
Manjunath Sholapur et al./ Elixir Comp. Sci. & Engg. 73 (2014) 26154-26157

26154

Introduction

 Cloud computing presents a new way to supplement the

current consumption and delivery model for IT services based

on the Internet, by providing for dynamically scalable and often

virtualized resources as a service over the Internet. To date,

there are a number of notable commercial and individual cloud

computing services, including Amazon, Google, Microsoft,

Yahoo, and Salesforce [1]. Details of the services provided are

abstracted from the users who no longer need to be experts of

technology infrastructure. Moreover, users may not know the

machines which actually process and host their data. While

enjoying the convenience brought by this new technology, users

also start worrying about losing control of their own data. The

data processed on clouds are often outsourced, leading to a

number of issues related to accountability, including the

handling of personally identifiable information. Such fears are

becoming a significant barrier to the wide adoption of cloud

services [2].

Objective

The main objective of this paper is create the CIA

framework lies in its ability of maintaining lightweight and

powerful accountability that combines aspects of access control,

usage control and authentication.

Methodology

Feasibility Study

Feasibility studies aim to objectively and rationally uncover

the strengths and weaknesses of the existing system and the

proposed venture, the resources required to carry through, and

ultimately the prospects for success. A detailed feasibility study

was conducted to know the technical and financial feasibility of

the project and it was found that the project is feasible to design,

develop, use and maintain in all respects.

Requirement Analysis and Project Planning

The requirements of this project was analysed in detail

which includes system requirements specification, software and

hardware requirements. The project plan was developed with the

help of requirements gathered in this phase.

Design

After successful analysis of the system requirement, design

of the project started where various design constraints were

analysed. The design phase consists of various modules to be

developed for generation of data. The flow diagrams along with

the activity diagrams are indicated to show the flow of control at

various stages of the project.

Coding

The design of the system developed during the design phase

is converted into code using the Java environment as and when

required at different stages of the project. The coding is done

according to the design strategy which aligns with the functional

requirements that are categorized as in the previous step.

Testing

The program is tested by executing with the set of test cases

in different set of setup environments and also stand alone

systems. Then output of the program for the test cases is

evaluated of determine if the program is performing as expected

Analysis

Analysis phase is a detailed study of various operations

performed by a system and their relationships within and outside

the system. One aspect of system analysis is defining the

boundaries of the system and determining whether or not a

candidate system should consider other related systems. The

emphasis in system analysis is on identifying what is needed

from the system and not how the system will achieve its goal.

Existing system

Conventional access control approaches developed for

closed domains such as databases and operating systems, or

approaches using a centralized server in distributed

environments are not suitable due to the following features

characterizing cloud environments. First, data handling can be

outsourced by the direct cloud service provider (CSP) to other

Decentralized information accountability framework for information sharing in

cloud environment
Manjunath Sholapur and B.G.Prasad

B.N.M.I.T, Bangalore.

ABSTRACT

Cloud computing enables highly scalable services to be easily consumed over the Internet on

an as-needed basis. A major feature of the cloud services is that user’s data are usually

processed remotely in unknown machines that user’s do not own or operate. While enjoying

the convenience brought by this new emerging technology, user’s fears of losing control of

their own data (particularly, financial and health data) can become a significant barrier to the

wide adoption of cloud services. To address this problem, a highly decentralized information

accountability framework is proposed to keep track of the actual usage of the user’s data in

the cloud. In particular, an object-centered approach that enables enclosing the logging

mechanism together with user’s data and policies. The JAR programmable capabilities are

leveraged to both create a dynamic and traveling object, and to ensure that any access to

user’s data will trigger authentication and automated logging that is local to the JARs. To

strengthen user’s control, a distributed auditing mechanism is proposed to be implemented.

 © 2014 Elixir All rights reserved

.

ARTICLE INFO

Article history:

Received: 6 August 2013;

Received in revised form:

25 July 2014;

Accepted: 5 August 2014;

Keywords

Cloud computing,

Cloud services,

JAR programmable.

Elixir Comp. Sci. & Engg. 73 (2014) 26154-26157

Computer Science and Engineering

Available online at www.elixirpublishers.com (Elixir International Journal)

Tele:

E-mail addresses: piyushpareek88@gmail.com

 © 2014 Elixir All rights reserved

Manjunath Sholapur et al./ Elixir Comp. Sci. & Engg. 73 (2014) 26154-26157

26155

entities in the cloud and theses entities can also delegate the

tasks to others, and so on. Second, entities are allowed to join

and leave the cloud in a flexible manner. Self-defending objects

(SDO) are an extension of the object-oriented programming

paradigm, where software objects that offer sensitive functions

or hold sensitive data are responsible for protecting those

functions/data. The key difference in our implementations is that

the authors still rely on a centralized database to maintain the

access records, while the items being protected are held as

separate files. The Proof-Carrying authentication (PCA)

framework. The PCA includes a high order logic language that

allows quantification over predicates, and focuses on access

control for web services. While related to ours to the extent that

it helps maintaining safe, high-performance, and mobile code,

the PCA’s goal is highly different from our research, as it

focuses on validating code, rather than monitoring content.

Disadvantages:

 Data handling in the cloud goes through a complex and

dynamic hierarchical service chain which does not exist in

conventional environments.

 Concerns arise since in the cloud it is not always clear to

individuals why their personal information is requested or how it

will be used or passed on to other parties.

 The end-to-end trust management and accountability problem

in federated systems.

 The privacy manager provides only limited features in that it

does not guarantee protection once the data are being disclosed.

 All these works stay at a theoretical level and do not include

any algorithm for tasks like mandatory logging.

Proposed System

A Cloud Information Accountability (CIA) framework,

based on the notion of information accountability. Unlike

privacy protection technologies which are built on the hide-it-or-

lose-it perspective, information accountability focuses on

keeping the data usage transparent and tractable. Our proposed

CIA framework provides end-to-end accountability in a highly

distributed fashion. One of the main innovative features of the

CIA framework lies in its ability of maintaining lightweight and

powerful accountability that combines aspects of access control,

usage control and authentication. We also develop two distinct

modes for auditing: push mode and pull mode. The push mode

refers to logs being periodically sent to the data owner or

stakeholder while the pull mode refers to an alternative approach

whereby the user (or another authorized party) can retrieve the

logs as needed. The design of the CIA framework presents

substantial challenges, including uniquely identifying CSPs,

ensuring the reliability of the log, adapting to a highly

decentralized infrastructure, etc. Our basic approach toward

addressing these issues is to leverage and extend the

programmable capability of JAR (Java Archives) files to

automatically log the usage of the user’s data by any entity in

the cloud.

Advantages:

 Data handling in the cloud is easy to access through an

automatic and enforceable logging mechanism.

 Architecture is platform independent and highly decentralized,

in that it does not require any dedicated authentication or storage

system in place.

 The first time a systematic approach to data accountability

through the novel usage of JAR files.

 The efficiency, scalability, and granularity of our approach.

Figure 4.1- System Architecture

The overall CIA framework, combining data, users, logger

and harmonizer is sketched. At the beginning, each user creates

a pair of public and private keys based on Identity-Based

Encryption. This IBE scheme is a Weil-pairing-based IBE

scheme, which protects us against one of the most prevalent

attacks to our architecture. Using the generated key, the user

will create a logger component which is a JAR file, to store its

data items. The JAR file includes a set of simple access control

rules specifying whether and how the cloud servers, and

possibly other data stakeholders (users, companies) are

authorized to access the content itself. Then, he sends the JAR

file to the cloud service provider that he subscribes to. To

authenticate the CSP to the JAR, we use Open SSL based

certificates, wherein a trusted certificate authority certifies the

CSP. In the event that the access is requested by a user, we

employ SAML-based authentication, wherein a trusted identity

provider issues certificates verifying the user’s identity based on

his username.

Once the authentication succeeds, the service provider (or

the user) will be allowed to access the data enclosed in the JAR.

Depending on the configuration settings defined at the time of

creation, the JAR will provide usage control associated with

logging, or will provide only logging functionality. As for the

logging, each time there is an access to the data, the JAR will

automatically generate a log record, encrypt it using the public

key distributed by the data owner, and store it along with the

data. The encryption of the log file prevents unauthorized

changes to the file by attackers. The data owner could opt to

reuse the same key pair for all JAR’s or create different key

pairs for separate JAR’s. Using separate keys can enhance the

security without introducing any overhead except in the

initialization phase. In addition, some error correction

information will be sent to the log harmonizer to handle possible

log file corruption. To ensure trustworthiness of the logs, each

record is signed by the entity accessing the content. Further,

individual records are hashed together to create a chain

structure, able to quickly detect possible errors or missing

records. The encrypted log files can later be decrypted and their

integrity verified. They can be accessed by the data owner or

other authorized stakeholders at any time for auditing purposes

with the aid of the log harmonizer.

Proposed framework prevents various attacks such as

detecting illegal copies of user’s data. Note that our work is

different from traditional logging methods which use encryption

to protect log files. With only encryption, their logging

mechanisms are neither automatic nor distributed. They require

the data to stay within the boundaries of the centralized system

Manjunath Sholapur et al./ Elixir Comp. Sci. & Engg. 73 (2014) 26154-26157

26156

for the logging to be possible, which is however not suitable in

the cloud.

The design process translates the requirements into a

representation of the software that can be assessed for quality

before coding begins. Once the requirements have been

collected and analyzed, it is necessary to identify in detail how

the system will be constructed to perform the necessary tasks.

Data Flow Diagram

Data Owner
IBE keys

Generation

JAR

JAR

Generation

CSP
JAR

 Access

JAR

 Creation

Keys

JAR

Deployment

Authentication

Request

Authentication

Verification
Authentication

Response

CRL Verification

Certificate

Authority

Properties Files

Encrypted

Logging

Error

 Correcting

 Information

C-JAR

Send

merged log

info

FLOW DIAGRAM OF SYSTEM ARCHITECTURE

LEVEL 0

Data Owner

JAR

Creation

IBE Key

Generation

Private

Public

Keys

JAR

Generation
JAR

Cloud

Deployment

Figure 5.2- Flow Diagram Of Data Owner

Level 1

Cloud

JAR File

Cloud Service

Provider

JAR

Access Request

Authentication

Process

Authentication

Request

Authentication

Response

FLOW DIAGRAM OF CLOUD SERVICE PROVIDER

Level 2

Cloud

JAR File Logging

Certificate

Authority

Info

Info

Propertie File

SAML
Certified

Authentication

Verification

FLOW DIAGRAM OF CERTIFICATE AUTHORITY

Level 3

DATA

Access

Authentication

Success

JAR

Create

Log File

Creation

Log File

Recored

FLOW DIAGRAM OF LOG FILE RECORD

Level 4

Log File

Log

Harmonizer

Errors

Records

Missing

Records

Auditing

Process

Pull Mode

Push mode

Data Owner

FLOW DIAGRAM OF LOG HARMONIZER

The objective of implementation step is to create the code,

test it for required output and debug the errors occurring during

the execution of the program. System implementation involves

testing the tool created on the setup and finding that the data is

generated in the central manager database.

Integration

Integration is a process where in the code module for

certain specification is tested separately and implemented into

the existing big system to work well without any flaws

introduced into the bigger system due to the new code integrated

or flaws into the new module due to integration. Integration

caters to the compatibility of the new to the existing code.

Testing

Testing is a process where in the code written is thoroughly

checked for the various implementation errors and tested to find

defects where the expected results do not occur for a certain

module. Testing of the newly written code after integrating it

with the existing code would yield few errors which need to be

Manjunath Sholapur et al./ Elixir Comp. Sci. & Engg. 73 (2014) 26154-26157

26157

fixed and verified to ensure a fail-safe and correct working of

the system as a whole.

Debugging

Debugging is a process which detects and corrects the

syntactical and logical errors in a program. The syntax errors

can be detected by the compiler. The diagnosis of logical errors

is complicated by the delay which normally exists between the

error insertion into the code and the appearance of the error as a

defect while debugging. The most complex errors might get

detected only in certain conditions that might be present in

certain state of the system. Debugging needs a lot of good test

cases to test and find embedded defects.

Conclusion And Future Enhancement

Innovative approaches for automatically logging any access

to the data in the cloud together with an auditing mechanism.

Our approach allows the data owner to not only audit his content

but also enforce strong back-end protection if needed.

Moreover, one of the main features of our work is that it enables

the data owner to audit even those copies of its data that were

made without his knowledge. Future plan is to refine our

approach to verify the integrity of the JRE and the

authentication of JAR’s. For example, investigate whether it is

possible to leverage the notion of a secure JVM being developed

by IBM. This research is aimed at providing software tamper

resistance to Java applications. In the long term, we plan to

design a comprehensive and more generic object-oriented

approach to facilitate autonomous protection of traveling

content. To support a variety of security policies, like indexing

policies for text files, usage control for executables, generic

accountability and provenance controls.

References

1) G. Ateniese, R. Burns, R. Curtmola, J. Herring, L. Kissner, Z.

Peterson, and D. Song, “Cloud Privacy and Security” Proc.

ACM Conf. Computer and Comm. Security, pp. 598-609, 2007.

2) D.J. Weitzner, H. Abelson, T. Berners-Lee, J. Feigen-baum,

J.Hendler, and G.J. Sussman, “Information Accountability,”

Comm. ACM, vol. 51, no. 6, pp. 82-87, 2008.

3) S. Sundareswaran, A. Squicciarini, D. Lin, and S. Huang,

“Trust Cloud: A Framework for Accountability and Trust in

Cloud Computing,” Proc. IEEE Int’l Conf. Cloud Computing,

2011.

4) R. Corin, S. Etalle, J.I. den Hartog, G. Lenzini, and I. Staicu,

“A Logic for Auditing Accountability in Decentralized

Systems,” Proc. IFIP TC1 WG1.7 Workshop Formal Aspects in

Security and Trust, pp. 187-201, 2005.

