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Introduction 

Chemical reaction and diffusion are important phenomena 

in quantitative neurobiology and biophysics. The knowledge of 

the dynamics of calcium Ca
2+

 is very important in cellular 

physiology because Ca
2+

 binds to many proteins and regulates 

their activity and interactions [1, 2, 3]. About 99% of our body's 

calcium is deposited in the bones and teeth. The remaining 1% 

is present in body fluids, approximately equally divided between 

diffusible calcium and non-diffusible calcium. The diffusible 

calcium is bound to blood proteins, chiefly to albumin, although 

a small amount is bound by the globulins in the blood. We need 

and use more calcium than any other mineral in the body. In fact 

there are 179 different known uses for calcium in the human 

body. It controls muscle contraction and relaxation, is 

responsible for nerve impulse transmission and the transfer of 

information between our brain cells. It controls osmosis and 

diffusion through the cell membranes, and also the passing of 

information within the cell. It controls the rhythm of the heart, 

the formation of enzymes and hormones, and also the DNA 

formation in chromosomes. It is used in blood clotting, urine 

filtration, and it's also used in the formation and maintenance of 

the bones and teeth. 

 Calcium indicates many hormonal responses. It is 

important inscription of hormones and neurotransmitters, in 

muscles contraction, and in regulation of gene expression 

because Ca
2+

 is a ubiquitous signaling agent and is toxic in high 

concentration. It is highly buffered by Ca
2+

 binding proteins, so 

that less then 1 % of the Ca
2+

 in cells exists in a free ionic form. 

The target that binds Ca
2+

 include secretory vesicles, Ca
2+

 

activated K
+
 channels, and the channels that themselves conduct  

Ca
2+

, through membrane. These targets are located very near the 

source of Ca
2+

, often within tens of nanometers [4, 5, 7]. These 

Ca
2+

 domains are formed in the presence of ubiquitous Ca
2+

 

binding protein of the presynaptic terminal. By binding and 

releasing free Ca
2+

 endogenous, Ca
2+

 binding proteins and other 

Ca2+ buffers determine the range of action of Ca
2+

 ions 

influence the time course of their effect and facilitate clearance 

of Ca
2+

. 

There have been numerous mathematical studies of the Ca
2+

 

distribution near an open Ca
2+

 channel or within a presynaptic 

terminal [3, 5, 6, 15]. These studies show that the Ca
2+

 

microdomain at the mouth of a channel forms quickly upon 

opening of the channel and dissipates quickly upon channel 

closure, reaching equilibrium within microseconds. These 

formulas relate the Ca
2+

 concentration to the distance from the 

channel, and differ primarily in the treatment of Ca
2+

 buffers. In 

present investigation, it is assumed that the buffers are 

unsaturable i.e., excess buffers. Neher [7] made the critical 

observation that if buffer is present in excess, then the free 

mobile buffer profile is not perturbed by the presence of source. 

In the present investigation a model has been developed to study 

the diffusion of Ca
2+

 in neuron cells. For a one dimensional 

unsteady state. 

Mathematical Model 

Reaction diffusion equations are often used to simulate the 

buffered diffusion of intracellular Ca
2+

 an important process to 

include in biophysically realistic neuronal models. The buffered 

diffusion of Ca
2+

 near isolated point sources can be described 

mathematically by a system of reaction- diffusion equations 

with spherical symmetry. It is standard to assume homogeneity, 

isotropy, and Fickian diffusion as well as bimolecular 

association reaction between Ca
2+

 and buffer of the form. 
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Where Bj and CaBj are free and bound buffer, 

respectively and j is an index over the buffer species. 

With these assumptions the system of reaction – diffusion 

equations for the concentrations of Ca
2+

, free buffer Bj and 

bound buffer CaBj respectively are as below, 
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Where reaction term Rj is given by  

     

][CaBk + ][B ]Ca [k - = j
-

jj
+2+
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In this equation DCa, DBj and DCaBj are diffusion coefficients for 

free Ca²
+
 free buffer and bound buffer respectively. kj

+
 and kj

-
 

are dissociation rate constants for buffer j respectively  

Because Ca
2+

 has a molecular weight that is small in comparison 

to most Ca
2+

 binding species, The diffusion constant of each 

mobile buffer is not affected by the binding of Ca
2+

 that is DBj = 

DCaBj = Dj. Using this assumption in equations (3) & (4), we get  
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Where               ][B + ][CaB = ][B jjTj    (6) 

 

Providing that the [Bj]T  profile is initially uniform and there is 

no source or sink for Ca
2+

 buffer , the [Bj]T will remain uniform 

for all time . Thus we write the following equation for the 

buffered diffusion of Ca
2+ 
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For boundary condition, we assume a point source Ca
2+

 at the 

origin and a fixed background Ca
2+

 concentration. There is no 

source for buffer and the buffer is assumed to be in equilibrium 

with Ca
2+

 far from the source  

A reasonable initial condition for their simulation is a uniform 

background Ca
2+

 profile of [Ca
2+

] = 0.1 M 

We further assume that all buffers are initially in equilibrium 

with Ca2+ and boundary conditions [6] are given by 
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Near the source we enforce the boundary conditions 
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implying an influx of free Ca
2+

 at the rate σ, By Faraday’s law,  

σ = ICa /zF 

 

For notational simplicity we have written Dc and Db for the 

diffusion coefficient of free Ca
2+ 

and free buffer, respectively 

and ² as an abbreviation for equations for the buffered 

diffusion of Ca
2+

. 
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These full equations for the buffered diffusion of Ca²+ 

have been used to analyze the ability of endogenous buffers (fast 

BAPTA and slow EGTA) and exogenous Ca²+ buffers in the 

vicinity of a channel pore.  

 

The Excess Buffeing Approximation  

We know that the association and dissociation rate 

constants for the bimolecular association reaction between ca2+ 

and buffer j can be combined to obtain a dissociation constant, 

Kj 
 

k

k
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As r tends to ∞, the system achieves equilibrium and hence 

from (7) & (8) we get Rj = 0, i.e., reaction term is zero in 

equilibrium position. This implies that the system has achieved 

the level of concentration of [Ca
2+

], which is necessary to cause 

50% of the buffer to be in bound form and 50% in free form. For 

equilibrium using equations (7)-(9), we get: 
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Where [Ca
2+

] is “background” or ambient free Ca
2+

 

concentration, and [B] and [CaB] are the equilibrium 

concentrations of free and bound buffer. The higher values for K 

imply that the buffer has a lower affinity for Ca
2+

 and is less 

easily saturated. 

In this case, if we assume J=0 then the equations for the 

buffered diffusion of Ca
2+

 become.    
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Employing finite differences technique, we get 
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Where Ui
j
  is an approximation to the function u(ri , tj), and u 

represents the concentration of Ca
2+

. h and k are the step sizes 

for the r and t, 

 h/2-r = r and h/2+r =r i1/2-ii 1/2+i  
At the origin (ri=0,i=0) a finite difference approximation to 

equation (15) gives 
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A computer program has been developed and executed of P-IV 

computer to obtain numerical results. 
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Numerical Results & Discussion 

The following numerical values [15]for various parameters have 

been used to compute the numerical results 

Table-1, Numerical values of various calcium buffers 

A) Endogenous 

 

B) Exogenous 

 

Ca2+ buffer k+ M-1s-

1 
k- s-1 K M [B]T M 

EGTA 1.5 0.3 0.2 113 

BAPTA 600 100 0.1-0.7 95 

 

EBA is appropriate when the saturability of mobile buffer is 

negligible. This is often the case near Ca
2+

 channels in synapses.  

Smith et al. [3] did an asymptotic analysis of buffered Ca
2+

 

diffusion near a point source, and determined following 

mathematical conditions for the case where EBA is appropriate. 

0
lim
r

 B = B (EBA), buffer unsaturated  

In fig-1 we observe that calcium concentration falls very sharply 

for r between 0-3m and then gradually decreases for r between 

3-5 m and thereafter converges to 0.1 M and becomes 

uniform throughout. This is because near the source, the 

concentration of Ca
2+

 is high and it decreases as we move far 

away the source. The sharp fall in concentration of calcium near 

the source indicates that the binding activity of the buffers with 

Ca
2+

 is high which makes the concentration to fall at a faster rate 

initially and thereafter the binding activity slows down gradually 

as we away the source with the decrease in calcium 

concentration. 

 
Figure-1: Calcium concentration profile with respect to 

position and time, for, Dc =250 m2/s, [B]T=50M,             

k
+
= 5 M

-1
s

-1
, =1 pA,  

 

The concentration at time t = 0 ms is taken to be 0.1 M. The 

calcium concentration increases with time and reaches steady 

state with in 100 ms. The increase in [Ca
2+

] takes place because 

when the gates open the free Ca
2+

 ions enter the cells. As soon 

as calcium concentration reaches to the peak values the 

neurotransmitters leave the cell and thus the gates close and 

system reaches the steady state within 100 ms. 

 

 

Figure-2: Calcium concentration profile with respect to 

position for fixed time t=1 ms, for, Dc =250 m
2
/s,  =1 pA, 

for EGTA: [B]T=50M, k
+
= 1.5 M

-1
s

-1
, for BAPTA: 

[B]T=50M, k
+
= 600 M

-1
s

-1
 

 

In fig-2 we see that the fall in [Ca
2+

] for slow buffer 

(EGTA) is less sharp and low as compared to that for fast buffer 

(BAPTA). Also the [Ca
2+

] for slow buffer becomes almost 

constant at a position far away (100 s) from the source as 

compared to that in case of fast buffer where the concentration 

of calcium becomes constant at small distance (20 m) from the 

source. This is because the binding rate of fast buffer is very 

high and causes the [Ca
2+

] to fall more sharply as compared to 

that in the case of slow buffer. 

For the standard values given by Klingauf and Neher [5], 

the endogenous buffer time course closely follows the behavior 

of the [Ca
2+

] time course. In fig-3, we see that the difference 

between the curves is not much. This is because there is little 

variation in binding rate of different endogenous buffers.  

 

Figure-3: Calcium concentration profile with respect to 

position for fixed time t=1 ms, for, Dc =250 m2/s, =1 pA, 

for parvalbumin: [B]T=50M, k+= 6 M-1s-1, for 

Tripomin-C: [B]T=50M, k+= 39 M-1s-1, Troponin: 

[B]T=50M, k+= 90M-1s-1, Calmodulin D28K: 

[B]T=50M, k+= 120M-1s-1 

We observe from figure-4 that fall in calcium concentration 

is very sharp initially for low source amplitude in comparison to 

the cases of higher source amplitude. The sharpness of the fall in 

Ca2+ buffer 
k+ M-

1s-1 
k- s-1 K M [B]T M 

Troponin-C 90-100 7-300 0.05-3 0 50(varied) 

Calmodulin D28K 100-500 37-470 0.2-2.0 32 

Triponin C 39 20 0.51 70 

Parvalbumin  6 1 0.00037 36 
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[Ca
2+

] profile decreases with the increase in source amplitude. 

This is because as source amplitude increases the movement of 

free calcium ions from extracellular space to intracellular space 

also increases. In all figures the response of free [Ca
2+

] profile is 

highly nonlinear near the source  

 

Figure-4: Calcium concentration profile with respect to 

position and time t=1 ms, for, Dc =250 m2/s, [B]T=50M, 

k+= 5 M-1s-1  

The results obtained above are in agreement with those 

obtained by earlier research workers [6]. Further these results 

are also in agreement with the biological facts. The 

mathematical model developed above yields interesting results 

and gives us understanding of the phenomenon & relationships 

among various biophysical parameters. Such mathematical 

models can be developed for normal & abnormal cases to 

generate information, which may be of great useful to 

biomedical scientist for developing protocols for diagnosis and 

treatment of neuronal diseases. 

References  

[1] Berridge M.J., Elementary and global aspects of calcium 

signaling, J physiol. (cond), 499(1997), pp. 291-306. 

[2] Berridge M.J., Neuronal calcium signaling. Neuron, 

21(1998), pp13-26. 

[3] Bertram R, Smith G.D., and Sherman A., A modeling study 

of effects of overlapping Ca
2+

 micro domains on 

neurotransmitter release, Biophys. J., 76(2):735-50, 1999. 

[4] Clapham, D.E., Calcium Signaling, Cell, 80(1995), pp. 259-

268. 

[5] Klingaut, J., and E.,Neher, Modelling buffered Ca
2+

 

diffusion near the membrane; implecation for secretion in 

neuroendocrine cells, Biophys. J., 72(1997), pp. 674-690. 

[6] Naraghi, M., and E.,Neher, Linearized buffered Ca
2+

 

diffusion  in micro domains and its implication for calculation of 

[Ca
2+

] at the mouth of a calcium channel, J., Neurosci., 

17(1997), pp. 6961-6973. 

[7] Neher, E., Concentration profiles of  intracellular Ca
2+

 in 

the presence of diffusible chelator, signals, cell calcium, 

24(1998), pp. 345. 

[8] Roberts, S.M., Localization of calcium signals by a mobile 

calcium buffer in frog secular hair cells, J neurosci., 14(1944),pp 

3246-3262. 

[9] Smith G.D, Analytical Steady-State Solution to the rapid 

buffering approximation near an open Ca
2+

 channel. Biophys. J., 

71(1996). 3064-3072. 

[10] Smith G.D, Wanger J., and Keizer J., Validity of the rapid 

buffering approximation near a point source of Ca
2+ 

ions. 

Biophys. J., 70(6)2527-2539, 1996 

[11] Stern, M.D., 1992. Buffering of Ca
2+

 in the vicinity of a 

channel pore. Cell calcium. 13 pp. 183-192.  

[12] Wanger, J., and J., Keizer. 1994. Effect of rapid buffers on 

Ca2+ diffusion and Ca
2+

 Oscilations. Biophys. J., pp 447-456. 

[13] Cheng, H., W.J., Lederer, and M.B. Cannell, Calcium 

sparks: elementary events underlying excitation-contraction 

coupling in heart muscle, Science, 262(1993), pp. 740-744. 

[14] Keizer J, Smith G.D., Ponce-Dawson S., and Pearson J., 

Biophys. J., 75(8): pp 595-600, 1998. 

[15] Smith, G.D., Keizer, J., Stern, M., Lederer, W.J., and 

Cgeng, H, Biophys. J., 75, 15, 1998. 

 

 


