. (2010). An effort prediction

framework for software defect correction. Information and

Software Technology, 52(2), 197-209.

[28] Rodriguez, D., Ruiz, R., Riquelme, J. C., & Harrison, R.

(2013). A Study of Subgroup Discovery Approaches for Defect

Prediction. Information and Software Technology.

[29] Jayaraj, V., & Raman, N. S. (2013). Software Defect

Prediction using Boosting Techniques. International Journal of

Computer Applications, 65(13).

[30] Tamboli, Z. J., &Nikam, P. B. (2013). Study of Multilayer

Perceptron Neural Network for Antenna Characteristics

Analysis. International Journal, 3(8).

[31] Riedmiller, M., & Braun, H. (1993). A direct adaptive

method for faster backpropagation learning: The RPROP

algorithm. In Neural Networks, 1993., IEEE International

Conference on (pp. 586-591). IEEE.

[32] Gupta, C. (2006). Implementation of Back Propagation

Algorithm (of neural networks) in VHDL. Master of Engineering

Thesis, Thapar Institute of Engineering & Technology (Deemed

University), Patiala, India.

