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ABSTRACT
In this paper, the new extended (G'/G) -expansion method is used for constructing the

new exact traveling wave solutions of nonlinear evolution equations arising in mathematical
physics namely, the (2+1)-dimensional modified Zakharov-Kuznetsov equation. As a result,
the traveling wave solutions are expressed in terms of hyperbolic, trigonometric and rational
functions. Moreover, these methods could be more effectively used to deal with higher
dimensional and higher order nonlinear evolution equations which frequently arise in many

Keywords ; - scientific real time application fields. It is shown that the method provides a powerful
New extended (G'/G)-expansion  athematical tool for solving nonlinear wave equations in applied mathematics,
method, ) ) o mathematical physics and engineering problems.
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Traveling wave solutions,

Solitary wave solutions.

Introduction

The investigation of the travelling wave solutions for nonlinear partial differential equations plays an important role in the study
of nonlinear physical phenomena. Nonlinear wave phenomena appears in various scientific and engineering fields, such as fluid
mechanics, plasma physics, optical fibers, biology, solid state physics, chemical kinematics, chemical physics and geochemistry.
Nonlinear wave phenomena of dispersion, dissipation, diffusion, reaction and convection are very important in nonlinear wave

equations. In the past several decades, there have been significant improvements in the study of exact solutions. A variety of powerful

methods, such as the Miura transformation method[1], the Jacobi elliptic function expansion method [2], the (G'/G)

-expansion
method [3-12], the modified simple equation method [13, 14], the method of bifurcation of planar dynamical systems [15, 16], the

wave of translation method [17], the ansatz method [18, 19], the Darboux transformation method [20], the Cole-Hopf transformation

!
method[21], the Exp-function method [22-24], the inverse scattering transform method[25], the new extended (G'/G) -expansion

method [26] and so on.

4 G'/G)

The objective of this article is to be relevant the new extende -expansion method to construct the exact solutions for

nonlinear evolution equations in mathematical physics via the (2+1)-dimensional modified Zakharov-Kuznetsov equation.

The article is prepared as follows: In Section 2, the new extended (G'/G) -expansion method is discussed. In Section 3, we
apply this method to the nonlinear evolution equations pointed out above; in section 4, graphical representation of solutions; in section
5 conclusions are given.

Material and Method

u(x,t)

Suppose we have a nonlinear partial differential equation for in the form

P(u,u,,u,,u,,u,,U,,--)=0

)
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where P isa polynomial in its arguments. The main steps of the method are as follows:

Step 1: By taking u(x,t) =u(s) , g=X-Vt , Where Vs the speed of the traveling wave . we look for traveling wave

solutions of Eq. (1), and transform it to the ordinary differential equation
Qu,u’,u"u"--)=0 @
Where prime denotes the derivative with respect to S .
Step 2: Introduce the solution u(s) of Eq. (2) in the finite series form:
a,(G'/G)! |
[1+ A(G'/G)]

uE) =>" { +b, (G’/G)i-l\/a[1+1(e'/e)2]},
j=-n U

@)
Where G=G(S) satisfying the equation

G"+uG=0 @
a;,b;(j=-n,...,n)

In which and 4 are constants to be determined later, and o=+l pu#0. Fix n by balancing the

highest-order derivative term with the nonlinear term in the reduced equation (2).

’ i
Step 3. Inserting Eq.(4) into Eq.(3) and making use of Eq.(5) and then extracting all terms of powers of (G'/G) and

(G'1G)} Joll+(G'IG) I ]

together set each coefficient of them to zero yield a over-determined system of algebraic

equations and then solving this system of algebraic equations for ai’bi (i=-n--n) and AV , we obtain several sets of
solutions.
Step 4. For the general solutions of Eq.(5), we have
G’ Asinh(w/— ,u§)+ Bcosh(W/—,uf)
u<0, —=\-u : =FR(5)
G Acoshly/— &)+ Bsinh(y— u&)

N G’ ACOS(\/ZR:)— BSin(\/;é:
#>0 G ﬂ(Asin(ﬁ§)+ B cos(y/ué

A B

GI

3} ~P,(®) .

a,b (i= —n,"',n), AV and (6) into Eq. (4) and obtain

where are arbitrary constants. At last, inserting the values of
required traveling wave solutions of Eq.(1).
Application of the method

In this section, we employ the method to obtain some new and more general exact traveling wave solutions of the celebrated
(2+1)-dimensional modified Zakharov-Kuznetsov equation. Let us consider the (2+1)-dimensional modified Zakharov-Kuznetsov
equation,

U, +U’U, +Ug +u,, =0. )

We utilize the traveling wave variable u@m) =u(x,y, z,1) , ¢=X+y-Mt , EQ. (6) is carried to an ODE
~Vu'+uPu'+2u" =0 %
Eq. (7) is integrable, therefore, integrating with respect to T once yields:

L-Vu +£u3 +2u" =0,
3 8)
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where L is an integration constant. Balancing the highest-order derivative term and nonlinear term in Eq.(8), therefore, we can

write the form of the solutions of Eq.(8)

a,(G'/G) a,[1+4(G/G)]

_ )yl 1, .,
u(é):a°+l+/1(G’/G)+ (G/6) +b,(G'/G) \/a[l+;(G/G) }

g figen]

where G=G(S) satisfies Eq.(4). Substituting (9) along with Eq.(4) into Eq.(8), collecting all terms with the same powers of
, . ' j ' 2
@/G)! . (G/6) [o[1+(G/G) /u]

five algebraic equations.

, and setting them to zero, we get a over-determined system that consists of twenty-

Solving this over-determined system with the aid of Maple, we have the following results

Case 1:

L=0V =4u,A=4,a, =04, —+jﬂa—+2«/ 3(2u+1)b, =0,b, =0,b, =0
Case 2:

L=0V =4u,A=A,a, =+2J-3u,a, =+2/-3u,a, =0,b, =0,b, =0,b, =0

Case 3:

L=0V =-8u,A=0,a, =+2J/-3u,a, =0,a, =+2/-3,b, =0,b, =0,b, =0

Case 4:

L = +167= 32 A(Pu+1)V = -4u(322 u+2) A= 4,8, = +27-3u,a, = 27/~ 34u
a, =+27-3(2u+1)b, =0,b, =0,b, =0

Case 5:

L=0V =—2u,A=2,a,=0a,=0a, =0,b, =0,b, =+2/-3,b, =0

L=0V =—2u,A=2,a,=0a,=0,a, =0b,=0b, =+24/3,b, =0
Case 6:

L=O,V=,u,l=0,a_1=0,a0=O,ai=i«/—3,b_l=0,b0=O,b1=i,/—3,u
L=0V =uA=0a,=0a,=0a =+/-3,b, =0,b, =+/3u

Case 7:
L=0V =—2u,A=4,a,=0,a,=0,a =0,b, =0,b, =0,b, =+2,/-3u
L=0V =—2u,A=2,a,=0,a,=0,a =0b, =0b, =0,b, =+2,/3u
Case 8:
L=0V =y, A=2A,a, =+J-3u,8, = +J/—34u,a, =0,b, = 0,b, =+/~3u,b, =0

L=0V =uA=Aa, =+J-3u,a, =+/-34u,a, =0,b, =0,b, =+/3p,b, =0
Now substituting Case 1- Case 8 and Eq. (4) into Eq.(9), we deduce abundant traveling wave solutions of Eq. (6) as follows.

u<0

When , we have the following hyperbolic function solutions:
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Family 1:
0 ()= 8 L 2J=3(22u+1)p,)
' + \/_ 1+ A(p,)
where & = X~ 44
Family 2:
0, (&)= 4273 2=3u(1+ A(p,))
(p)
where & = X~ 444
Family 3:
U, (&) =+24-3(p, )+ V=34
()
where & = X_(_Sﬂ)t_
Family 4:
0 (E) = +24 B + L =32 u+1p,) | 24=3ull+ A(p,))
1+2(p;) (p.)
where & = X~ (_ 41“(3/12:“ + 2))
Family 5:

()= +24=3(p,)* (1+§<p1>2j

0, ()= +243(p, )" J(_l_ % (pl)z].

where & = X_(_ Zy)t_

Family 6:
002230 s () [1+2 (s |
Us(é:):iﬁégi))i(@)\/(—l— (pl)zJ
where & = XML

Family 7:

(&)= 2~ 25) [1+§<p1>2j

ulo(§)=iz(\/ﬂ)\/(_1_%(pl)zj |
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where & = X_(_ 2,u)t_

Family 8:
u11(§) = i\/—_3/1,u * \/_ﬂﬁ;:)ﬂ( Py )) x (\/__3)/“( pl) ' (1"' _(pl )Zj
U, (5) = i\/—_3/1ﬂ T \/—_3,11((::-)1( P )) as (\/§)lu( P1 )_1 J[_l_i(pl )ZJ .
where & = XML |

u>0

Consequently, when , we obtain the following plane periodic solutions:

Family 9:
_obud | 2=3(2u+1)p,)
Uls(f)— i\/—_3i 1+/1(p2)

where & = X~ 4t
Family 10:
U14(§) = i2\/—_3,u + 2\/__3ﬂ(1+ ﬂ'(pz ))
(p.)
where & = X~ 4t
Family 11:
0= 2273(p, )£ 2

where & = X—(—8,u)t_
Family 12:

V=3(2u+1)p,) , 2V=3u+A(p,))
1+ﬂ(p2) B (pz)

where & =X~ (_ 41“(3/12:“ + 2)) _

Family 13:

(&)= £2473(p, ) (1+%<p2>2j

U (&) = £24—34u + 2

u,s(€) = +23(p, )1\/(_1_%(p2)2j |

where & = X_(_ Zy)t .
Family 14:
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uzo(é)—iﬁ(m)i(@)\/(_l_%(mf}.

1+ 4(p,)
where & =X~ ML

Family 15:

() =220~ 2) (1+%(p2>2j

4(&) = +2(,20) J(_l_%(pz)z)

where & = X_(_ Zﬂ)t.

Family 16:

0ul0)= 230 IO s (3,05, (12 5,7
U24(§) = i\/—_32,,u x \/—_3/183-:)1([)2 )) * (\/§),u(p2 )71 \/(_1_ %(pz )Zj .
where & =X~ ML |

Graphical representation of the solutions
The graphical illustrations of the solutions are given below in the figures with the aid of Maple.

Fig. 1: Multiple soliton solution, Shape of U1 (S) when A=L1 B=2, =1 2=3,,4 ~10<xt<10.

Fig. 2: Periodic solution, Shape of Up3(£) when A=1 B=2 p=1 2=3 and oS XSS,
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Fig. 3: Kink wave solutions, Shape of U,(¢) when A=L B=2, u=-1 21=3 .4 ~10=<x1<10.

Fig. 4: Modulus plot of soliton wave solutions, Shape of Us (£) when A=L B=2, p=-1 2-3 ;4 ~10<x,1<10.

250?

Fig. 5: Modulus plot of periodic wave solutions, Shape of 17 &) when A=L B=2, u=1 2=3,,4-10=x1<10.
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Fig. 6: Soliton wave solutions, Shape of u; (€) when A=l B=2, u=-1 7=3,,4 ~10=x1<10.

Fig. 7: Modulus plot of soliton wave solutions, Shape of 9 &) when A=L B=2, p=-1 2=3 ;4 ~10=x,1<10.

Fig. 8: Modulus plot of singular Kink wave solutions, Shape of U3($) when A=L B=2, 1=-1 2=3 44
-10<x,t<10

Conclusion

The new extended (G'/G) -expansion method is successfully used to establish travelling wave solutions to the (2+1)-
dimensional modified Zakharov-Kuznetsov equation. As a result, we obtained plentiful new exact solutions. The solutions are in the
form of trigonometric, rational and hyperbolic. It is shown that the performance this method is productive, effective and well-built
mathematical tool for solving nonlinear partial differential equations. Therefore, the method could be applied to solve different

nonlinear PDEs which frequently arise in mathematical physics, engineering and many scientific real time application fields.
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