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Introduction 

Software defects detected by customers ensure a major cost 

penalty for software companies. So, knowledge of how many 

defects to anticipate in a software product at any stage during 

development is a valuable asset. The ability to estimate defects 

will improve decision processes about releasing a software 

product considerably. Also, it improves software products 

production process through employing a prediction model that 

considers software production processes dynamic nature and 

reliably predicts defects [1]. 

A software defect is a mistake, error, bug, flaw, failure, or 

fault in a computer program/system that can generate an 

inaccurate/unexpected outcome, or preclude software from 

behaving as intended. A project team plans to create a quality 

software product with zero/little defects. High risk components 

in a software project are caught quickly to enhance software 

quality. Software defects incur cost regarding quality and time. 

Also, identifying/rectifying defects is time consuming and 

expensive. It is practically impossible to eliminate every defect 

but reducing defects magnitude and their adverse effect on 

projects is possible [2]. 

Software metrics describe program complexity and estimate 

software development time. “How to predict software quality 

through software metrics, before being deployed” is a key 

question, triggering much research to uncover an answer. There 

are many papers supporting statistical models and metrics which 

profess to answer quality questions. Usually, software metrics 

elucidate software product‟s quantitative measurements or its 

specifications. Defects are defined in disparate ways but are 

generally aberrations from specifications or ardent expectations 

which lead to procedure failures. Defect data analysis is of two 

types; Classification and prediction that can extract models to 

describe significant defect data classes or predict future defect 

trends. 

Software metrics are a broad range of computer software 

measurement applicable to software processes with the aim of 

improving it continuously. Measurement is used to assist quality 

control, estimation, productivity assessment and project control. 

Measurement helps software engineers to assess technical work 

products quality and to assist in tactical decision making as 

project proceeds. There are many metrics based on source code 

analysis developed during the last decades for different 

programming paradigms like structural programming and 

Object-Oriented Programming (OOP). An important step in 

establishing a measurement program is measures selection for 

use [3]. Metrics selected should fit the process used and directly 

impact delivered software quality. Different metrics are 

appropriate for different products/processes within the same 

organization. Metrics validation is another topic in software 

measures as their acceptance depends on whether they can 

predict important qualities. 

 Defect prevention is performed at all Software 

Development Life Cycle (SDLC) stages. Major activities related 

to software defect prevention include: creation of a software 

defect prevention plan, defect inspection, defect causal analysis, 

classification of defects, defect prioritization and detection. 

Suma and Nair [4] consider defect pertains to an inaccuracy or 

blemish in a software product/process. The term usually refers to 

errors, bugs, faults or failures [5]. The terms error, fault and 

failure can be elaborated as „action that leads to incorrect result‟, 

„erroneous decision caused by wrong interpretation of available 

information‟ and „lack of ability to meet expected performance‟ 

respectively. Defect prevention aims at prohibiting defects 

occurring beforehand [4]. Defect prevention can also be defined 

as quality improvement process through defects identification 

and root causes analysis and formulating effective 

corrective/preventive measures to prevent such defects from 

recurring [5,8]. 

Casual analysis is used for Root Cause Analysis (RCA) [9, 

5] a technique for risks identification associated with distinctive 

defects. IBM devised Orthogonal Defects Classification (ODC), 

a common technique to unearth and classify defects in software 

products [10-12]. Bean [12] recommends Performance and 

Continuous Re-Commissioning Analysis Tool (PACRAT) to 

create, revise and archive during defect prevention. Due to 

software products diversified nature, there are no perfect/ideal 

solutions to preclude defects [14].  
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MLPNN consists of units arranged in layers [14]. Each layer 

has nodes and in a connected network, as considered here, each 

node connects every node in subsequent layers. Each MLP has a 

minimum of 3 layers including the input layer, one/more hidden 

layers and the output layer. The input layer distributes inputs to 

subsequent layers. Linear activation functions are present in 

input layers but no thresholds. In addition to weights, each 

hidden unit node and output node have thresholds associated 

with them. Hidden unit nodes have nonlinear activation functions 

and outputs linear activation functions. So, each signal feeding 

into a node in subsequent layers has original input multiplied by 

a weight with threshold added and passed through activation 

function that is either linear or nonlinear (hidden units). 

This study proposes to investigate classification accuracy of 

MLPNN for a Software Defect Prediction (SDP) and proposes 

improved activation function based on cubic spline for MLPNN. 

The rest of the paper is organized as follows: section 2: literature 

survey, section 3: Methodology, Section 4: results and discussion 

and section 5: conclusion. 

Related Work 

Application of novel resampling strategies to SDP was 

suggested by Pelayo and Dick [15] which focused on Synthetic 

Minority Oversampling Technique (SMOTE) technique, a 

method of over-sampling minority-class examples. The goal was 

determining if SMOTE improved defect-prone modules 

recognition, and cost involved. Experiments proved that after 

SMOTE resampling, it was more balanced classification which 

found 23% improvement in average geometric mean 

classification accuracy on 4 benchmark datasets. The resulting 

classifiers would never predict faulty minority class. This 

machine learning problem was referred to as learning from 

unbalanced datasets. It examined stratification, a technique to 

learn unbalanced data that received little attention in software 

defect prediction 

A SDP models critique was presented by Fenton and Neil 

[16]. Careful analysis of past/new results showed the conjecture 

to lack support and that some models were misleading. Holistic 

models were recommended for SDP, using Bayesian belief 

networks was discussed. It also argued for research into a 

software decomposition theory to test hypotheses about defect 

introduction and help construct better software engineering 

science. 

A rough set model for SDP was proposed by Yang and Li 

[17], where defect detectors focused on SDP datasets. A rough 

set model to deal with the data sets of SDP attributes was 

presented. Applying this model to a famous public domain data 

set created by NASA's metrics data program showed its great 

performance. 

A hybrid approach to coping with high dimensionality and 

class imbalance for SDP was proposed by Gao, et al., [18] where 

the author applied it to datasets group in a SDP context which 

used two classification learners and six feature selection 

techniques. It compared technique to an approach where feature 

selection and data sampling were used as also the case where 

feature selection was used singly. Experimental results showed 

that select Random Under-Sampling (RUS) Boost technique to 

be more effective compared to the other approaches in improving 

classification performance. 

A novel evaluation method for defect prediction in software 

systems was proposed by Wang, et al., [19], where the author 

proposed evaluation metrics. It was applied to a dependency 

graph from the target software system, and got a list of classes 

ordered by their predicted defect degree under that metric. By 

using actual defect data from a subversion database and 

evaluating each metric‟s quality through a weighted reciprocal 

ranking mechanism. This method revealed evaluated metrics 

overall quality and also quality of prediction result for each class, 

especially costly ones. Evaluation results and analysis showed 

the method‟s efficiency and rationality. 

A Neural Network (NN) based approach to model defects 

severity in function based software systems was proposed by 

Jianhong, et al., [20], where five NN based techniques were 

explored. Comparative analysis was performed to model faults 

severity present in function based software systems. NASA's 

public domain defect dataset was used for modelling. 

Comparison of various algorithms was made based on Mean 

Absolute Error, Root Mean Square Error and Accuracy Values. 

It concluded that of the five NN based techniques Resilient Back 

propagation algorithm based NN was best to model software 

components to varied fault severity levels. So, the proposed 

algorithm can identify modules with major faults needing 

immediate attention. 

A constructive Radial Basis Function (RBF) NN to estimate 

defects probability in software modules was proposed by 

Bezerra, et al., [21].A new constructive RBF neural network 

based algorithm was introduced aimed at predicting error 

probability in fault-prone modules called RBF-Dynamic Decay 

Adjustment (DDA) with probabilistic outputs. This method‟s 

advantage was that it informs the test team of defect probability 

in a module, instead of indicating whether the module was fault-

prone. Experimental results showed the new method 

outperformed Pairwise Opposite Class-Nearest Neighbor (POC-

NN) algorithms and was equal to KNN regarding performance 

and also produced less complex classifiers. 

Efficient prediction of software fault proneness in modules 

using Support Vector Machines (SVM) and probabilistic neural 

networks was proposed by Al-Jamimi and Ahmed [22], that 

focused on evaluating high-performance SVMs and Probabilistic 

Neural Networks (PNNs) based fault predictors. Five public 

NASA datasets from PROMISE repository were used to make 

these models repeatable, refutable, and verifiable. According to 

results, PNNs provided best prediction performance for most 

datasets regarding accuracy rate. 

Application of NN to predict software development faults 

using object-oriented design metrics was proposed by Thwin and 

Quah [23]. Object-oriented metrics are used to estimate quality. 

Quality estimation in practice means estimating 

reliability/maintainability. In an object-oriented metrics work 

context, reliability was measured as number of defects. The 

study was conducted on 3 industrial real-time systems having 

many natural faults reported for three methods. 

A survey ON SDP using software metrics was done by 

Punitha and Chitra [24], which focused on identifying defective 

modules and so the scope of software needing examination for 

defects can be prioritized. This allowed developer to run test 

cases in predicted modules using test cases. The new 

methodology helps identify modules needing immediate 

attention and so software reliability can be improved quicker as 

higher priority defects are handled first. The aim of this 

investigation is to increase classification accuracy of Data 

mining algorithms. To start, it was initially planned to evaluate 

existing classification algorithms based on its weakness. 

Cost-sensitive boosting NN for software defect prediction 

was proposed by Zheng [25], where three cost-sensitive boosting 

algorithms were studied to boost NN for software defect 

prediction. The first algorithm based on threshold-moving 

attempts to shift classification threshold to non-fault prone 

modules so that more fault prone modules are correctly 
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classified. The other two weight updating based algorithms 

incorporated misclassification costs in a weight update rule to 

boost procedure so that algorithms boost more weights on 

samples associated with misclassified defect-prone modules. 

Performances of the three algorithms were evaluated using four 

NASA projects datasets regarding a singular measure, the 

Normalized Expected Cost of Misclassification (NECM). 

Experimental results revealed that threshold-moving was best to 

build cost sensitive software defect prediction models with 

boosted NN among the three algorithms studied, especially for 

datasets from projects developed by object-oriented language. 

A robust recurrent NN modelling for software fault 

detection and correction prediction was proposed by Hu, et al., 

[26] in which the author proposed the following approach. First, 

recurrent NN were applied to model both processes. A 

systematic networks configuration approach was developed 

within the framework, with Genetic Algorithm (GA) according 

to prediction performance. To ensure robust predictions, an extra 

factor characterizing dispersion of prediction repetitions was 

incorporated into performance function. Comparisons with feed 

forward and NN analytical models were developed with regard 

to a real data set. 

An effort prediction framework for software defect 

correction was proposed by Hassouna and Tahvildari [27] which 

has four enhancements: Data Enrichment, Majority Voting, 

Adaptive Threshold and Binary Clustering. This uses issues of 

common properties to form clusters which produced predictions. 

Numerical results showed a noticeable improvement over other 

methods proposed.  

A study of subgroup discovery approaches for defect 

prediction was proposed by Rodriguez, et al., [28], where the 

author used a descriptive approach for defect prediction instead 

of precise classification techniques usually used. This allowed 

characterisation of defective modules with simple rules that 

could be easily applied by practitioners and deliver a practical 

result instead of highly accurate results. Results showed that 

generated rules can guide testing effort to improve software 

development projects quality. Such rules indicate metrics, 

threshold values and relationships between defective modules 

metrics. 

Methodology 

Identification/removal of software defects is tedious and 

time consuming. Improperly planned projects have defects and 

time to spot and fix them is more than code development time. 

Identification of modules necessitating re-engineering is a 

reverse engineering sub-area focusing on faulty modules 

prediction based on present information sources like 

documentation/source code. Predicting defective module is 

important in maintenance and reuse by simplifying system 

working with information/reusable parts localization. Predictive 

models estimation in software defect prediction is based on code 

attributes to assess software modules with a likelihood of errors. 

This study- investigates classification accuracy of Boosting 

techniques for software defect prediction based on KC1 dataset.  

KC1 Dataset  

KC1 dataset is a public, NASA Metrics Data Program [29]. 

KC1 dataset is used to verify and improve predictive software 

engineering models. KC1 is a C++ system implementing storage 

management for ground data receipt and processing. The dataset 

includes McCabe and Halstead features code extractors. The 

measures are module based.  

Defect detectors are assessed as follows:  

a = When Classifier predicts no defects, module has no error.  

b= When Classifier predicts no defects, module actually has 

error.  

c = When Classifier predicts some defects, module actually has 

no error.  

d = When Classifier predicts some defects, module actually has 

error.   

The accuracy, detection probability (pd) or recall, 

probability of false alarm (pf), precision (prec) and effort are 

calculated as  

  (1) 

 

   (2) 

    (3) 

    (4) 

  (5)  

The KC1 dataset includes 2109 instances, 22 different 

attributes which are 5 different LOC, 3 McCabe metrics, 12 

Halstead metrics, a branch count and 1 goal-field. Dataset 

attribute information is as follows: McCabe's line count of code, 

design complexity, cyclomatic complexity, effort, program 

length, Halstead, total operands, class and others. 

Examples from dataset:  

Example 1 - 1.1, 1.4, 1.4, 1.4, 1.3, 1.3, 1.3, 1.3, 1.3, 1.3, 1.3, 1.3, 

2, 2, 2, 2, 1.2, 1.2, 1.2, 1.2, 1.4, false  

Example 2 - 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 

true  

Example 3 - 83, 11, 1, 11, 171, 927.89, 0.04, 23.04, 40.27, 

21378.61, 0.31, 1187.7,65, 10,6, 0,18, 25, 107, 64, 21, true. 

Multilayer Perceptron Neural Network (MLPNN)  

The MLPNN Model has three layers. The first is input layer, 

the middle layer is a hidden layer and last layer is an output 

layer. All layers consist of “n” neurons. All input layer neurons 

are connected to middle layer neurons. The hidden layer neurons 

outputs are connected to output layer neurons. The weights by 

which they are connected are adjustable and adapt according to 

inputs fed and trained [2]. Input layer consists of vector(x1...xp) 

which is fed as input. Each variable‟s value is standardized 

between „-1‟ to „1‟. A constant input called Bias of value 1.0 is 

fed to each hidden layer; bias is multiplied by a weight and 

added to sum going into neuron. At hidden layer, value from 

each input neuron is multiplied by a weight (wji), and resulting 

weighted values are added producing a combined value uj. The 

weighted sum (uj), is fed into a transfer function, σ, which 

outputs a value hj. Outputs from hidden layer are fed to neurons 

of output layer. At output layer, each value from hidden layer is 

multiplied by weight (wkj), and resulting weighted values are 

added producing a combined value vj. Weighted sum (vj) is fed 

into a transfer function, σ, which outputs value yk. The output of 

model is “y”. The weights between input and hidden units 

determine when each hidden unit is active, and by modifying 

weights, a hidden unit chooses what it represents. 

The purpose of training NN is to find set of weights that 

approximates output of NN very close to target values. So it is 

very important to decide on the hidden layers required, on 

number of neurons to be used in each layer etc. In most NN, only 

one hidden layer is used. Two/more hidden layers are used to 

model data with discontinuities. Using two/more hidden layers 

have no effect on results; instead they increased risk of 

converging to local minima. The next issue is deciding how 
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many neurons are needed in network‟s hidden layer. When 

inadequate neurons are used, it may not fully train network and 

also not yield good results. If too many neurons are used, time 

needed to train may be too long and model may begin producing 

noise [30]. 

Back propagation is a widely used algorithm for supervised 

learning with multi-layered feed-forward networks. The idea of 

back propagation learning algorithm [3l] is repeated application 

of chain rule to compute each weight‟s influence in network 

regarding an arbitrary error function E as shown in figure 1. 

The back-propagation algorithm consists of the following 

steps:  

Each Input is multiplied by a weight that would 

inhibit/excite input. The weighted sum of inputs is calculated 

first, it computes total weighted input Xj, using formula:  

   (6) 

where yi is activity level of jth unit in previous layer and 

Wij is weight of connection between ith and jth unit.  

  

Figure 1: Back Propagation Network 

Then weighed Xj is passed through a sigmoid function that 

scales output in between a 0 and 1.  Next, unit calculates activity 

yj using some function of total weighted input. Sigmoid function 

is used:    

    (7) 

Once output is calculated, it is compared to required output 

and total Error E computed. 

Once activities of output units are determined, the network 

computes error E, defined by expression: 

   (8) 

where yj is activity level of ith unit in top layer and dj is desired 

output of ith unit. Now error is propagated backwards.  

1. Compute how fast error changes as activity of output unit 

changes. This Error Derivative (EA) is difference between actual 

and desired activity.  

    (9) 

2. Compute how fast error changes as total input received by 

output unit changes. This (EI) is the answer from step 1 

multiplied by rate at which output of a unit changes as its total 

input changes.   

    (10) 

3. Compute how fast error changes as weight on connection into 

an output unit changes. This (EW) is the answer from step 2 

multiplied by activity level of unit from which connection 

emanates.    

 (11) 

4. Compute how fast error changes as a unit‟s activity in 

previous layer changes. This step allows application of back 

propagation to multi-layer networks. When a unit‟s activity in a 

previous layer changes, it affects activities of all output units 

connected to it. So to compute overall effect on error, all separate 

effects on output units are added. Each effect is simple to 

calculate. It is the answer in step 2 multiplied by weight on 

connection to output unit.    

  (12) 

By using steps 2 and 4, convert the EA‟s of one layer of 

units into EA‟s for previous layer. This procedure is repeated to 

get EA‟s for as many previous layers as needed. Once a unit‟s 

EA is known, steps 2 and 3 are used to compute EW‟s on 

incoming connections [32]. 

It is proposed to implement an improved activation function 

based on cubic spline. 

The proposed spline activation function reproduces shape of 

whole cubic spline along directions specified by weight wj, 

j=1,..,n and written as: 

 
3

1

N

j i j ij

i

w x c w x 



  (13)  

The new activation function can be written as:  

 

   
1

n

j j j

j

f x w x 



  (14) 

 and wj j  are found using back propagation, thus 

optimal set of parameters and coordinates are located. 

The tracts in spline are described by a coefficients 

combination. Local spline basis functions controlled by only 4 

coefficients represent activation function. Catmull-Rom cubic 

spline is used and its ith tract expressed as: 

 

 
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F u
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  (15) 

Results and Discussion 

The KC1 Dataset is used for the performance evaluation of 

the proposed technique, 2107 samples was used of which 1391 

samples are used as training set and 716 samples are used for 

testing. The software complexity measures such as LOC 

measure, Cyclomatic complexity, Base Halstead measures and 

Derived Halstead measures are used to classify the software 

modules. The proposed spline activation function reproduces the 

shape of whole cubic spline along the directions specified by 

weight wj, j=1,..,n. The Neural Network is made up of 20 input 

neurons and two hidden layers. The results obtained for 

classification accuracy, precision and recall are shown from 

figure 2-4.  
 

Figure 2. Classification accuracy 
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Figure 2 show that the proposed MLPNN achieves an 

increased classification accuracy of 1.08% than the existing 

MLPNN. 

 

Figure 3. Precision 

Figure 3 shows that the proposed MLPNN achieves 

increased precision of 0.5%than the existing MLPNN. 

 

Figure 4. Rrecall 

From figure 4 it is shown that the proposed MLPNN 

achieves a high recall percentage of 00.9202. 

Conclusion 

Software Defect Prediction (SDP) helps developers identify 

defects based on present software metrics through data mining 

techniques. It is a major requirement to enhance software quality. 

It helps reduce software development cost in 

development/maintenance phases. In this paper proposes to 

investigate classification accuracy of MLPNN for a SDP and 

proposes improved activation function based on cubic spline for 

MLPNN. The proposed MLPNN shows 1.08% increased 

classification accuracy, 0.5% precision and 0.11% recall than the 

existing MLPNN. Further investigation can be carried out in the 

direction of probability recurrences of neural network. 
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