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Introduction 

 To analyze a real world problem or situation by 

representing it in a mathematical form, solving, interpreting the 

result and predicting the future implications is called 

mathematical modelling. It can be represented as follows: 

 

To fit an existing technique or developing a new tool 

requires detailed information about the situation. For developing 

a model, it is advisable to break the complex situation into 

smaller segments and develop them independently. After getting 

the satisfactory results for these sub modules, combine them to 

get a model, which describes the real world situation to its 

optimal possible level. Because, most of the times a single 

model is not able to represent the real world situation to its 

fullest due to inherent constraints. However according to M. S. 

Bartlett a mathematical model can be considered successful if  

 Known facts are accounted for  

 Greater insight has been achieved of the situation under 

study. 

 The theory of model can correctly predict the future patterns, 

even under different conditions than those pertaining to the 

current observed data. 

Thus, mathematical modelling is actually the pure 

mathematics, applied to the real world problems to give 

solutions. Mathematical modelling and Mathematical technique 

are two sides of the same coin namely applied mathematics. 

Thus, applied mathematics is the connecting link between pure 

mathematics and other branches of science and technology.  

Emergence of Mathematical Modelling 

Though the roots of mathematical modelling extend to early 

1800‘s, it was 1885, when Frederick W. Taylor [1] emphasized 

the application of mathematical analysis to the methods of 

production, that the real start took place. 

Another man of early era was Henry L. Gnatt, who applied 

it to job scheduling methods [2]. A.K. Erlang
 
was the first 

person to study the problem of telephone networks. By studying 

a village telephone exchange he worked out a formula, now 

known as Erlang's formula, to calculate the fraction of callers 

attempting to call someone outside the village that must wait 

because all of the lines are in use. He published this work. A few 

years after its appearance, his work was accepted by the British 

post office as the basis for calculating circuit facilities. Although 

Erlang's model is a simple one, the mathematics underlying 

today's complex telephone networks is still based on his work. 

[3] 

During 1930‘s, H .C. Lavinson, an American astronomer, 

applied it to the problems of merchandising which included 

buying habits of customers, response to the advertising and 

relation of environment to the type of article sold
 
(School of 

Science and Technology, 2011). 

However, it was the first industrial revolution, which 

contributed mainly towards the development of Operations 

Research [4-5]. The industrial development brought with it new 

types of problems called executive type of problems. Various 

types of problems, which industry managers often come across, 

can be summarized as follows: 

 Production house wants to maximize the production and 

minimize the cost. 

 Marketing department wants a large but diverse inventory so 

that customer may be provided immediate delivery. It also likes 

to have a flexible production policy, so as to meet special 

demands on short notice. 

 Finance department wants to minimize inventory so as to 

minimize the unproductive capital investment ‗tied up‘ with it. 

 Personal department wants to hire good labour and retain it. 

Formulation of a policy which serves the interest of the 

whole organization and rather than of an individual department 
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can be satisfactorily achieved by mathematical modelling, and 

such a decision is called optimal decision
 
[6]. 

Thus, the mathematical modelling existed even in pre 

World War II era [7], but it was the work of Operations 

Research team, during World War II which attracted the 

attention of industry managers towards mathematical modelling. 

The successful jobs conducted by Operations research team 

during World War II included: 

 Developing strategies for mining operations. 

 Allocation of British Air force. 

 Designing new flight patterns. 

Managing Industry 

Industry is defined as the manufacturing or technically 

productive enterprises in a particular field, country, region, or 

economy collectively, or one of these individually. Apart from 

manufacturing it includes transport, energy supply and demand, 

mining, construction, and related informal production activities. 

Other sectors such as wholesale/retail trade, communications 

and real estate business activities are also included in the 

industrial classifications, in the categories of services and 

infrastructure. 

Need of Mathematics in Industry 

“Mathematics offers business a formula for success’’ 

“Mathematicians” have come up with an impressive 

multiplication formula for British commerce and industry: spend 

a few million pounds promoting the use of maths as a strategic 

tool, and add billions of pounds of value to businesses. That is 

the thinking about a new government-industry consortium, the 

Mathematics Knowledge Transfer Network. The network aims to 

boost the use of maths throughout the economy from grocery 

distribution to banking, telecoms to manufacturing.  

Financial Times, February 2006
 
(Report on Mathematics in 

Industry, 2008) 

Managing an industry is not an easy task. Especially the 

managers of large industrial establishment face very complex 

situation many a times. These problems include the inventory 

and production planning, capital limitations, transportation 

challenges; inflation, competition from other players on the 

ground, etc. 

While dealing with all these problems, management has to 

be careful of their time management. If solutions are not 

obtained timely, then there is no use of any service or 

production as there will be no takers available in the market. To 

solve these problems industry managers generally undertake 

following measures: 

 Direct experiment  

 Trial and error methods. 

 Insights and intuition of industrial managers. 

However, there arises a situation when direct experiments 

are not possible as either they are too costly or involve 

destructive testing. (Eg. designing the nuclear reactors). Also, if 

problem involves too many facts and figures, it is not possible to 

arrive at an efficient solution just by intuition and insight of the 

managers. Since in such situations, the number of possible 

solutions are too large to work out all of them but optimization 

is still desired. This is where the mathematics comes in.  

The rapid industrial growth and innovation is the result of 

scientific research and techniques and is driven by mathematics. 

This industry–mathematics connection is very strong, not only 

in the field, which is beneficial for the industry, but it is also 

contributing in the areas such as health, security, 

communications, and environment which are concerned with the 

well-being of society.  

The search for new life-saving drugs, the development of 

highly efficient machines and materials, the protection of 

sensitive ecosystems – all of these application-oriented 

activities, and many others, are strongly dependent on 

fundamental research, and that research is inextricably linked to 

mathematics. 

In the 21
st
 century there are major opportunities in industry 

as a result of mathematical interface. In the days of recession 

there is strong pressure on the industries to reduce their funds on 

research and development activities. The companies which will 

properly and efficiently utilize mathematics can rapidly gain a 

commercial edge over their competitors as over the years it has 

been a well established fact that mathematics is capable of 

enhancing the organisational capabilities without being 

expansive. 

Mathematical Areas and their Applications 

Various areas of mathematics and their industrial 

applications can be summarized as below [8-10]: 

Table 1: Summarizing Mathematical Areas and their 

Applications 
S. 

No. 
Mathematical Area Application 

1 
Algebra and number 

theory 
Cryptography 

2 
Computational fluid 

dynamics 
Aircraft and automobile design 

3 Differential equations 
Aerodynamics, porous media, 

finance 

4 Discrete mathematics 
Communication and information 

security 

5 
Formal systems and 

logic 
Computer security, verification 

6 Geometry 
Computer-aided engineering and 

design 

7 Nonlinear control 
Operation of mechanical and 

electrical systems 

8 Numerical analysis Essentially all applications 

9 Optimization 
Asset allocation, shape and system 

design 

10 Parallel algorithms 
Wealth modelling and prediction, 

crash simulation 

11 Stochastic processes Signal analysis 

Mathematical Modelling in Industry; A Literature Review  

The mathematical sciences form an essential part of science, 

engineering, medicine, industry and technology. It serves as one 

of the pillars of education at all levels. Since beginning the 

mathematics has been a great tool to establish the natural laws. 

In its early days, advances in mathematics were guided purely 

by the interests of individuals like Aryabhatta, Srinivas 

Ramanujan, Bhāskara, Leelavathi(India) [11], Aristotle, 

Archimedes, Euclid, Pythagoras [12]
 
(Greek), Guo Shoujing, 

Liu Hui, Liu Xin , Li Zhi (China) [13] etc. For several years 

industrial applications of mathematics were almost nill. No 

visible real life applications and its abstractness were the reasons 

that mathematics, for a long time, remained a subject of the 

chosen ones.  

At the turn of the twentieth century, industry and military 

concern with technology sought a new class of mathematicians 

that required a new mathematical discipline. Now came the time 

when mathematics should come out the aesthetics and 

abstractness of the curriculum and start playing an important 

role in the development and planning of defence and industry 

mechanism.  

Concerned with real and concrete environments, engineers 

were a growing class of scientific professionals to solve the 
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problems demanding technical expertise. They were 

technological pioneers in the field of construction of bridges, 

canals, and railroads, but their occupation now demanded better 

mathematical skills within technological-savvy world [14]. For 

example, during World War I production engineers and 

entrepreneurs had worked to improve airplane production and 

aerodynamics. Most of these designs based on very little 

analytical or mathematical understanding of the theory of lift, 

drag, or airfoil. These aspects of plane construction were very 

complex in nature. These designs were critical to building safe 

and efficient aircraft. When mathematicians applied their skills 

in understanding and manipulating the complexities of numbers 

and theories related with the design, solutions obtained were 

better. 

In 1930 government and businesses such as the automobile 

and air traffic industries started thinking for developing their 

resources. They wanted to find alternative ways of increasing 

production, and the military wanted to develop a mechanism for 

planning large-scale military action. Hence need for quantitative 

models arouse. [15]. 

These objectives required advanced knowledge of 

mathematics that engineers lacked. This was the beginning of an 

era where mathematician had to come out from the exile and 

play a very important and active role in building the society
 
[16]. 

In 1940, during the World War II, the National Resources 

Planning Board submitted a review of industry‘s conditions 

entitled, ―Research—A National Resource.‖ Among the many 

reports within this compendium was Fry‘s 38-page report. 

―Industrial Mathematics,‖ Fry (1941) reported that “Throughout 

the whole of industry, research is becoming more complex and 

theoretical, and hence the value of consultants in general and 

mathematical consultants in particular, must increase. Theories 

of supply and demand required a new class of mathematicians. 

They could help in reducing the labour costs and avoid 

unnecessary experimentation.” [17] 

Thus, slowly but steadily mathematics became an essential 

research and development tool in managing industry. Since then 

many models have been proposed, modified and used to 

strengthen the economic growth and industrialisation.  

Since large scale industries have not one but many problems 

and solving them collectively involved several variables leading 

to the complex structures. So, for the sake of simplicity and 

effective use of mathematics as per the particular query, many 

sub-areas developed and have been enhanced with the passage 

of time. Some of these sub-areas are  

 Diffusion innovation 

 Inventory Control 

 Production function 

 Cost management 

 Revenue management 

 Resource Allocation 

 Transportations and scheduling  

 Quality Control 

 Network analysis etc. 

A detailed review of some of these topics is given as 

follows:  

Diffusion innovation 

The spread of an innovation in a market is termed as 

―diffusion‖. Diffusion research seeks to understand the spread of 

innovations by modelling their entire life cycle from the 

perspective of communications and consumer interactions. The 

original attempt in diffusion research has been made by the 

French sociologist Gabriel Tarde [18]. He plotted the original S-

shaped diffusion curve and observed that the rate of adoption of 

a new idea usually follows an S-shaped curve over time. 

Nothing fruitful happened for forty years and then in 1940's, two 

sociologists, Bryce Ryan and Neal Gross
 
presented their study 

on diffusion of hybrid seed among Iowa farmers and proved that 

Tarde [18] was right in his prediction of S-shaped diffusion 

curve [19].  

This study aroused the interest of academician in the field 

and then Mansfield [20]
 
investigated the factors determining 

how rapidly the use of a new technique spreads from one firm to 

another. He presented a simple model which can explain 

differences among innovations in the rate of imitation. Both the 

deterministic and stochastic versions of this model were 

presented and are tested against data showing how rapidly firms 

in four industries came to use twelve important innovations. The 

empirical results seem quite consistent with both versions of the 

model. Fourt and Woodlock [21], Floyd [22], Rogers [23], 

Chow [24]
 
presented their studies and further enriched the topic.  

First Tarde [18] and then Roger [23] laid the foundation of 

mathematical modelling of diffusion innovation. Their work was 

more theoretical in nature but that doesn‘t make it unimportant. 

As on this theoretical framework is based the Bass model [25]. 

This model is a breakthrough in the history of mathematical 

modelling of diffusion innovation and is the most sought after 

model in this field.  

The Bass model states that the probability that an individual 

will adopt the innovation — given that the individual has not yet 

adopted it — is linear with respect to the number of previous 

adopters. The model parameters p, q, and m can be estimated 

from the actual adoption data. Parameter estimation issues are 

discussed in Jiang, Bass and Bass [26]; Boswijk and Franses 

[27], Van den Bulte and Stremersch [28]; Venkatesan, Krishnan 

and Kumar [29], Lilien et al., [30]. Sultan, Farley and Lehmann 

[31].  

The Bass model [25] is a very useful tool for forecasting the 

adoption (first purchase) of an innovation (more generally, a 

new product) for which no closely competing alternatives exist 

in the marketplace. A key feature of the model is that it embeds 

a "contagion process" to characterize the spread of word-of -

mouth between those who have adopted the innovation and 

those who have not yet adopted the innovation. The model, 

however, is not without its imperfections. Parameter estimates 

of the model may not be stable for relatively new products 

because adoption data are limited. Studies by Heeler and Hustad 

[32] Srinivasan and Mason [33] Bemmaor and Lee [34] 

Suggested that stable and robust parameter estimates for the 

Bass model are obtained only if the data under consideration 

include the peak of the non-cumulative adoption curve  

The extent of research into modelling and forecasting the 

diffusion of innovations is impressive and reflects its continuing 

importance as a research topic. Modelling developments in the 

period 1970 onwards have been in modifying the existing 

models by adding greater flexibility in various ways.  

Bass [35] himself commented on Bass [25] model and 

discussed the background and history of the development of the 

paper, the reasons why the model has been influential, some 

important extensions of the model, some examples of 

applications, and some examples of the frontiers of research 

involving the Bass Model.  

Over the years, several diffusion models incorporating both 

social and marketing mix variables have been proposed. Such 

models are used not only to describe and predict new product 

sales but also to provide normative insights. The Generalized 

Bass Model, or GBM, proposed by Bass, Krishnan, and Jain 

[36] includes decision variable like price, advertisement etc in 
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the Bass model. GBM has been very popular in both descriptive 

and normative applications. Fruchter and Van den Bulte [37] 

studied optimal advertising policy under the GBM structure and 

concluded that this strategy remains optimal in the presence of 

decreasing prices that affect both margins and diffusion speed. 

The optimal GBM policy is to spend extremely little at first (the 

lower the better) and then increase spending throughout the 

planning period.  

Krishnan et al. [38] considered optimal pricing policies 

under the GBM, considering both initial price  0Pr and 

subsequent price evolution  R t . But their work was different 

from the work of Fruchter and Van den Bulte (2011) [37] in 

many ways. Krishnan et al. did not work with the traditional, 

empirically validated GBM specification but rather with a 

variation of the model that has not been empirically supported. 

They used numerical analyses to arrive at the optimal 

pair     0 ,  Pr R t ‖. Also, they did not provide analytical 

expressions to identify the switching times at which the optimal 

pricing path changes direction (e.g., from increase to decrease). 

Chun-Yao Huang et. al. [39] presented a stochastic model 

for the sales of a new CPG product that integrates all of an 

individual‘s purchases of the new product (as opposed to 

developing separate models for trial, first repeat, etc.) and 

simultaneously captures the effects of marketing activities in 

initial repeat buying behaviour at the individual consumer level.  

Fader, Hardie and Chun-Yao Huang [40] developed a 

dynamic change-point model that captures the underlying 

evolution of the buying behavior associated with the new 

product. This extends the basic changepoint framework, as used 

by a number of statisticians, by allowing the changepoint 

process itself to evolve over time. Additionally, this model 

nested a number of the standard multiple-event timing models 

considered in the marketing literature. In their empirical 

analysis, they showed that the dynamic change-point model 

accurately tracks (and forecasts) the total sales curve as well as 

its trial and repeat components and other managerial diagnostics. 

In another study Fader, Peter S. and Bruce G.S. Hardie [41] 

reviewed the E/KS model; they first examined its ability to 

provide insights into the structure of the repeat buying process. 

In a series of simulations for a simple stationary market, we 

show that the model fares very poorly in this regard. They 

showed that the forecasting performance of the model, even 

under data conditions that include different types of non-

stationarity, is quite impressive. They systematically varied 

three factors (length of calibration period, purchase cycle (fast 

vs. slow), and degree of consumer heterogeneity), and find that 

the week 52 E/KS forecasts are remarkably robust. As expected, 

forecast accuracy improved significantly as more data are 

available to fit the model, but variations in the other two factors 

lead to relatively modest differences, as measured by the 

absolute percentage error in the year-end sales estimates as well 

as a measure of forecast bias. 

The diffusion of an innovation rarely takes place in a stable, 

homogeneous and unchanging environment. The first 

mathematician to address the income heterogeneity hypothesis 

was Duesenberry [42]. The heterogeneity of income distribution 

has been cited by other authors like Bonus, [43] as a driver for 

the S shaped diffusion curve. Their view is that the diffusion 

curve reflects the nature of income distribution. As the price of 

an innovation falls, more consumers can afford it, provided the 

income distribution is bell-shaped, and the price falls 

monotonically, an S curve will result. Liebermann and Paroush 

[44] argued that income heterogeneity, price and advertising are 

important drivers of the diffusion process. 

Rogers [45] in his frame-work of heterogeneous 

innovativeness revealed that the diffusion of an innovation will 

not accelerate if critical mass is not reached. In this context, he 

makes the distinction between interactive and non-interactive 

innovations. Wareham, Levy and Shi [46] investigate socio-

economic factors underlying the diffusion of the internet and 2G 

mobiles in the US. Mobile adoption is positively correlated with 

income, occupation and living in a metropolitan area. 

Other than income, heterogeneity can be geographical also. 

Culture which changes as the location changes, drives the 

adopters need and behaviour. Goldenberg, Libai, Solomon, Jan 

and Stauffer [47] theoretically examine innovation diffusion in a 

spatial context. They used simulation. The S- curve produced by 

this model has a very late point of inflexion, very close to the 

saturation level. In an empirical study, Baptista [48] examined 

the diffusion of numerically controlled machines and 

microprocessors in various areas of UK. He found that there 

were significant regional effects on the rate of diffusion. 

Tanner [49] used GDP/capita and the cost of car usage as 

additional variables to forecast the growth of car ownership in 

the UK  

Innovativeness is an individual‘s characteristics and can be 

described as risk taking ability and quest for trying new things 

before the majority does. Leavitt and Walton [50-51] describe 

innovators as individuals open to new experiences. Individuals 

who may be seen as innovators in one product domain, however, 

may not necessarily be innovators in other domains. The 

measurement of individuals into adopter categories such as 

innovators, early adopters, early majority, late majority and 

laggards should be done by keeping this in mind. The 

categorization scheme proposed by Roger [52], however, has 

potential limitations.  

Several researchers have argued that Roger‘s assumptions 

that all new products follow a normal-distribution diffusion 

pattern, products is not reliable and should be further 

investigated.[53]. Definition of innovativeness is solely time-

dependent and requires a product launch if it is to be observed 

and measured. Studies by Gatignon and Robertson [54], Citrin et 

al. [55], Goldsmith [56] and Blake et al. [57] agrees that 

innovativeness can differ and hence must be identified for a 

specific product category or region. Measurement scales 

developed by Goldsmith and Hofacker [58], therefore, are 

domain-specific and reflect an individual‘s tendency to learn 

about and adopt innovations within a particular area of interest. 

Another approach to measuring innovativeness is to determine 

the individual‘s adopter category on the basis of the relative 

time of adoption of the innovation. Rogers [59], defines a 

person‘s innovativeness as ‗the degree to which an individual is 

relatively earlier in adopting new ideas than other members of a 

social system‘.  

Critical mass is defined as ―the point after which further 

diffusion becomes self-sustaining. Grajek and Kretschmer [60] 

developed a structural model of demand for a network good to 

provide a rigorous definition of critical mass. Using simulations, 

they demonstrate that their model of critical mass can be used 

easily and can generate theoretically grounded insights about 

critical mass phenomena identified in empirical settings  

In a world where many of the Internet-based 

communication applications have proven to be very popular 

amongst consumer groups; David H. Wong et.al. (2011) [61] 

studied 10 years of diffusion data to examine the diffusion 

pattern of a mature internet application –email. The Bass Model 
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approach was utilised to classify individuals into adopter 

categories. The results revealed a q/p ratio of 50.7 for the 

adoption of email; indicating that the imitation effect is greater 

than the innovation effect in the diffusion of similar Internet-

based communication technologies. It was also found that for 

such technologies, the peak of the non-cumulative adoption 

curve can be expected in 5.4 years after launch. 

Inventory Control 
The mathematical analysis of inventory systems and the 

consequent theory of inventory control are neither new nor 

complete. The earliest attempts to determine a mathematical 

basis for the control of inventories originated from the 

manufacturing industries, and constituted the problem of 

economic lot sizes. The earliest known work published in this 

field was by George D. babcock [63], based on work done in 

installing the Taylor system in the Franklin Manufacturing 

Company in 1912. This paper could not develop the model, but 

it attempted to equate set-up costs and "capital costs". This 

approach gave rise to a cubic equation. 

The next major development occurred in 1918, when E. W. 

Taft [63] dropped the previous assumptions that production of 

the finished product occurred at an instantaneous rate. J. A. 

Bennie [64] attempted to include in his stock model the cost of 

stock held to protect against unexpectedly large demand -- 

safety stock. R. C. Davis [65], introduced this concept, and 

explicitly included the costs of this reserve stock in determining 

the optimum lot size. 

Fry [66] attacked an inventory problem wherein demand for 

the product was allowed to be a random variable (Poisson 

distribution). Using a criterion of fixed run-out probabilities, he 

was able to find the probability of running out of stock as a 

function of the maximum quantity stocked. From this the 

quantity to be stocked for fixed run-out probabilities was 

immediately found. 

Masse seems to have been the first person to successfully 

introduce risk concepts into the problem of dynamic inventory 

systems [67]. 

Rosenblatt added a new problem to the inventory field. He 

posed the question of randomly-arriving quantities of supply. 

Viewed in an agricultural setting, his problem is to find the 

optimum quantity of a good -- say, wheat -- to plant, given that 

the quantity produced (arriving) is a random function of the 

quantity planted. [68] 

Harris [69] developed EOQ model. Many researchers have 

extended the above model with different types of demands and 

replenishment. A detailed literature is available in the text book 

such as Hadley and Whitin [70] , Tersine [71], Silver and 

Peterson [72], etc. In classical inventory models, demand is 

normally assumed to be constant. 

Many researchers have examined the classical inventory 

policy with infinite and finite production rate. Donaldson [73], 

Silver [74], Ritchie [75], Dave [76], Urban [77] and others who 

formulated and solved inventory models with infinite production 

rate taking various types of demand, namely constant or time 

dependent or stock dependent.  

There is some literature on the inventory models with stock-

dependent demand. Several authors like Mandal and Phaujdar 

[78], Urban [79] worked in this direction. 

A lot of research literature available on diffusion innovation 

has used simple ABC analysis to resolve the inventory control 

problem. It can be found in the work of Canen and Galvao [80] 

and Cohen and Dunford [81]. In 1986, Dias [82] performed 

principal component analysis is used in Sri Lanka and inventory 

control in the copper mine of Zambia was studied by Magson 

[83]. An indigenous application of inventory control in the beedi 

industry can be found in the study made by Lingraj [84]. 

A computer based model by Gupta, Shukla and Tripathy 

[85] is used for fertilizer distribution in India. Bhunia and  Maiti 

[86-87] proposed two deterministic inventory models for a 

single item, where for the first model, the production rate at any 

instant depends on the on-hand inventory and for the second 

one, it is demand dependent. However, in both cases, the 

demand rate at any moment of time is a linear function of time 

for the scheduling period. Both the models are formulated and 

solved without allowing shortages.  

For the solution of inventory models with finite rate of 

replenishment, Deb and Chaudhuri [88] considered the constant 

rate of demand whereas Goswami & Chaudhuri [89] and Hong, 

Cavalier & Hayya [90] took the time dependent demand and 

Mondal and Phaujdar [91] the stock dependent demands. 

In 2
nd

 International Conference on Economics, Trade and 

Development Napaporn Rianthong and Aussadavut Dumrongsiri 

[92] presented a mixed integer linear programming model for an 

integrated decision of production, inventory and transportation 

planning problem. This model combines the direct shipment into 

distribution decisions.  

In direct shipment, a manufacturer directly delivers the 

products to retailers by bypassing warehouse, thereby saving 

transportation cost from a plant to warehouse, and inventory 

holding cost at warehouse. The objective is to minimize overall 

cost comprising of production setup cost, inventory holding 

cost, transportation cost and reorder cost. A deterministic, multi-

item inventory model with supplier selection and imperfect 

quality was proposed by Rezaei and Mansoor [93]. This model 

considers a supply chain with multiple products and multiple 

suppliers, with limited capacity. It is assumed that received 

items from suppliers are not of perfect quality. These imperfect 

items could be used in another inventory situation. Imperfect 

items are sold as a single batch, prior to receiving the next 

shipment, at a discounted price. 

Mehar [94]
 
presented a computational model to determine 

the factors of the optimal level of merchandizing inventory. The 

study is based on a mathematical model. The results revealed 

that the 'Usage of Material' or the Sales Volume is not the real 

determinate of the inventory volume. It is concluded in the 

model that the volume of inventories depends on the difference 

between the return on investment in the inventories and the rate 

of interest on short-term deposits. 

Deteriorating items are common in our daily life. The 

inventory problem of deteriorating items was first studied by 

Whitin [95], he studied fashion items deteriorating at the end of 

the storage period. Then Goyal and Giri [96] made 

comprehensive literature reviews on deteriorating inventory 

items. Hill [97] was the first to introduce the ramp type demand 

to the inventory study. Then Mandal and Pal [98] introduced the 

ramp type demand to the inventory study of the deteriorating 

items.  

Hartely [99] and Sarma [100] were the pioneer in discussing 

the two warehouse inventory models with infinite production 

rate, but without shortages. Dave [101] discussed the inventory 

models for finite and infinite rate of replenishment, rectifying 

the errors for the model given by Sarma [100] and gave a 

complete solution. Further, Goswami and Chaudhuri [102] 

considered the models with or without shortages taking linearly 

increasing time dependent demand. Correcting and modifying 

the assumptions of this model, Bhunia and Maiti [103] analysed 

the same inventory model and graphically presented a sensitivity 

analysis on the optimal average cost and the cycle length for the 
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variations of the demand parameters. In all these models, only 

the cases of non-deteriorating items were discussed. 

Bhunia and Maiti [104] Proposed deterministic inventory 

model with two warehouses. The model allows different levels 

of item deterioration in both warehouses. The demand rate is 

supposed to be a linear (increasing) function of time and the 

replenishment rate is infinite. The stock is transferred from 

rented warehouse to own warehouse in continuous release 

pattern and the associated transportation cost is taken into 

account. Shortages in own warehouse are allowed and excess 

demand is backlogged. 

The effects of inflation and time-value of money were 

ignored in the classical inventory models. It was believed that 

inflation would not influence the cost and price components. 

The economic situation of most of the countries has changed 

considerably due to large-scale inflation and decline in the 

purchasing power of money. Buzacott [105]
 
and Misra [106]

 

were the first to develop EOQ models taking inflation into 

account. Both of them considered a constant inflation rate for all 

the associated costs and minimized the average annual cost to 

derive an expression for the economic lot size.  

Their work was extended by researchers like Chandra and 

Bahner [107], Aggarwal [108], Misra [109], Bierman and 

Thomas [110], Sarker and Pan [111], etc. to cover 

considerations of time value of money, inflation rate. Manna and 

K. S. Chaudhuri [112] incorporated inflation in EOQ model. 

This model is based on discounted cash flows (DCF) approach 

where demand rate is assumed to be non-linear over time. An 

infinite time-horizon deterministic economic order quantity 

(EOQ) inventory model with deterioration is developed. The 

effects of inflation and time-value of money are also taken into 

account under a trade-credit policy. 

Production Management 

Production is one of the main focuses in industry. All the 

efforts that an industry undertakes directly or indirectly are to 

increase the production and decrease the cost. A production 

function deals with the problem of optimizing the production 

under available resources and hence helps in increasing the 

efficiency and profit of the industry. It gives a mathematical 

estimate of the maximum quantity of an output that can be 

produced using various combinations of inputs. 

It is well established fact that that the concept of 

diminishing marginal productivity of production factors (land, 

labour, or capital) is credited to Anne Robert Jacques Turgot 

[113] and can be found in the works of Smith and Malthus who 

introduced the logarithmic production function. Stigler [114]. 

But an extensive and quantitative study of the marginal 

productivity analysis was first given by von Thünen [115-116]. 

He had examined separate expressions for both the marginal 

products of labour and capital. Then he first tentatively assumed 

and later explained that the marginal product of capital  
k

MP is 

numerically equal to the rate of increase in average labor 

productivity  
L

AP  with respect to capital. With this crucial 

economic insight and mathematical synthesis, the modern 

production function concept was born. In 1969 Lloyd [117] 

provided a complete account of von Thünen‘s exponential 

production functions and their derivation. 

Mathematically, a production function relates the amount of 

output (Y) as a function of the amount of input (X) used to 

generate that output.  Y f X  

In The Isolated State, vol-II, von Thünen a farmer and noted 

economists of his times wrote down the first algebraic 

production function nP hQ  , where P is output per worker, 

Q is capital per worker and h is the parameter that represents 

fertility of soil and efficiency of labour. 

Philip Wicksteed [118] demonstrated that if production was 

experiences constant returns to scale then with each input 

receiving its marginal product, the total product would then be 

absorbed in factor payments without any deficit or surplus.  

In the 1920s the economist Paul Douglas was working on 

the problem of relating inputs and output at the national 

aggregate level. A survey by the National Bureau of Economic 

Research found that during the decade 1909–1918, the share of 

output paid to labour was fairly constant at about 74% despite 

the fact the capital/labour ratio was not constant. He enquired of 

his friend Charles Cobb, a mathematician, if any particular 

production function might account for this [119]. This gave birth 

to the original Cobb–Douglas [120] production function. 

Since production doesn‘t depend just on capital so it 

required a mathematical growth model with labour and capital 

as state variables. Such mathematical model was the Solow 

growth model [121]. Solow along with Kenneth Arrow, H.B. 

Chenery and B.S. Minhas presented ACMS [122] production 

function. In literature this is popularly known as constant 

elasticity of substitution or CES production function. This 

function allowed the elasticity of substitution to vary between 

zero and infinity. But once established it remained fixed along 

and across the isoquants irrespective of the size of output or 

inputs.  

Y. Lu and L.B. Fletcher [123] developed a generalized CES 

production function. They allowed the elasticity of substitution 

to vary along different levels of output under certain 

circumstances. The Cobb-Douglas production function [120] is 

a special case of CES model. Cobb-Douglas kept the elasticity 

of substitution of capital for labour fixed to unity. Other 

attempts to generalize CES were by Mukerji [124] and Bruno 

[125]  

Diewert [126] made two very important generalizations of 

production functions. First, he obtained a functional form that 

can incorporate many inputs in it and the second that such a 

functional form permitted variable elasticities of substitution.  

Aschauer [127] stimulated an extensive discussion of the 

nature and magnitude of the impact of infrastructure capital on 

output and productivity growth. He estimated a Cobb-Douglas 

function and established that the decline in US productivity 

growth in the 1980s was associated with the neglect for public 

infrastructure over the same period.  

Alicia Munnell [128] used a similar procedure, but different 

data, on aggregate private capital stock for a period ranging 

from 1948-87. Both Aschauer and Munnell employ aggregate 

time-series data of the United States to estimate the relationship 

between private output and the stock of non-military public 

capital. Several production function studies address 

infrastructure and productivity relationships at the state level 

using time-series cross-section data for the 48 contiguous states. 

The cross-sectional aspect of these data has certain advantages 

that minimize the possibility of deceiving correlation over time. 

As a whole, studies based on state-level data support a relatively 

lower but still positive relationship between public infrastructure 

and productivity. Munnell's elasticity estimates show that, while 

public capital has a positive effect on output , it is only half the 

size of the effect of private capital. 

Using Munnell's data, Eisner [129] suggests that for all 

functions considered, the coefficient of public capital in the 

estimated equation remains significant when the data are 
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arranged to reflect cross-sectional variation, but becomes 

insignificant when the data are arranged to allow for time-series 

variation. This shows that states with more public capital per 

capita have more output per capita. However, a state that 

increases its public capital in one year does not produce more 

output in that same year as a result. Therefore, Eisner regards 

the direction of causation between output and public capital as 

undetermined, and postulates that a lag structure is required to 

obtain a true time-series relationship between output and public 

capital. 

The endogeneity problem is internal to the firm‘s optimal 

choice of inputs. According to Marschak and Andrews [130], 

using the inputs and outputs of profit maximizing firms to 

estimate production functions gives rise to an endogeneity 

problem. Some of the methods of controlling for the 

endogeneity problem in the production function are instrumental 

variables and fixed effect estimation. But these solutions have 

proved out to be unsatisfactory on both theoretical and empirical 

grounds. Olley and Pakes [131] developed a new solution to the 

endogeneity problem. This work was further extended by 

Levinsohn and Petrin [132], and Ackerberg et al. [133]. 

The replacement function cannot be used to identify the 

production function in the presence of a productive input which 

is both variable and static as suggested by Bond and Soderbom 

[134]. This is an inherent limitation of scalar unobservability: It 

does not allow variation in such inputs which arise from outside 

of the production function. As a consequence, the replacement 

function approach cannot identify gross output production 

functions when some inputs are variable and static.  

Value-added production functions are problematic for 

applied work as they are based on many strong restrictions e.g., 

Basu and Fernald (1997). In general, when the assumptions of 

constant return to scale and perfect competition are violated, 

using the value-added production function to recover 

productivity is no longer a valid option. Perhaps more 

importantly, gross output production functions are required to 

study a number of important empirical problems, such as the 

problem of revenue production functions, or analyzing 

productivity among exporting firms (Rivers, [136]). 

Future Implication and Direction for research 

Today the impact of mathematical modelling can be felt in 

many areas such as health industry, library, city planning, 

transportation system, crime investigation, educational 

psychology, Behavioral science, Social sciences and 

environmental science and industries. 

Although work is being done in this field, mathematical 

modelling is still in its infancy and a great deal of work is still 

necessary to develop more powerful models, so as to predict the 

future and plan the entire course of action, even before the 

problem arises, without much loss of money or/and manpower 

and natural resources. 
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