
G. R. Bamnote et al./ Elixir Comp. Sci. & Engg. 74 (2014) 27246-27248

27246

Introduction

The fundamental part of any DBMS is query processing and

optimization. The results of queries must be available in the

timeframe needed by the submitting user[1]. Query processing

techniques based on multiple design dimensions can be

classified as[2]:

1. Query model: Processing techniques are classified according

to the query model they assume. Some techniques assume a

selection query model, where scores are attached directly to base

tuples. Other techniques assume a join query model, where

scores are computed over join results. A third category assumes

an aggregate query model, where we are interested in ranking

groups of tuples.

2. Data access methods: Processing techniques are classified

according to the data access methods they assume to be

available in the underlying data sources. For example, some

techniques assume the availability of random access, while

others are restricted to only sorted access.

3. Implementation level: Processing techniques are classified

according to their level of integration with database systems. For

example, some techniques are implemented in an application

layer on top of the database system, while others are

implemented as query operators.

4. Data and query uncertainty: Processing techniques are

classified based on the uncertainty involved in their data and

query models. Some techniques produce exact answers, while

others allow for approximate answers, or deal with uncertain

data.

5. Ranking function: Processing techniques are classified based

on the restrictions they impose on the underlying ranking

(scoring) function. Most proposed techniques assume monotone

scoring functions.

Query processing

 Query processing refers to the range of activities involved

in extracting data from a database. The activities include

translation of queries in high-level database languages into

expressions that can be used at the physical level of the file

system, a variety of query-optimizing transformations, and

actual evaluation of queries.

 A database query is the vehicle for instructing a DBMS to

update or retrieve specific data to/from the physically stored

medium. The actual updating and retrieval of data is performed

through various ―low- level‖ operations[10]. Examples of such

operations for a relational DBMS can be relational algebra

operations such as project, join, select, Cartesian product,

etc[11]. While the DBMS is designed to process these low -level

operations efficiently, it can be quite the burden to a user to

submit requests to the DBMS in these formats.

 There are three phases [12] that a query passes through

during the DBMS’ processing of that query:

1. Parsing and translation

2. Optimization

3. Evaluation

 The first step in processing a query submitted to a DBMS is

to convert the query into a form usable by the query processing

engine. High- level query languages such as SQL represent a

query as a string, or sequence, of characters.

 Certain sequences of characters represent various types of

tokens such as keywords, operators, operands, literal strings, etc.

Like all languages, there are rules (syntax and grammar) that

govern how the tokens can be combined into understandable

(i.e. valid) statements.

 The primary job of the parser is to extract the tokens from

the raw string of characters and translate them into the

corresponding internal data elements (i.e. relational algebra

operations and operands) and structures (i.e. query tree, query

graph). The last job of the parser is to verify the validity and

syntax of the original query string.

 In second stage, the query processor applies rules to the

internal data structures of the query to transform these structures

into equivalent, but more efficient representations.

Introduction to Query Processing and Optimization
G. R. Bamnote

1
 and S. S. Agrawal

2

1
Department of Computer Science & Engineering, PRMITR, Badnera, India.
2
Department of Computer Science & Engineering, COE & T, Akola, India.

 ABSTRACT

Query Processing is the scientific art of obtaining the desired information from a database

system in a predictable and reliable fashion. Database systems must be able to respond to

requests for information from the user i.e. process queries. In large database systems, which

may be running on un-predictable and volatile environments, it is difficult to produce

efficient database query plans based on information available solely at compile time. Getting

the database results in a timely manner deals with the technique of Query Optimization.

Efficient processing of queries is an important requirement in many interactive environments

that involve massive amounts of data. Efficient query processing in domains such as the

Web, multimedia search, and distributed systems has shown a great impact on performance.

This paper will introduce the basic concepts of query processing and query optimization in

the relational database. We also describe and difference query processing techniques in

relational databases.

 © 2014 Elixir All rights reserved.

ARTICLE INFO

Article history:

Received: 18 April 2013;

Received in revised form:

15 September 2014;

Accepted: 26 September 2014;

Keywords

Query Processing,

Query Optimization,

Database.

Elixir Comp. Sci. & Engg. 74 (2014) 27246-27248

Computer Science and Engineering

Available online at www.elixirpublishers.com (Elixir International Journal)

Tele:

E-mail addresses: sachin.s.agrawal@gmail.com

 © 2014 Elixir All rights reserved

G. R. Bamnote et al./ Elixir Comp. Sci. & Engg. 74 (2014) 27246-27248

27247

 The rules can be based upon mathematical models of the

relational algebra expression and tree (heuristics), upon cost

estimates of different algorithms applied to operations or upon

the semantics within the query and the relations it involves.

 Selecting the proper rules to apply, when to apply them and

how they are applied is the function of the query optimization

engine.

Figure: Steps in query processing

 The final step in processing a query is the evaluation phase.

The best evaluation plan candidate generated by the

optimization engine is selected and then executed. Note that

there can exist multiple methods of executing a query.

 Besides processing a query in a simple sequential manner,

some of a query’s individual operations can be processed in

parallel either as independent processes or as interdependent

pipelines of processes or threads. Regardless of the method

chosen, the actual results should be same

Consider for example:

select balance

from account

where balance < 2500

This can be translated into either of the following relational

algebra expressions:

 σ b a l a n c e < 2 5 0 0 (Π b a l a n c e (a c c o u n t))

 Π b a l a n c e (σ b a l a n c e < 2 5 0 0 (a c c o u n t))

 Which can also be represented as either of the following

query trees:

 balance<2500 balance

 | |

 balance  balance<2500

 | |

 account account

Figure: A query-evaluation plan.

Masures of query cost

 The cost of query evaluation can be measured in terms of a

number of different resources, including disk accesses, CPU

time to execute a query, and, in a distributed or parallel

database system, the cost of communication.

 The response time for a query-evaluation plan, assuming no

other activity is going on the computer, would account for all

these costs, and could be used as a good measure of the cost of

the plan. In large database systems, however, disk accesses are

usually the most important cost, since disk accesses are slow

compared to in-memory operations.

 Also CPU speeds have been improving much faster than

have disk speeds. Thus, it is likely that the time spent in disk

activity will continue to dominate the total time to execute a

query. Finally, estimating the CPU time is relatively hard,

compared to estimating the disk-access cost. Therefore, most

people consider the disk-access cost a reasonable measure of the

cost of a query-evaluation plan.

 Query algorithms

 Queries are ultimately reduced to a number of file scan

operations on the underlying physical file structures[3, 4]. For

each relational operation, there can exist several different access

paths to the particular records needed.

 The query execution engine can have a multitude of

specialized algorithms designed to process particular relational

operation and access path combinations.

Selection Algorithms

 The Select operation must search through the data files for

records meeting the selection criteria. Following are some

examples of simple (one attribute) selection algorithms [13]:

1. Linear search: Every record from the file is read and

compared to the selection criteria. The execution cost for

searching on a non-key attribute is br, where br is the number of

blocks in the file representing relation r. On a key attribute, the

average cost is br/2,with a worst case of br.

2. Binary search: A binary search, on equality, performed on a

primary key attribute has a worst-case cost of log (br). This

can be considerably more efficient than the linear search, for a

large number of records.

3. Search using a primary index on equality: With a B
+
-tree

index, an equality comparison on a key attribute will have a

worst -case cost of the height of the tree plus one to retrieve the

record from the data file. An equality comparison on a non-key

attribute will be the same except that multiple records may meet

the condition, in which case, we add the number of blocks

containing the records to the cost.

4. Search using a primary index on comparison: When the

comparison operators (<, , >, ) are used to retrieve multiple

records from a file sorted by the search attribute, the first record

satisfying the condition is located and the total blocks before (<,

) or after (>, ) is added to the cost of locating the first record.

5. Search using a secondary index on equality: Retrieve one

record with an equality comparison on a key attribute; or

retrieve a set of records on a non-key attribute[6]. For a single

record, the cost will be equal to the cost of locating the search

key in the index file plus one for retrieving the data record. For

multiple records, the cost will be equal to the cost of locating the

search key in the index file plus one block access for each data

record retrieval, since the data file is not ordered on the search

attribute.

Join Algorithms

 The join algorithm can be implemented in a different ways.

In terms of disk accesses, the join operations can be very

expensive, so implementing and utilizing efficient join

algorithms is important in minimizing a query’s execution

time[8]. The following are 4 well - known types of join

algorithms:

1. Nested-Loop Join: It consists of a inner for loop nested within

an outer for loop [12].

2. Index Nested-Loop Join: This algorithm is the same as the

Nested-Loop Join, except an index file on the inner relation’s

join attribute is used versus a data-file scan on each index

lookup in the inner loop is essentially an equality selection for

utilizing one of the selection algorithms Let c be the cost for the

lookup, then the worst -case cost for joining rand sis br + nr * c.

3. Sort –Merge Join: This algorithm can be used to perform

natural joins and equi-joins and requires that each relation be

sorted by the common attributes between them [5]

G. R. Bamnote et al./ Elixir Comp. Sci. & Engg. 74 (2014) 27246-27248

27248

4. Hash Join: The hash join algorithm can be used to perform

natural joins and equi-joins. The hash join utilizes two hash

table file structures (one for each relation) to partition each

relation’s records into sets containing identical hash values on

the join attributes. Each relation is scanned and its

corresponding hash table on the join attribute values is built.

Indexes Role

 The execution time of various operations such as select and

join can be reduced by using indexes[7]. Let us review some of

the types of index file structures and the roles they play in

reducing execution time and overhead:

1. Dense Index: Data-file is ordered by the search key and every

search key value has a separate index record. This structure

requires only a single seek to find the first occurrence of a set of

contiguous record s with the desired search value[9].

2. Sparse Index: Data-file is ordered by the index search key and

only some of the search key values have corresponding index

records. Each index record’s data-file pointer points to the first

data-file record with the search key value. While this structure

can be less efficient than a dense index to find the desired

records, it requires less storage space and less overhead during

insertion and deletion operations.

3. Primary Index: The data file is ordered by the attribute that is

also the search key in the index file. Primary indices can be

dense or sparse. This is also referred to as an Index-Sequential

File [5].

4. Secondary Index: The data file is ordered by an attribute that

is different from the search key in the index file. Secondary

indices must be dense.

5. Multi-Level Index: An index structure consisting of 2 or more

tier s of records where an upper tier’s records point to associated

index records of the tier below. The bottom tier’s index records

contain the pointers to the data-file records. Multi-level indices

can be used, for instance, to reduce the number of disk block

reads needed during a binary search.

6. Clustering Index: A two-level index structure where the

records in the first level contain the clustering field value in one

field and a second field pointing to a block [of 2
nd

 level records]

in the second level. The records in the second level have one

field that points to an actual data file record or to another 2
nd

level block.

7. B+
-tree Index: Multi- level index with a balanced-tree

structure. Finding a search key value in a B
+
-tree is proportional

to the height of the tree maximum number of seeks required is

log(height). While this, on average, is more than a single -

level, dense index that requires only one seek, the B
+
-tree

structure has a distinct advantage in that it does not require

reorganization, it is self-optimizing because the tree is kept

balanced during insertions and deletions.

Choice of evaluation plans

 The query optimization engine generates a set of candidate

evaluation plans. Some will, in heuristic theory, produce a

faster, more efficient execution. Others may, by prior historical

results, be more efficient than the theoretical models, this can

very well be the case for queries dependent on the semantic

nature of the data to be processed. Still others can be more

efficient due to ―outside agencies‖ such as network congestion,

competing applications on the same CPU, etc.

Conclusion

 One of the most critical functional requirements of a

DBMS is its ability to process queries in a timely manner. This

is particularly true for very large, mission critical applications

such as weather forecasting, banking systems and aeronautical

applications, which can contain millions and even trillions of

records. The need for faster and faster, ―immediate‖ results

never ceases.

 Thus, a great deal of research and resources is spent on

creating smarter, highly efficient query optimization engines.

Some of the basic techniques of query processing and

optimization have been presented in this paper.

References

[1] Henk Ernst Blok, Djoerd Hiemstra and Sunil Choenni,

Franciska de Jong, Henk M. Blanken and Peter M.G. Apers.

Predicting the cost-quality trade-off for information retrieval

queries: Facilitatiing database design and query optimization.

Proceedings of the tenth international conference on Information

and knowledge management, Pages 207 - 214.

[2] D. Calvanese, G. DeGiacomo, M. Lenzerini and M. Y.

Vardi. Reasoning on Regular Path Queries. ACM SIGMOD

Record , Vol. 32, No. 4, December 2003.

[3] Andrew Eisenberg and Jim Melton. Advancements in

SQL/XML. ACM SIGMOD Record ,Vol. 33, No. 3, September

2004.

[4] Andrew Eis enberg and Jim Melton. An Early Look at

XQuery API for Java™ (XQJ). ACM SIGMOD Record ,Vol.

33, No. 2

[5] Ramez Elmasri and Shamkant B. Navathe. Fundamentals of

Database Systems, second edition. Addison-Wesley Publishing

Company,

[6] Donald Kossmann and Konrad Stocker. Iterative Dynamic

Programming: A new Class of Query Optimization Algorithms.

ACM Transactions on Database Systems, Vol. 25, No. 1, March

2000, Pages 43- 82.

[7] Chiang Lee, Chi - Sheng Shih and Yaw - Huei Chen. A

Graph-theoritic model for optimizing queries involving

methods. The VLDB Journal —The International Journal on

Very Large Data Bases, Vol. 9,Issue 4, Pages 327 -343.

[8] Hsiao-Fei Liu, Ya - Hui Chang and Kun-Mao Chao. An

Optimal Algorithm for Querying Tree Structures and its

Applications in Bioinformatics. ACM SIGMOD Record Vol.

33, No. 2, June 2004.

[9] Reza Sadri, Carlo Zaniolo, Amir Zarkesh and Jafar Adibi.

Expressing and Optimizing Transactions on Database Systems,

Vol . 29, Issue 2, Pages 282 - 318.

[10] Reza Sadri, Carlo Zaniolo, Amir Zarkesh and Jafar Adibi.

Optimization of Sequence Queries in Database Systems. In

Proceedings of the twentieth ACM SIGMOD -SIGACT-

SIGART symposium on Principles of database systems, May

2001, Pages 71 -81.

[11] Thomas Schwentick. XPath Query Containment. ACM

SIGMOD Record , Vol. 33, No. 1, March 2004.

[12] Avi Silbershatz, Hank Korth and S. Sudarshan. Database

System Concepts, 7
th

 Edition. McGraw - Hill.

[13] Dimitri Theodoratos and Wugang Xu. Constructing Search

Spaces for Materialized View Selection. Proceedings of the 7th

ACM international workshop on Data warehousing and OLAP,

Pages 112 - 121.

[14] Jingren Zhou and Kenneth A. Ross. Buffering Database

Operations for Enhanced Instruction Cache Performance.

Proceedings of the 2004 ACM SIGMOD international

conference on Management of data, June 2004, Pages 191 - 202.

