# Complexity of products of $\mathrm{K}_{\mathrm{m}}$ with some special graphs 

S. N. Daoud ${ }^{1,2}$<br>${ }^{1}$ Department of Mathematics, Faculty of Science, Minufiya University, Shibin El Kom 32511, Egypt<br>${ }^{2}$ Department of Mathematics, Faculty of Science, Taibah University, Al-Madinah 344, Saudi Arabia.

## ARTICLE INFO

## Article history:

Received: 13 August 2014;
Received in revised form:
15 September 2014;
Accepted: 23 September 2014;


#### Abstract

In this paper we derive new formulas for the number of spanning trees, of some product graphs such as cartesian product, tensor product, composition product, normal product, and strong sum using linear algebra, Chebyshev polynomials and matrix theory techniques.


© 2014 Elixir All rights reserved.

## Keywords

Number of spanning trees,
Chebyshev polynomials,
Cartesian product, Tensor product,
Composition product, Normal product,
Strong sum.

## 1. Introduction

The problem of calculating the number of spanning trees on the graph $G$ is an important, well- studied problem in graph theory. Deriving formulas for different types of graphs can be prove to be helpful in identifying those graphs that contain the maximum number of spanning trees. Such an investigation has practical consequences related to network. Thus for both theoretical and practical consequences related to network. Thus for both theoretical and practical purpose, we interested to deriving formulas for the number of spanning trees of a graph based on its time complexity in order to calculate the formula. Many cases have been examined depending on the choice of $G$. It has been studied when $G$ is labeled molecular graph [18], when $G$ is a circulant graph [21], when $G$ is a complete multipartite graph [20], when $G$ is a cubic cycle and quadruple cycle graph [20], when $G$ is a threshold graph [11] and so on. A spanning tree of $G$ is a minimal connected subgraph of $G$ that has the same vertex set as $G$. The number of spanning trees in $G$, also called, the complexity of the graph, denoted by $\tau(G)$. A classical result of Kirchhoff [5], can be used to determine the number of spanning trees for $G=(V, E)$. Let $V=\left\{v_{1}, v_{2}, \ldots ., v_{n}\right\}$, then the Kirchhoff matrix $H$ defined as $n \times n$ characteristic matrix $H=D-A$, where $D$ is the diagonal matrix of the degrees of $G$ and $A$ is the adjacency matrix of $G, H=\left[a_{i j}\right]$ defined as follows: (i) $a_{i j}=-1 v_{i}$ and $v_{j}$ are adjacent and $i \neq j$, (ii) $a_{i j}$ equals the degree of vertex $v_{i}$ if $i=j$, and (iii) $a_{i j}=0$ otherwise. All of cofactors of $H$ are equal to $\tau(G)$.

There are other methods for calculating $\tau(G)$. Let, denote the eignvalues of $H$ matrix of a $p$ point graph. Then it is easily shown that $\mu_{p}=0$. Furthermore, Kelmans $\mu_{1} \geq \mu_{1} \geq \ldots \ldots \geq \mu_{p}$ and Chelnokov [1] shown that, $\tau(G)=\frac{1}{p} \prod_{k=1}^{p-1} \mu_{k}$. The formula for the number of spanning trees in a $d$-regular graph $G$ can be expressed as $\tau(G)=\frac{1}{p} \prod_{k=1}^{p-1}\left(d-\lambda_{k}\right)$ where $\lambda_{0}=d, \lambda_{1}, \lambda_{2}, \ldots \ldots, \lambda_{p-1}$ are the eigenvalues of the corresponding adjacency matrix of the graph. However, for a few special families of graphs there exist simple formulas that make it much easier to calculate and determine the number of corresponding

## Tele:

E-mail addresses: salamadaoud@gmail.com
spanning trees, especially when these numbers are very large. One of the first such results is due to Cayley [4] who showed that complete graph on $n$ vertices, $K_{n}$ has $n^{n-2}$ spanning trees that He showed $\tau\left(K_{n}\right)=n^{n-2}, n \geq 2$. Another result, $\tau\left(K_{p, q}\right)=p^{q-1} q^{p-1}, p, q \geq 1$, where $K_{p, q}$ is the complete bipartite graph with bipartite sets containing $p$ and $q$ vertices, respectively. It is well known, as in e.g., [9, 10]. Another result is due to Sedlacek [7] who derived a formula for the wheel on $n+1$ vertices, $W_{n+1}$, He showed that $\tau\left(W_{n+1}\right)=\left(\frac{3+\sqrt{5}}{2}\right)^{n}+\left(\frac{3-\sqrt{5}}{2}\right)^{n}-2$, for $n \geq 3$. Sedlacek [8] also later derived a formula for the number of spanning trees in a Mobius ladder, $M_{n}, \tau\left(M_{n}\right)=\frac{n}{2}\left[(2+\sqrt{3})^{n}+(2-\sqrt{3})^{n}+2\right]$ for $n \geq 2$. Another class of graphs for which an explicit formula has been derived is based on a prism. Boesch, et .al. [2, 3].

Now we introduce following lemma which describe a way to calculate the number of spanning trees by an extension of Kirchhoff formula.

Lemma 1.1 [14] Let $G$ be a graph with $n$ vertices. Then

$$
\tau(G)=\frac{1}{n^{2}} \operatorname{det}(n I-\bar{D}+\bar{A})
$$

where $\bar{A}, \bar{D}$ are the adjacency and degree matrices of $\bar{G}$, the complement of $G$, respectively, and $I$ is the $n \times n$ unit matrix. The advantage of these formula in Lemma1.1 is to express $\tau(G)$ directly as a determinant rather than in terms of cofactors as in Kirchhoff theorem or eigenvalues as in Kelmans and Chelnokov formula.

## 2. Chebyshev Polynomial

In this section we introduce some relations concerning Chebyshev polynomials of the first and second kind which we use it in our computations. We begin from their definitions, Yuanping, et. al. [22].
Let $A_{n}(x)$ be $n \times n$ matrix such that:

$$
A_{n}(x)=\left(\begin{array}{ccccc}
2 x & -1 & 0 & \mathrm{~L} & 0 \\
-1 & \mathrm{O} & \mathrm{O} & \mathrm{O} & \mathrm{M} \\
0 & \mathrm{O} & \mathrm{O} & \mathrm{O} & 0 \\
\mathrm{M} & \mathrm{O} & \mathrm{O} & \mathrm{O} & -1 \\
0 & \mathrm{~L} & 0 & -1 & 2 x
\end{array}\right)
$$

where all other elements are zeros.
Further we recall that the Chebyshev polynomials of the first kind defined by:

$$
\begin{equation*}
T_{n}(x)=\cos (n \arccos x) \tag{1}
\end{equation*}
$$

The Chebyshev polynomials of the second kind are defined by:

$$
\begin{equation*}
U_{n-1}(x)=\frac{1}{n} \frac{d}{d x} T_{n}(x)=\frac{\sin (n \arccos x)}{\sin (\arccos x)} \tag{2}
\end{equation*}
$$

It is easily verified that

$$
\begin{equation*}
U_{n}(x)-2 x U_{n-1}(x)+U_{n-2}(x)=0 \tag{3}
\end{equation*}
$$

It can then be shown from this recursion that by expanding $\operatorname{det} A_{n}(x)$ one gets

$$
\begin{equation*}
U_{n}(x)=\operatorname{det}\left(A_{n}(x)\right), n \geq 1 \tag{4}
\end{equation*}
$$

Furthermore by using standard methods for solving the recursion (3), one obtains the explicit formula

$$
\begin{equation*}
U_{n}(x)=\frac{1}{2 \sqrt{x^{2}-1}}\left[\left(x+\sqrt{x^{2}-1}\right)^{n+1}-\left(x-\sqrt{x^{2}-1}\right)^{n+1}\right], \quad n \geq 1 \tag{5}
\end{equation*}
$$

where the identity is true for all complex $x$ (except at $x= \pm 1$ where the function can be taken as the limit).
The definition of $U_{n}(x)$ easily yields its zeros and it can therefore be verified that

$$
\begin{equation*}
U_{n-1}(x)=2^{n-1} \prod_{j=1}^{n-1}\left(x-\cos \frac{j \pi}{n}\right) \tag{6}
\end{equation*}
$$

One further notes that:

$$
\begin{equation*}
U_{n-1}(-x)=(-1)^{n-1} U_{n-1}(x) \tag{7}
\end{equation*}
$$

These two results yield another formula for $U_{n}(x)$,

$$
\begin{equation*}
U_{n-1}^{2}(x)=4^{n-1} \prod_{j=1}^{n-1}\left(x^{2}-\cos ^{2} \frac{j \pi}{n}\right) \tag{8}
\end{equation*}
$$

Finally, simple manipulation of the above formula yields the following, which also will be extremely useful to us latter:

$$
\begin{equation*}
U_{n-1}^{2}\left(\sqrt{\frac{x+2}{4}}\right)=\prod_{j=1}^{n-1}\left(x-2 \cos \frac{2 j \pi}{n}\right) \tag{9}
\end{equation*}
$$

Furthermore one can show that:

$$
\begin{equation*}
U_{n-1}^{2}(x)=\frac{1}{2\left(1-x^{2}\right)}\left[1-T_{2 n}\right]=\frac{1}{2\left(1-x^{2}\right)}\left[1-T_{n}\left(2 x^{2}-1\right)\right], \tag{10}
\end{equation*}
$$

and

$$
\begin{equation*}
T_{n}(x)=\frac{1}{2}\left[\left(x+\sqrt{x^{2}-1}\right)^{n}+\left(x-\sqrt{x^{2}-1}\right)^{n}\right] \tag{11}
\end{equation*}
$$

Lemma 2.1 [15] Let $B_{n}(x)$ be $n \times n$ matrix such that:

Then:

$$
\begin{gathered}
B_{n}(x)=\left(\begin{array}{cccccc}
x & -1 & \mathrm{O} & \mathrm{~L} & \mathrm{~L} & \mathrm{O} \\
-1 & 1+x & \mathrm{O} & \mathrm{O} & \mathrm{O} & \mathrm{M} \\
\mathrm{O} & \mathrm{O} & \mathrm{O} & \mathrm{O} & \mathrm{O} & \mathrm{M} \\
\mathbf{M} & \mathrm{O} & \mathrm{O} & \mathrm{O} & \mathrm{O} & \mathrm{O} \\
\mathbf{M} & \mathrm{O} & \mathrm{O} & \mathrm{O} & 1+x & -\mathbf{1} \\
\mathrm{O} & \mathrm{~L} & \mathrm{~L} & \mathrm{O} & -1 & x
\end{array}\right) \\
\operatorname{det}\left(B_{n}(x)\right)=(x-1) U_{n-1}\left(\frac{1+x}{2}\right)
\end{gathered}
$$

Lemma 2.2 [16] Let $C_{n}(x)$ be $n \times n$ matrix, $n \geq 3, x>2$ such that:

$$
C_{n}(x)=\left(\begin{array}{cccccc}
x & 0 & 1 & \mathrm{~L} & \mathrm{~L} & 1 \\
0 & x+1 & \mathrm{O} & \mathrm{O} & \mathrm{O} & \mathrm{M} \\
1 & \mathrm{O} & \mathrm{O} & \mathrm{O} & \mathrm{O} & \mathrm{M} \\
\mathrm{M} & \mathrm{O} & \mathrm{O} & \mathrm{O} & \mathrm{O} & 1 \\
\mathrm{M} & \mathrm{O} & \mathrm{O} & \mathrm{O} & x+1 & 0 \\
1 & \mathrm{~L} & \mathrm{~L} & 1 & 0 & x
\end{array}\right)
$$

Then:

$$
\operatorname{det}\left(C_{n}(x)\right)=(n+x-2) U_{n-1}\left(\frac{x}{2}\right)
$$

Lemma 2.3 [13] Let $D_{n}(x)$ be $n \times n$ matrix, $n \geq 3, x \geq 4$ such that:

$$
D_{n}(x)=\left(\begin{array}{cccccc}
x & \mathrm{O} & 1 & \mathrm{~L} & 1 & \mathrm{O} \\
\mathrm{O} & \mathrm{O} & \mathrm{O} & \mathrm{O} & \mathrm{O} & 1 \\
1 & \mathrm{O} & \mathrm{O} & \mathrm{O} & \mathrm{O} & \mathrm{M} \\
\mathrm{M} & \mathrm{O} & \mathrm{O} & \mathrm{O} & \mathrm{O} & 1 \\
1 & \mathrm{O} & \mathrm{O} & \mathrm{O} & \mathrm{O} & \mathrm{O} \\
\mathrm{O} & 1 & \mathrm{~L} & 1 & \mathrm{O} & x
\end{array}\right)
$$

Then:

$$
\operatorname{det}\left(D_{n}(x)\right)=\frac{2(x+n-3)}{x-3}\left[T_{n}\left(\frac{x-1}{2}\right)-1\right] .
$$

Lemma 2.4 [17] Let $E_{n}(x)$ be $n \times n$ matrix, $x \geq 2$ such that:

$$
E_{n}(x)=\left(\begin{array}{cccccc}
x & 1 & L & L & L & 1 \\
1 & \mathrm{O} & \mathrm{O} & \mathrm{O} & \mathrm{O} & \mathrm{M} \\
\mathrm{M} & \mathrm{O} & \mathrm{O} & \mathrm{O} & \mathrm{O} & \mathrm{M} \\
\mathrm{M} & \mathrm{O} & \mathrm{O} & \mathrm{O} & \mathrm{O} & \mathrm{M} \\
\mathrm{M} & \mathrm{O} & \mathrm{O} & \mathrm{O} & \mathrm{O} & 1 \\
1 & \mathrm{~L} & \mathrm{~L} & \mathrm{~L} & 1 & x
\end{array}\right)
$$

Then

$$
\operatorname{det}\left(E_{n}\right)=(x+n-1)(x-1)^{n-1}
$$

We can generalize the above Lemma as follows:

Lemma 2.5 Let $A, B \in F^{n \times n}$ and $\mathrm{F} \in F^{k n \times k n}$ such that:

$$
\mathrm{F}=\left(\begin{array}{cccccc}
\boldsymbol{A} & \boldsymbol{B} & \mathrm{L} & \mathrm{~L} & \mathrm{~L} & \boldsymbol{B} \\
\boldsymbol{B} & \mathrm{O} & \mathrm{O} & \mathrm{O} & \mathrm{O} & \mathbf{M} \\
\mathbf{M} & \mathrm{O} & \mathrm{O} & \mathrm{O} & \mathrm{O} & \mathbf{M} \\
\mathbf{M} & \mathrm{O} & \mathrm{O} & \mathrm{O} & \mathrm{O} & \mathbf{M} \\
\mathbf{M} & \mathrm{O} & \mathrm{O} & \mathrm{O} & \mathrm{O} & \boldsymbol{B} \\
\boldsymbol{B} & \mathrm{~L} & \mathrm{~L} & \mathrm{~L} & \boldsymbol{B} & \boldsymbol{A}
\end{array}\right)
$$

$$
\operatorname{det} \mathrm{F}=[\operatorname{det}(A-B)]^{k-1} \operatorname{det}[A+(k-1) B] .
$$

Formula in Lemma 2.5 gives some sort of symmetry in some matrices which facilitates our calculation of determinants.

## 3. Number of Spanning Trees of Cartesian Product of Some Graphs

The Cartesian product, $G_{1} \times G_{2}$, of two graphs $G_{1}$ and $G_{2}$ is the simple graph with vertex set $V\left(G_{1} \times G_{2}\right)=V_{1} \times V_{2}$, and edge set $E\left(G_{1} \times G_{2}\right)=\left[\left(E_{1} \times V_{2}\right) \mathrm{U}\left(V_{1} \times E_{2}\right)\right]$ such that two vertices $\left(u_{1}, u_{2}\right)$ and $\left(v_{1}, v_{2}\right)$ are adjacent in $G_{1} \times G_{2}$ iff, either $u_{1}=v_{1}$ and $u_{2}$ is adjacent to $v_{2}$ in $G_{2}$, or $u_{1}$ is adjacent to $v_{1}$ in $G_{1}$ and $u_{2}=v_{2}$ [6].

Theorem 3.1 For $m \geq 1$, and $n \geq 2$, we have:

$$
\tau\left(K_{m} \times P_{n}\right)=m^{m-2}\left[\frac{1}{2^{n} \sqrt{m^{2}+4 m}}\left(\left(m+2+\sqrt{m^{2}+4 m}\right)^{n}-\left(m+2-\sqrt{m^{2}+4 m}\right)^{n}\right)\right]^{m-1} .
$$

Proof: Applying Lemma 1.1, we have:

$$
\begin{gathered}
\tau\left(\boldsymbol{K}_{m} \times \boldsymbol{P}_{n}\right)=\frac{1}{(m n)^{2}} \operatorname{det}(m n \boldsymbol{I}-\overline{\boldsymbol{D}}+\overline{\boldsymbol{A}}) \\
=\frac{1}{(m n)^{2}} \operatorname{det}\left(\begin{array}{cccc}
A & B & \mathrm{~L} & B \\
B & \mathrm{O} & \mathrm{O} & \mathrm{M} \\
\mathrm{M} & \mathrm{O} & \mathrm{O} & B \\
B & \mathrm{~L} & B & A
\end{array}\right)_{m \times m} \quad ; \quad A=\left(\begin{array}{ccccc}
m+1 & 0 & 1 & \mathrm{~L} & 1 \\
0 & m+2 & \mathrm{O} & \mathrm{O} & \mathrm{M} \\
1 & \mathrm{O} & \mathrm{O} & \mathrm{O} & 1 \\
\mathrm{M} & \mathrm{O} & \mathrm{O} & m+2 & 0 \\
1 & \mathrm{~L} & 1 & 0 & m+1
\end{array}\right)_{n \times n} \quad, B=\left(\begin{array}{lllll}
0 & 1 & \mathrm{~L} & \mathrm{~L} & 1 \\
1 & \mathrm{O} & \mathrm{O} & \mathrm{O} & \mathrm{M} \\
\mathrm{M} & \mathrm{O} & \mathrm{O} & \mathrm{O} & \mathrm{M} \\
\mathrm{M} & \mathrm{O} & \mathrm{O} & \mathrm{O} & 1 \\
1 & \mathrm{~L} & \mathrm{~L} & 1 & 0
\end{array}\right)_{n \times n}
\end{gathered}
$$

Using Lemma 2.5, we get:

$$
\begin{gathered}
\tau\left(K_{m} \times P_{n}\right)=\frac{1}{(m n)^{2}}[\operatorname{det}(A-B)]^{m-1}[\operatorname{det}(A+(m-1) B)] \\
=\frac{1}{(m n)^{2}}\left(\operatorname{det}\left(\begin{array}{cccc}
m+1 & -1 & \mathrm{O} & \mathrm{~L} \\
-1 & m+2 & \mathrm{O} & \mathrm{O} \\
\mathrm{O} & \mathrm{O} & \mathrm{O} & \mathrm{O} \\
\mathrm{O} & \mathrm{O} & \mathrm{O} & m+2 \\
\mathrm{O} \\
\mathrm{O} & \mathrm{~L} & \mathrm{O} & -1
\end{array}\right)\right)^{m-1} \times \operatorname{det}\left(\begin{array}{cccccc}
m+1 & m-1 & m & \mathrm{~L} & m \\
m-1 & m+2 & \mathrm{O} & \mathrm{O} & \mathrm{M} \\
m & \mathrm{O} & \mathrm{O} & \mathrm{O} & m \\
\mathrm{M} & \mathrm{O} & \mathrm{O} & m+2 & m-1 \\
m & \mathrm{~L} & m & m-1 & m+1
\end{array}\right)
\end{gathered}
$$

Using Lemma 2.1, we obtain:

$$
\begin{aligned}
\tau\left(K_{m} \times P_{n}\right) & =\frac{1}{(m n)^{2}}\left(m U_{n-1}\left(\frac{m+2}{2}\right)\right)^{m-1} \times m n^{2}=m^{m-2}\left(U_{n-1}\left(\frac{m+2}{2}\right)\right)^{m-1} \\
& =m^{m-2}\left[\frac{1}{2^{n} \sqrt{m^{2}+4 m}}\left(\left(m+2+\sqrt{m^{2}+4 m}\right)^{n}-\left(m+2-\sqrt{m^{2}+4 m}\right)^{n}\right)\right]^{m-1}
\end{aligned}
$$

Theorem 3.2 For $m \geq 1$, and $n \geq 3$, we have:

$$
\tau\left(K_{m} \times C_{n}\right)=\frac{n}{m 2^{n(m-1)}}\left[\left(m+2+\sqrt{m^{2}+4 m}\right)^{n}+\left(m+2-\sqrt{m^{2}+4 m}\right)^{n}-2^{n+1}\right]^{m-1}
$$

Proof: Applying Lemma 1.1, we have:

$$
\begin{aligned}
& \tau\left(K_{m} \times C_{n}\right)=\frac{1}{(m n)^{2}} \operatorname{det}(m n I-\bar{D}+\bar{A}) \\
& =\frac{1}{(m n)^{2}} \operatorname{det}\left(\begin{array}{cccc}
A & B & \mathrm{~L} & B \\
B & \mathrm{O} & \mathrm{O} & \mathrm{M} \\
\mathrm{M} & \mathrm{O} & \mathrm{O} & B \\
B & \mathrm{~L} & B & A
\end{array}\right)_{m \times m} \quad ; A=\left(\begin{array}{cccccc}
m+2 & \mathrm{O} & 1 & \mathrm{~L} & 1 & \mathrm{O} \\
\mathrm{O} & \mathrm{O} & \mathrm{O} & \mathrm{O} & \mathrm{M} & 1 \\
1 & \mathrm{O} & \mathrm{O} & \mathrm{O} & \mathrm{O} & \mathrm{M} \\
\mathrm{M} & \mathrm{O} & \mathrm{O} & \mathrm{O} & \mathrm{O} & 1 \\
1 & \mathrm{O} & \mathrm{O} & \mathrm{O} & \mathrm{O} & \mathrm{O} \\
\mathrm{O} & 1 & \mathrm{~L} & 1 & \mathrm{O} & m+2
\end{array}\right)_{n \times n} \quad, \quad B=\left(\begin{array}{ccccc}
\mathrm{O} & 1 & \mathrm{~L} & \mathrm{~L} & \mathrm{~L} \\
1 & \mathrm{O} & \mathrm{O} & \mathrm{O} & \mathrm{O} \\
\mathrm{M} & \mathrm{M} \\
\mathrm{M} & \mathrm{O} & \mathrm{O} & \mathrm{O} & \mathrm{O} \\
\mathrm{M} & \mathrm{O} & \mathrm{O} & \mathrm{O} & \mathrm{O} \\
\mathrm{M} & \mathrm{M} \\
\mathrm{O} & \mathrm{O} & \mathrm{O} & \mathrm{O} & 1 \\
1 & \mathrm{~L} & \mathrm{~L} & \mathrm{~L} & 1 \\
\mathrm{O}
\end{array}\right)_{n \times n}
\end{aligned}
$$

Using Lemma 2.5, we get:

$$
\begin{aligned}
& \tau\left(K_{m} \times C_{n}\right)=\frac{1}{(m n)^{2}}[\operatorname{det}(A-B)]^{m-1}[\operatorname{det}(A+(m-1) B)] \\
& =\frac{1}{(m n)^{2}}\left(\operatorname{det}\left(\begin{array}{cccccc}
m+2 & -1 & \mathrm{O} & \mathrm{~L} & \mathrm{O} & -1 \\
-1 & \mathrm{O} & \mathrm{O} & \mathrm{O} & \mathrm{O} & \mathrm{O} \\
\mathrm{O} & \mathrm{O} & \mathrm{O} & \mathrm{O} & \mathrm{O} & \mathrm{M} \\
\mathrm{M} & \mathrm{O} & \mathrm{O} & \mathrm{O} & \mathrm{O} & \mathrm{O} \\
\mathrm{O} & \mathrm{O} & \mathrm{O} & \mathrm{O} & \mathrm{O} & -1 \\
-1 & \mathrm{O} & \mathrm{~L} & \mathrm{O} & -1 & m+2
\end{array}\right)\right)^{m-1} \times \operatorname{det}\left(\begin{array}{cccccc}
m+2 & m-1 & m & \mathrm{~L} & m & m-1 \\
m-1 & \mathrm{O} & \mathrm{O} & \mathrm{O} & \mathrm{O} & m \\
m & \mathrm{O} & \mathrm{O} & \mathrm{O} & \mathrm{O} & \mathrm{M} \\
\mathrm{M} & \mathrm{O} & \mathrm{O} & \mathrm{O} & \mathrm{O} & m \\
m & \mathrm{O} & \mathrm{O} & \mathrm{O} & \mathrm{O} & m-1 \\
m-1 & m & \mathrm{~L} & m & m-1 & m+2
\end{array}\right) \\
& =\frac{1}{(m n)^{2}} \times\left(\frac{m}{n+m} \operatorname{det}\left(\begin{array}{cccccc}
m+3 & \mathrm{O} & 1 & \mathrm{~L} & 1 & \mathrm{O} \\
\mathrm{O} & \mathrm{O} & \mathrm{O} & \mathrm{O} & \mathrm{O} & 1 \\
1 & \mathrm{O} & \mathrm{O} & \mathrm{O} & \mathrm{O} & \mathrm{M} \\
\mathrm{M} & \mathrm{O} & \mathrm{O} & \mathrm{O} & \mathrm{O} & 1 \\
1 & \mathrm{O} & \mathrm{O} & \mathrm{O} & \mathrm{O} & \mathrm{O} \\
\mathrm{O} & 1 & \mathrm{~L} & 1 & \mathrm{O} & m+3
\end{array}\right)\right)^{m-1} \times m n^{3} .
\end{aligned}
$$

Using Lemma 2.3, we obtain :

$$
\begin{aligned}
\tau\left(K_{m} \times C_{n}\right) & =\frac{1}{m^{2} n^{2}}\left(\frac{m}{m+n}\right)^{m-1} \times \frac{2^{m-1}(m+n)^{m-1}}{m^{m-1}} \times\left[T_{n}\left(\frac{m+2}{2}\right)-1\right]^{m-1} \times m n^{3} \\
& =\frac{n}{m} \times 2^{m-1} \times\left[T_{n}\left(\frac{m+2}{2}\right)-1\right]^{m-1} \\
& =\frac{n}{m 2^{n(m-1)}}\left[\left(m+2+\sqrt{m^{2}+4 m}\right)^{n}+\left(m+2-\sqrt{m^{2}+4 m}\right)^{n}-2^{n+1}\right]^{m-1}
\end{aligned}
$$

Theorem 3.3 For $m \geq 2$, and $n \geq 2$, we have:

$$
\tau\left(K_{m} \times K_{n}\right)=m^{m-2} n^{n-2}(m+n)^{(m-1)(n-1)}
$$

Proof: Applying Lemma 1.1, we have:

$$
\begin{gathered}
\tau\left(\boldsymbol{K}_{m} \times \boldsymbol{K}_{n}\right)=\frac{1}{(m n)^{2}} \operatorname{det}(m n I-\overline{\boldsymbol{D}}+\bar{A}) \\
=\frac{1}{(m n)^{2}} \operatorname{det}\left(\begin{array}{cccc}
A & B & \mathrm{~L} & B \\
B & \mathrm{O} & \mathrm{O} & \mathrm{M} \\
\mathrm{M} & \mathrm{O} & \mathrm{O} & B \\
B & \mathrm{~L} & B & A
\end{array}\right) ; A=\left(\begin{array}{cccc}
m+n-1 & \mathrm{O} & \mathrm{~L} & \mathrm{~L} \\
0 & \mathrm{O} & \mathrm{O} & \mathrm{O} \\
\mathrm{M} & \mathrm{O} & \mathrm{O} & \mathrm{O} \\
\mathrm{M} & \mathrm{O} & \mathrm{O} & \mathrm{O} \\
\mathrm{O} & \mathrm{M} \\
\mathrm{O} \\
\mathrm{M} & \mathrm{~L} & \mathrm{~L} & \mathrm{O} \\
m+n-1
\end{array}\right), B=\left(\begin{array}{lllll}
\mathrm{O} & 1 & \mathrm{~L} & \mathrm{~L} & 1 \\
1 & \mathrm{O} & \mathrm{O} & \mathrm{O} & \mathrm{M} \\
\mathrm{M} & \mathrm{O} & \mathrm{O} & \mathrm{O} & \mathrm{M} \\
\mathrm{M} & \mathrm{O} & \mathrm{O} & \mathrm{O} & 1 \\
1 & \mathrm{~L} & \mathrm{~L} & 1 & 0
\end{array}\right)
\end{gathered}
$$

Using Lemma 2.5, we get:

$$
\begin{aligned}
& \tau\left(K_{m} \times K_{n}\right)=\frac{1}{(m n)^{2}}[\operatorname{det}(A-B)]^{m-1}[\operatorname{det}(A+(m-1) B)] \\
& =\frac{1}{(m n)^{2}}\left(\operatorname{det}\left(\begin{array}{ccccc}
m+n-1 & -1 & \mathrm{~L} & \mathrm{~L} & -1 \\
-1 & \mathrm{O} & \mathrm{O} & \mathrm{O} & \mathrm{M} \\
\mathrm{M} & \mathrm{O} & \mathrm{O} & \mathrm{O} & \mathrm{M} \\
\mathrm{M} & \mathrm{O} & \mathrm{O} & \mathrm{O} & -1 \\
-1 & \mathrm{~L} & \mathrm{~L} & -1 & m+n-1
\end{array}\right)\right)^{m-1} \times \operatorname{det}\left(\begin{array}{ccccc}
m+n-1 & m-1 & \mathrm{~L} & \mathrm{~L} & m-1 \\
m-1 & \mathrm{O} & \mathrm{O} & \mathrm{O} & \mathrm{M} \\
\mathrm{M} & \mathrm{O} & \mathrm{O} & \mathrm{O} & \mathrm{M} \\
\mathrm{M} & \mathrm{O} & \mathrm{O} & \mathrm{O} & m-1 \\
m-1 & \mathrm{~L} & \mathrm{~L} & m-1 & m+n-1
\end{array}\right)
\end{aligned}
$$

Using Lemma 2.4, yields :

$$
\begin{aligned}
\tau\left(K_{m} \times K_{n}\right) & =\frac{1}{(m n)^{2}}\left[m(m+n)^{n-1}\right]^{m-1}\left[(m-1)^{n} \frac{m n}{m-1}\left(\frac{n}{m-1}\right)^{n-1}\right] \\
& =m^{m-2} n^{n-2}(m+n)^{(m-1)(n-1)}
\end{aligned}
$$

## 4. Number of Spanning Trees of Tensor Product of Some Graphs

The tensor product, or Kronecher product, $G_{1} \otimes G_{2}$, of two graphs $G_{1}$ and $G_{2}$ is the simple graph with $V\left(G_{1} \otimes G_{2}\right)=V_{1} \times V_{2}$ where $\left(u_{1}, u_{2}\right)$ and $\left(v_{1}, v_{2}\right)$ are adjacent in $G_{1} \otimes G_{2}$ iff $u_{1}$ is adjacent to $v_{1}$ in $G_{1}$ and $u_{2}$ is adjacent to $v_{2}$ in, $G_{2}$ [12].
Theorem 4.1 For $m \geq 2$, and $n \geq 2$, we have:

$$
\tau\left(K_{m} \otimes P_{n}\right)=\frac{(m-1)^{n-1}}{m}\left[\frac{m(m-2)}{2 \sqrt{(m-1)^{2}-1}}\left(\left(m-1+\sqrt{(m-1)^{2}-1}\right)^{n-1}-\left(m-1+\sqrt{(m-1)^{2}-1}\right)^{n-1}\right)\right]^{m-1}
$$

Proof: Applying Lemma 1.1, we get:

$$
\begin{array}{r}
\tau\left(\boldsymbol{K}_{m} \otimes \boldsymbol{P}_{n}\right)=\frac{1}{(m n)^{2}} \operatorname{det}(m n \boldsymbol{I}-\overline{\boldsymbol{D}}+\overline{\boldsymbol{A}}) \\
=\frac{1}{(m n)^{2}} \operatorname{det}\left(\begin{array}{llll}
A & B & \mathrm{~L} & B \\
B & \mathrm{O} & \mathrm{O} & \mathrm{M} \\
\mathrm{M} & \mathrm{O} & \mathrm{O} & B \\
B & \mathrm{~L} & B & A
\end{array}\right)_{m \times m} \quad ; A=\left(\begin{array}{cccccc}
m & 1 & \mathrm{~L} & \mathrm{~L} & \mathrm{~L} & 1 \\
1 & 2 m-1 & \mathrm{O} & \mathrm{O} & \mathrm{O} & \mathrm{M} \\
\mathrm{M} & \mathrm{O} & \mathrm{O} & \mathrm{O} & \mathrm{O} & \mathrm{M} \\
\mathrm{M} & \mathrm{O} & \mathrm{O} & \mathrm{O} & \mathrm{O} & \mathrm{M} \\
\mathrm{M} & \mathrm{O} & \mathrm{O} & \mathrm{O} & 2 m-1 & 1 \\
1 & \mathrm{~L} & \mathrm{~L} & \mathrm{~L} & 1 & m
\end{array}\right)_{n \times n}, B=\left(\begin{array}{cccccc}
1 & 0 & 1 & \mathrm{~L} & \mathrm{~L} & 1 \\
0 & \mathrm{O} & \mathrm{O} & \mathrm{O} & \mathrm{O} & \mathrm{M} \\
1 & \mathrm{O} & \mathrm{O} & \mathrm{O} & \mathrm{O} & \mathrm{M} \\
\mathrm{M} & \mathrm{O} & \mathrm{O} & \mathrm{O} & \mathrm{O} & 1 \\
\mathrm{M} & \mathrm{O} & \mathrm{O} & \mathrm{O} & \mathrm{O} & 0 \\
1 & \mathrm{~L} & \mathrm{~L} & 1 & 0 & 1
\end{array}\right)_{n \times n}
\end{array}
$$

Using Lemma 2.5, we obtain:

$$
\begin{aligned}
\tau\left(K_{m} \otimes P_{n}\right) & =\frac{1}{(m n)^{2}}[\operatorname{det}(A-B)]^{m-1}[\operatorname{det}(A+(m-1) B)] \\
= & \frac{1}{(m n)^{2}}\left(\operatorname{det}\left(\begin{array}{ccccc}
m-1 & 1 & 0 & \mathrm{~L} & 0 \\
1 & 2 m-2 & \mathrm{O} & \mathrm{O} & \mathrm{M} \\
0 & \mathrm{O} & \mathrm{O} & \mathrm{O} & 0 \\
\mathrm{M} & \mathrm{O} & \mathrm{O} & 2 m-2 & 1 \\
0 & \mathrm{~L} & 0 & 1 & m-1
\end{array}\right)\right)^{m-1} \times \operatorname{det}\left(\begin{array}{ccccc}
2 m-1 & 1 & m & \mathrm{~L} & m \\
1 & 3 m-2 & \mathrm{O} & \mathrm{O} & \mathrm{M} \\
m & \mathrm{O} & \mathrm{O} & \mathrm{O} & m \\
\mathrm{M} & \mathrm{O} & \mathrm{O} & 3 m-2 & 1 \\
m & \mathrm{~L} & m & 1 & 2 m-1
\end{array}\right)
\end{aligned}
$$

Straightforward induction using properties of Chebyshev polynomials. We have:

$$
\begin{aligned}
\tau\left(K_{m} \otimes P_{n}\right) & =\frac{1}{(m n)^{2}}\left[m(m-2) U_{n-2}(m-1)\right]^{m-1}\left[m n^{2}(m-1)^{n-1}\right] \\
& =\frac{(m-1)^{n-1}}{m}\left[\frac{m(m-2)}{2 \sqrt{(m-1)^{2}-1}}\left(\left(m-1+\sqrt{(m-1)^{2}-1}\right)^{n-1}-\left(m-1+\sqrt{(m-1)^{2}-1}\right)^{n-1}\right)\right]^{m-1}
\end{aligned}
$$

Theorem 4.2 For $m \geq 2$, we have:

$$
\tau\left(K_{m} \otimes C_{n}\right)=\left\{\begin{array}{l}
\frac{n(m-1)^{n-1}}{m}\left[\left(m-1+\sqrt{(m-1)^{2}-1}\right)^{n}+\left(m-1-\sqrt{(m-1)^{2}-1}\right)^{n}+2\right]^{m-1} ; n=3,5,7, \ldots \ldots \ldots \\
\frac{n(m-1)^{n-1}}{m}\left[\left(m-1+\sqrt{(m-1)^{2}-1}\right)^{n}+\left(m-1-\sqrt{(m-1)^{2}-1}\right)^{n}-2\right]^{m-1} ; n=4,6,8, \ldots \ldots .
\end{array}\right.
$$

Proof: Applying Lemma 1.1, we get:

$$
\tau\left(K_{m} \otimes C_{n}\right)=\frac{1}{(m n)^{2}} \operatorname{det}(m n I-\bar{D}+\bar{A})
$$

$$
=\frac{1}{(m n)^{2}} \operatorname{det}\left(\begin{array}{cccc}
A & B & \mathrm{~L} & B \\
B & \mathrm{O} & \mathrm{O} & \mathrm{M} \\
\mathrm{M} & \mathrm{O} & \mathrm{O} & B \\
B & \mathrm{~L} & B & A
\end{array}\right)_{m \times m} \quad ; A=\left(\begin{array}{cccccc}
2 m-1 & 1 & \mathrm{~L} & \mathrm{~L} & \mathrm{~L} & 1 \\
1 & \mathrm{O} & \mathrm{O} & \mathrm{O} & \mathrm{O} & \mathrm{M} \\
\mathrm{M} & \mathrm{O} & \mathrm{O} & \mathrm{O} & \mathrm{O} & \mathrm{M} \\
\mathrm{M} & \mathrm{O} & \mathrm{O} & \mathrm{O} & \mathrm{O} & \mathrm{M} \\
\mathrm{M} & \mathrm{O} & \mathrm{O} & \mathrm{O} & \mathrm{O} & 1 \\
1 & \mathrm{~L} & \mathrm{~L} & \mathrm{~L} & 1 & 2 m-1
\end{array}\right)_{n \times n} \quad, B=\left(\begin{array}{cccccc}
1 & 0 & 1 & \mathrm{~L} & 1 & 0 \\
0 & \mathrm{O} & \mathrm{O} & \mathrm{O} & \mathrm{O} & 1 \\
1 & \mathrm{O} & \mathrm{O} & \mathrm{O} & \mathrm{O} & \mathrm{M} \\
\mathrm{M} & \mathrm{O} & \mathrm{O} & \mathrm{O} & \mathrm{O} & 1 \\
\mathrm{M} & \mathrm{O} & \mathrm{O} & \mathrm{O} & \mathrm{O} & 0 \\
0 & 1 & \mathrm{~L} & 1 & 0 & 1
\end{array}\right)_{n \times n}
$$

Using Lemma 2.5, we obtain:

$$
\begin{gathered}
\tau\left(K_{m} \otimes C_{n}\right)=\frac{1}{(m n)^{2}}[\operatorname{det}(A-B)]^{m-1}[\operatorname{det}(A+(m-1) B)] \\
=\frac{1}{(m n)^{2}}\left(\operatorname{det}\left(\begin{array}{cccccc}
2 m-2 & 1 & \mathrm{O} & \mathrm{~L} & 0 & 1 \\
1 & \mathrm{O} & \mathrm{O} & \mathrm{O} & \mathrm{O} & 0 \\
\mathrm{O} & \mathrm{O} & \mathrm{O} & \mathrm{O} & \mathrm{O} & \mathrm{M} \\
\mathrm{M} & \mathrm{O} & \mathrm{O} & \mathrm{O} & \mathrm{O} & \mathrm{O} \\
\mathrm{O} & \mathrm{O} & \mathrm{O} & \mathrm{O} & \mathrm{O} & 1 \\
1 & \mathrm{O} & \mathrm{~L} & \mathrm{O} & 1 & 2 m-2
\end{array}\right)\right)^{m-1} \times \operatorname{det}\left(\begin{array}{cccccc}
3 m-2 & 1 & m & \mathrm{~L} & m & 1 \\
1 & \mathrm{O} & \mathrm{O} & \mathrm{O} & \mathrm{O} & m \\
m & \mathrm{O} & \mathrm{O} & \mathrm{O} & \mathrm{O} & \mathrm{M} \\
\mathrm{M} & \mathrm{O} & \mathrm{O} & \mathrm{O} & \mathrm{O} & m \\
m & \mathrm{O} & \mathrm{O} & \mathrm{O} & \mathrm{O} & 1 \\
1 & m & \mathrm{~L} & m & 1 & 3 m-2
\end{array}\right)
\end{gathered}
$$

Using Lemma 2.3. We get:

$$
\tau\left(K_{m} \otimes C_{n}\right)=\left\{\begin{array}{l}
\frac{1}{(m n)^{2}}\left(2\left[T_{n}(m-1)+1\right]\right)^{2}\left(m n^{3}(m-1)^{n-1}\right) ; m \geq 2, n=3,5,7, \ldots \ldots . \\
\frac{1}{(m n)^{2}}\left(2\left[T_{n}(m-1)-1\right]\right)^{2}\left(m n^{3}(m-1)^{n-1}\right) ; m \geq 2, n=4,6,8, \ldots \ldots .
\end{array}\right.
$$

Thus:

$$
\tau\left(K_{m} \otimes C_{n}\right)=\left\{\begin{array}{l}
\frac{n(m-1)^{n-1}}{m}\left[\left(m-1+\sqrt{(m-1)^{2}-1}\right)^{n}+\left(m-1-\sqrt{(m-1)^{2}-1}\right)^{n}+2\right]^{m-1} ; m \geq 2, n=3,5,7, \ldots \ldots . . \\
\frac{n(m-1)^{n-1}}{m}\left[\left(m-1+\sqrt{(m-1)^{2}-1}\right)^{n}+\left(m-1-\sqrt{(m-1)^{2}-1}\right)^{n}-2\right]^{m-1} ; m \geq 2, n=4,6,8, \ldots \ldots . .
\end{array}\right.
$$

Theorem 4.3 For $m \geq 2$, and $n \geq 2$, we have:

$$
\tau\left(K_{m} \otimes K_{n}\right)=m^{m-2} n^{n-2}(n-1)^{m-1}(m-1)^{n-1}(m n-m-n)^{(m-1)(n-1)}
$$

Proof: Applying Lemma 1.1, we get:

$$
\begin{gathered}
\tau\left(\boldsymbol{K}_{m} \otimes \boldsymbol{K}_{n}\right)=\frac{\mathbf{1}}{(\boldsymbol{m n})^{2}} \operatorname{det}(\boldsymbol{m n} \boldsymbol{I}-\overline{\boldsymbol{D}}+\overline{\boldsymbol{A}}) \\
=\frac{1}{(m n)^{2}} \operatorname{det}\left(\begin{array}{cccc}
A & B & \mathrm{~L} & B \\
B & \mathrm{O} & \mathrm{O} & \mathrm{M} \\
\mathrm{M} & \mathrm{O} & \mathrm{O} & B \\
B & \mathrm{~L} & B & A
\end{array}\right)_{m \times m} \quad ; A=\left(\begin{array}{ccccc}
(m-1) n-(m-2) & 1 & \mathrm{~L} & \mathrm{~L} & 1 \\
1 & \mathrm{O} & \mathrm{O} & \mathrm{O} & \mathrm{M} \\
\mathrm{M} & \mathrm{O} & \mathrm{O} & \mathrm{O} & \mathrm{M} \\
\mathrm{M} & \mathrm{O} & \mathrm{O} & \mathrm{O} & 1 \\
1 & \mathrm{~L} & \mathrm{~L} & 1 & (m-1) n-(m-2)
\end{array}\right)_{n \times n}, B=\left(\begin{array}{ccccc}
1 & 0 & \mathrm{~L} & \mathrm{~L} & 0 \\
0 & \mathrm{O} & \mathrm{O} & \mathrm{O} & \mathrm{M} \\
\mathrm{M} & \mathrm{O} & \mathrm{O} & \mathrm{O} & \mathrm{M} \\
\mathrm{M} & \mathrm{O} & \mathrm{O} & \mathrm{O} & 0 \\
0 & \mathrm{~L} & \mathrm{~L} & 0 & 1
\end{array}\right)_{n \times n}
\end{gathered}
$$

Using Lemma 2.5, we obtain:

$$
\tau\left(K_{m} \otimes K_{n}\right)=\frac{1}{(m n)^{2}}[\operatorname{det}(A-B)]^{m-1}[\operatorname{det}(A+(m-1) B)]
$$

$$
=\frac{1}{(m n)^{2}}\left(\operatorname{det}\left(\begin{array}{ccccc}
(m-1)(n-1) & 1 & \mathrm{~L} & \mathrm{~L} & 1 \\
1 & \mathrm{O} & \mathrm{O} & \mathrm{O} & \mathrm{M} \\
\mathrm{M} & \mathrm{O} & \mathrm{O} & \mathrm{O} & \mathrm{M} \\
\mathrm{M} & \mathrm{O} & \mathrm{O} & \mathrm{O} & 1 \\
1 & \mathrm{~L} & \mathrm{~L} & 1 & (m-1)(n-1)
\end{array}\right)\right)^{m-1} \times \operatorname{det}\left(\begin{array}{ccccc}
(m-1) n+1 & 1 & \mathrm{~L} & \mathrm{~L} & 1 \\
1 & \mathrm{O} & \mathrm{O} & \mathrm{O} & \mathrm{M} \\
\mathrm{M} & \mathrm{O} & \mathrm{O} & \mathrm{O} & \mathrm{M} \\
\mathrm{M} & \mathrm{O} & \mathrm{O} & \mathrm{O} & 1 \\
1 & \mathrm{~L} & \mathrm{~L} & 1 & (m-1) n+1
\end{array}\right)
$$

Using Lemma 2.4, we have :

$$
\begin{aligned}
\tau\left(K_{m} \otimes K_{n}\right) & =\frac{1}{(m n)^{2}}\left[((m-1)(n-1)+n-1)((m-1)(n-1)-1)^{n-1}\right]^{m-1}(n(m-1)+1+n-1)(n(m-1))^{n-1} \\
& =m^{m-2} n^{n-2}(n-1)^{m-1}(m-1)^{n-1}(m n-m-n)^{(m-1)(n-1)} .
\end{aligned}
$$

## 5. Number of Spanning Trees of Composition Product of Some Graphs

The composition, or lexicographic product, $G_{1}\left[G_{2}\right]$, of two graphs $G_{1}$ and $G_{2}$ is the simple graph with $V_{1} \times V_{2}$ as the vertex set in which the vertices $\left(u_{1}, u_{2}\right)$ and $\left(v_{1}, v_{2}\right)$ are adjacent if either $u_{1}$ is adjacent to $v_{1}$ or $u_{1}=v_{1}$ and $u_{2}$ is adjacent to $v_{2}$ in $G_{2}$ [12].

Theorem 5.1 For $m \geq 1$, and $n \geq 2$, we have:

$$
\tau\left(K_{m}\left[P_{n}\right]\right)=m^{m-2} n^{m-2}\left[\frac{1}{2 \sqrt{\left(\frac{(m-1) n+2}{2}\right)^{2}-1}}\left(\left(\frac{(m-1) n+2}{2}+\sqrt{\left(\frac{(m-1) n+2}{2}\right)^{2}-1}\right)^{n}-\left(\frac{(m-1) n+2}{2}-\sqrt{\left(\frac{(m-1) n+2}{2}\right)^{2}-1}\right)^{n}\right)\right]^{m}
$$

Proof: Applying Lemma 1.1, we get:

$$
\begin{aligned}
& \tau\left(K_{m}\left[P_{n}\right]\right)=\frac{1}{(m n)^{2}} \operatorname{det}(m n I-\bar{D}+\bar{A}) \\
& =\frac{1}{(m n)^{2}} \operatorname{det}\left(\begin{array}{cccc}
A & B & \mathrm{~L} & B \\
B & \mathrm{O} & \mathrm{O} & \mathrm{M} \\
\mathrm{M} & \mathrm{O} & \mathrm{O} & B \\
B & \mathrm{~L} & B & A
\end{array}\right)_{m \times m} \quad ; A=\left(\begin{array}{ccccc}
(m-1) n+2 & 0 & 1 & \mathrm{~L} & 1 \\
0 & (m-1) n+3 & \mathrm{O} & \mathrm{O} & \mathrm{M} \\
1 & \mathrm{O} & \mathrm{O} & \mathrm{O} & 1 \\
\mathrm{M} & \mathrm{O} & \mathrm{O} & (m-1) n+3 & 0 \\
1 & \mathrm{~L} & 1 & 0 & (m-1) n+2
\end{array}\right)_{n \times n} \quad, B=\left(\begin{array}{ccccc}
0 & \mathrm{~L} & \mathrm{~L} & \mathrm{~L} & 0 \\
\mathrm{M} & \mathrm{O} & \mathrm{O} & \mathrm{O} & \mathrm{M} \\
\mathrm{M} & \mathrm{O} & \mathrm{O} & \mathrm{O} & \mathrm{M} \\
\mathrm{M} & \mathrm{O} & \mathrm{O} & \mathrm{O} & \mathrm{M} \\
0 & \mathrm{~L} & \mathrm{~L} & \mathrm{~L} & 0
\end{array}\right)_{n \times n} \\
& =\frac{1}{(m n)^{2}}\left(\operatorname{det}\left(\begin{array}{ccccc}
(m-1) n+2 & 0 & 1 & \mathrm{~L} & 1 \\
0 & (m-1) n+3 & \mathrm{O} & \mathrm{O} & \mathrm{M} \\
1 & \mathrm{O} & \mathrm{O} & \mathrm{O} & 1 \\
\mathrm{M} & \mathrm{O} & \mathrm{O} & (m-1) n+3 & 0 \\
1 & \mathrm{~L} & 1 & 0 & (m-1) n+2
\end{array}\right)\right)^{m}
\end{aligned}
$$

Using Lemma 2.2, we obtain:

$$
\begin{aligned}
\tau\left(K_{m}\left[P_{n}\right]\right) & =\frac{1}{(m n)^{2}}\left(m n U_{n-1}\left(\frac{(m-1) n+2}{2}\right)\right)^{m}=m^{m-2} n^{m-2} U_{n-1}^{m}\left(\frac{(m-1) n+2}{2}\right) \\
& =m^{m-2} n^{m-2}\left[\frac{1}{2 \sqrt{\left(\frac{(m-1) n+2}{2}\right)^{2}-1}}\left(\left(\frac{(m-1) n+2}{2}+\sqrt{\left(\frac{(m-1) n+2}{2}\right)^{2}-1}\right)^{n}-\left(\frac{(m-1) n+2}{2}-\sqrt{\left(\frac{(m-1) n+2}{2}\right)^{2}-1}\right)^{n}\right]^{m} .\right.
\end{aligned}
$$

Theorem 5.2 For $m \geq 1$, and $n \geq 3$, we have:

$$
\tau\left(K_{m}\left[C_{n}\right]\right)=\frac{m^{m-2}}{n^{2}(m-1)^{m}}\left[\left(\frac{m-1) n+2}{2}+\sqrt{\left(\frac{(m-1) n+2}{2}\right)^{2}-1}\right)^{n}+\left(\left(\frac{(m-1) n+2}{2}-\sqrt{\left(\frac{(m-1) n+2}{2}\right)^{2}-1}\right)^{n}-2\right]^{m} .\right.
$$

Proof: Applying Lemma 1.1, we get:

$$
\begin{aligned}
& \tau\left(K_{m}\left[C_{n}\right]\right)=\frac{1}{(m n)^{2}} \operatorname{det}(m n I-\bar{D}+\bar{A}) \\
& =\frac{1}{(m n)^{2}} \operatorname{det}\left(\begin{array}{cccc}
A & B & \mathrm{~L} & B \\
B & \mathrm{O} & \mathrm{O} & \mathrm{M} \\
\mathrm{M} & \mathrm{O} & \mathrm{O} & B \\
B & \mathrm{~L} & B & A
\end{array}\right)_{m \times m} ; A=\left(\begin{array}{cccccc}
(m-1) n+3 & 0 & 1 & \mathrm{~L} & 1 & 0 \\
0 & \mathrm{O} & \mathrm{O} & \mathrm{O} & \mathrm{O} & 1 \\
1 & \mathrm{O} & \mathrm{O} & \mathrm{O} & \mathrm{O} & \mathrm{M} \\
\mathrm{M} & \mathrm{O} & \mathrm{O} & \mathrm{O} & \mathrm{O} & 1 \\
1 & \mathrm{O} & \mathrm{O} & \mathrm{O} & \mathrm{O} & 0 \\
0 & 1 & \mathrm{~L} & 1 & 0 & (m-1) n+3
\end{array}\right)_{n \times n}, B=\left(\begin{array}{ccccc}
0 & \mathrm{~L} & \mathrm{~L} & \mathrm{~L} & \mathrm{~L} \\
\mathrm{M} & 0 \\
\mathrm{O} & \mathrm{O} & \mathrm{O} & \mathrm{O} & \mathrm{M} \\
\mathrm{M} & \mathrm{O} & \mathrm{O} & \mathrm{O} & \mathrm{O} \\
\mathrm{M} & \mathrm{O} & \mathrm{O} & \mathrm{O} & \mathrm{O} \\
\mathrm{M} & \mathrm{M} \\
\mathrm{M} & \mathrm{O} & \mathrm{O} & \mathrm{O} & \mathrm{O} \\
0 & \mathrm{~L} & \mathrm{~L} & \mathrm{~L} & \mathrm{~L} \\
0
\end{array}\right)_{n \times n} \\
& =\frac{1}{(m n)^{2}}\left(\operatorname{det}\left(\begin{array}{cccccc}
(m-1) n+3 & \mathrm{O} & 1 & \mathrm{~L} & 1 & \mathrm{O} \\
\mathrm{O} & \mathrm{O} & \mathrm{O} & \mathrm{O} & \mathrm{O} & 1 \\
1 & \mathrm{O} & \mathrm{O} & \mathrm{O} & \mathrm{O} & \mathrm{M} \\
\mathrm{M} & \mathrm{O} & \mathrm{O} & \mathrm{O} & \mathrm{O} & 1 \\
1 & \mathrm{O} & \mathrm{O} & \mathrm{O} & \mathrm{O} & \mathrm{O} \\
\mathrm{O} & 1 & \mathrm{~L} & 1 & \mathrm{O} & (m-1) n+3
\end{array}\right)\right)^{m}
\end{aligned}
$$

Using Lemma 2.3. We get:

$$
\begin{aligned}
\tau\left(K_{m}\left[C_{n}\right]\right) & =\frac{1}{(m n)^{2}}\left(\frac{2 m}{m-1}\left[T_{n}\left(\frac{(m-1) n+2}{2}\right)-1\right]\right)^{m}=\frac{2^{m} m^{m-2}}{n^{2}(m-1)^{m}}\left(\left[T_{n}\left(\frac{(m-1) n+2}{2}\right)-1\right]\right)^{m} \\
& =\frac{m^{m-2}}{n^{2}(m-1)^{m}}\left[\left(\frac{(m-1) n+2}{2}+\sqrt{\left(\frac{(m-1) n+2}{2}\right)^{2}-1}\right)^{n}+\left(\left(\frac{(m-1) n+2}{2}-\sqrt{\left(\frac{(m-1) n+2}{2}\right)^{2}-1}\right)^{n}-2\right]^{m} .\right.
\end{aligned}
$$

## 6. Number of Spanning Trees of Normal Product of Some Graphs

The normal product, or the strong product, $G_{1} \mathrm{o} G_{2}$, of two graphs $G_{1}$ and $G_{2}$ is the simple graph with $V\left(G_{1} \mathrm{o} G_{2}\right)=V_{1} \times V_{2}$ where $\left(u_{1}, u_{2}\right)$ and $\left(v_{1}, v_{2}\right)$ are adjacent in $G_{1} o G_{2}$ iff either $u_{1}=v_{1}$ and $u_{2}$ is adjacent to $v_{2}$, or $u_{1}$ is adjacent to $v_{1}$ and $u_{2}=v_{2}$, or $u_{1}$ is adjacent to $v_{1}$ and $u_{2}$ is adjacent to $v_{2}[12]$.

Theorem 6.1 For $m \geq 1$, and $n \geq 2$, we have:

$$
\tau\left(K_{m} \mathrm{o} P_{n}\right)=2^{2 m-2} \times 3^{(m-1)(n-2)} \times m^{m n-2}
$$

Proof: Applying Lemma 1.1, we get:

$$
\begin{gathered}
\tau\left(K_{m} O P_{n}\right)=\frac{1}{(m n)^{2}} \operatorname{det}(m n I-\bar{D}+\bar{A}) \\
=\frac{1}{(m n)^{2}} \operatorname{det}\left(\begin{array}{llll}
A & B & \mathrm{~L} & B \\
B & \mathrm{O} & \mathrm{O} & \mathrm{M} \\
\mathrm{M} & \mathrm{O} & \mathrm{O} & B \\
B & \mathrm{~L} & B & A
\end{array}\right) ; A=\left(\begin{array}{cccccc}
2 m & 0 & 1 & \mathrm{~L} & \mathrm{~L} & 1 \\
\mathrm{O} & 3 m & \mathrm{O} & \mathrm{O} & \mathrm{O} & \mathrm{M} \\
1 & \mathrm{O} & \mathrm{O} & \mathrm{O} & \mathrm{O} & \mathrm{M} \\
\mathrm{M} & \mathrm{O} & \mathrm{O} & \mathrm{O} & \mathrm{O} & 1 \\
\mathrm{M} & \mathrm{O} & \mathrm{O} & \mathrm{O} & 3 m & \mathrm{O} \\
1 & \mathrm{~L} & \mathrm{~L} & 1 & 0 & 2 m
\end{array}\right), B=\left(\begin{array}{llllll}
\mathrm{O} & 0 & 1 & \mathrm{~L} & \mathrm{~L} & 1 \\
\mathrm{O} & \mathrm{O} & \mathrm{O} & \mathrm{O} & \mathrm{O} & \mathrm{M} \\
1 & \mathrm{O} & \mathrm{O} & \mathrm{O} & \mathrm{O} & \mathrm{M} \\
\mathrm{M} & \mathrm{O} & \mathrm{O} & \mathrm{O} & \mathrm{O} & 1 \\
\mathrm{M} & \mathrm{O} & \mathrm{O} & \mathrm{O} & \mathrm{O} & \mathrm{O} \\
1 & \mathrm{~L} & \mathrm{~L} & 1 & \mathrm{O} & \mathrm{O}
\end{array}\right)
\end{gathered}
$$

Using Lemma 2.5, we get:

$$
\begin{aligned}
& \tau\left(K_{m} \circ P_{n}\right)=\frac{1}{(m n)^{2}}[\operatorname{det}(A-B)]^{m-1}[\operatorname{det}(A+(m-1) B)] \\
& =\frac{1}{(m n)^{2}}\left(\operatorname{det}\left(\begin{array}{ccccc}
2 m & \mathrm{O} & \mathrm{~L} & \mathrm{~L} & \mathrm{O} \\
\mathrm{O} & 3 m & \mathrm{O} & \mathrm{O} & \mathrm{M} \\
\mathrm{M} & \mathrm{O} & \mathrm{O} & \mathrm{O} & \mathrm{M} \\
\mathrm{M} & \mathrm{O} & \mathrm{O} & 3 m & \mathrm{O} \\
\mathrm{O} & \mathrm{~L} & \mathrm{~L} & \mathrm{O} & 2 m
\end{array}\right)\right)^{m-1} \operatorname{det}\left(\begin{array}{ccccc}
2 m & \mathrm{O} & m & \mathrm{~L} & m \\
\mathrm{O} & 3 m & \mathrm{O} & \mathrm{O} & \mathrm{M} \\
m & \mathrm{O} & \mathrm{O} & \mathrm{O} & m \\
\mathrm{M} & \mathrm{O} & \mathrm{O} & 3 m & \mathrm{O} \\
m & \mathrm{~L} & m & \mathrm{O} & 2 m
\end{array}\right)
\end{aligned}
$$

$$
=\frac{1}{(m n)^{2}}\left[(2 m)^{2}(3 m)^{n-2}\right]^{m-1} \times m^{n} n^{2}=2^{2 m-2} \times 3^{(m-1)(n-2)} \times m^{m n-2}
$$

Theorem 6.2 For $m \geq 1$, and $n \geq 3$, we have:

$$
\tau\left(K_{m} \mathrm{O} C_{n}\right)=3^{n(m-1)} \times n m^{m n-2}
$$

Proof : Applying Lemma 1.1, we get:

$$
\begin{aligned}
\tau\left(K_{m} O C_{n}\right)=\frac{1}{(m n)^{2}} \operatorname{det}(m n I-\overline{\boldsymbol{D}}+\overline{\boldsymbol{A}}) \\
=\frac{1}{(m n)^{2}} \operatorname{det}\left(\begin{array}{llll}
A & B & \mathrm{~L} & B \\
B & \mathrm{O} & \mathrm{O} & \mathrm{M} \\
\mathrm{M} & \mathrm{O} & \mathrm{O} & B \\
B & \mathrm{~L} & B & A
\end{array}\right)_{m \times m} \quad ; A=\left(\begin{array}{cccccc}
3 m & \mathrm{O} & 1 & \mathrm{~L} & 1 & 0 \\
0 & \mathrm{O} & \mathrm{O} & \mathrm{O} & \mathrm{O} & 1 \\
1 & \mathrm{O} & \mathrm{O} & \mathrm{O} & \mathrm{O} & \mathrm{M} \\
\mathrm{M} & \mathrm{O} & \mathrm{O} & \mathrm{O} & \mathrm{O} & 1 \\
1 & \mathrm{O} & \mathrm{O} & \mathrm{O} & \mathrm{O} & 0 \\
0 & 1 & \mathrm{~L} & 1 & 0 & 3 m
\end{array}\right)_{n \times n} \quad, B=\left(\begin{array}{llllll}
0 & 0 & 1 & \mathrm{~L} & \mathrm{~L} & 1 \\
0 & \mathrm{O} & \mathrm{O} & \mathrm{O} & \mathrm{O} & \mathrm{M} \\
1 & \mathrm{O} & \mathrm{O} & \mathrm{O} & \mathrm{O} & \mathrm{M} \\
\mathrm{M} & \mathrm{O} & \mathrm{O} & \mathrm{O} & \mathrm{O} & 1 \\
\mathrm{M} & \mathrm{O} & \mathrm{O} & \mathrm{O} & \mathrm{O} & 0 \\
1 & \mathrm{~L} & \mathrm{~L} & 1 & 0 & 0
\end{array}\right)_{n \times n}
\end{aligned}
$$

Using Lemma 2.5, we obtain:

$$
\begin{gathered}
\tau\left(K_{m} \mathrm{OC} C_{n}\right)=\frac{1}{(m n)^{2}}[\operatorname{det}(A-B)]^{m-1}[\operatorname{det}(A+(m-1) B)] \\
=\frac{1}{(m n)^{2}}\left(\operatorname{det}\left(\begin{array}{ccccc}
3 m & \mathrm{O} & \mathrm{~L} & \mathrm{~L} & \mathrm{~L} \\
\mathrm{O} & \mathrm{O} & \mathrm{O} & \mathrm{O} & \mathrm{O} \\
\mathrm{M} & \mathrm{O} & \mathrm{O} & \mathrm{O} & \mathrm{O} \\
\mathrm{M} & \mathrm{O} & \mathrm{O} & \mathrm{O} \\
\mathrm{M} & \mathrm{O} & \mathrm{O} & \mathrm{O} & \mathrm{O} \\
\mathrm{O} \\
\mathrm{O} & \mathrm{O} & \mathrm{O} & \mathrm{O} \\
\mathrm{~L} \\
\mathrm{C} \\
\mathrm{~L} & \mathrm{O} & 3 m
\end{array}\right)\right)^{m-1} \times \operatorname{det}\left(\begin{array}{ccccccc}
3 m & \mathrm{O} & m & \mathrm{~L} & m & \mathrm{O} \\
\mathrm{O} & \mathrm{O} & \mathrm{O} & \mathrm{O} & \mathrm{O} & m \\
m & \mathrm{O} & \mathrm{O} & \mathrm{O} & \mathrm{O} & \mathrm{M} \\
\mathrm{M} & \mathrm{O} & \mathrm{O} & \mathrm{O} & \mathrm{O} & m \\
m & \mathrm{O} & \mathrm{O} & \mathrm{O} & \mathrm{O} & \mathrm{O} \\
\mathrm{O} & m & \mathrm{~L} & m & \mathrm{O} & 3 m
\end{array}\right) \\
=\frac{1}{(m n)^{2}}\left((3 m)^{n}\right)^{m-1} \times m^{n} n^{3}=3^{n(m-1)} \times n m^{m n-2} .
\end{gathered}
$$

Theorem 6.3 For $m \geq 1$, and $n \geq 2$, we have:

$$
\tau\left(K_{m} \mathbf{o} K_{n}\right)=\tau\left(K_{m}\left[K_{n}\right]\right)=(m n)^{m n-2}
$$

Proof: Applying Lemma 1.1, we get:

$$
\begin{gathered}
\tau\left(K_{m} \mathrm{O} K_{n}\right)=\tau\left(K_{m}\left[K_{n}\right]\right)=\frac{1}{(m n)^{2}} \operatorname{det}(m n I-\bar{D}+\bar{A}) \\
=\frac{1}{(m n)^{2}} \operatorname{det}\left(\begin{array}{cccc}
A & B & \mathrm{~L} & B \\
B & \mathrm{O} & \mathrm{O} & \mathrm{M} \\
\mathrm{M} & \mathrm{O} & \mathrm{O} & B \\
B & \mathrm{~L} & B & A
\end{array}\right)_{m \times m} \quad ; A=\left(\begin{array}{ccccc}
m n & \mathrm{O} & \mathrm{~L} & \mathrm{~L} & \mathrm{O} \\
\mathrm{O} & \mathrm{O} & \mathrm{O} & \mathrm{O} & \mathrm{M} \\
\mathrm{M} & \mathrm{O} & \mathrm{O} & \mathrm{O} & \mathrm{M} \\
\mathrm{M} & \mathrm{O} & \mathrm{O} & \mathrm{O} & \mathrm{O} \\
\mathrm{O} & \mathrm{~L} & \mathrm{~L} & \mathrm{O} & m n
\end{array}\right)_{n \times n} \quad, B=\left(\begin{array}{lllll}
\mathrm{O} & \mathrm{~L} & \mathrm{~L} & \mathrm{~L} & \mathrm{O} \\
\mathrm{M} & \mathrm{O} & \mathrm{O} & \mathrm{O} & \mathrm{M} \\
\mathrm{M} & \mathrm{O} & \mathrm{O} & \mathrm{O} & \mathrm{M} \\
\mathrm{M} & \mathrm{O} & \mathrm{O} & \mathrm{O} & \mathrm{M} \\
\mathrm{O} & \mathrm{~L} & \mathrm{~L} & \mathrm{~L} & \mathrm{O}
\end{array}\right)_{n \times n} \\
=\frac{1}{(m n)^{2}}\left(\operatorname{det}\left(\begin{array}{ccccc}
m n & \mathrm{O} & \mathrm{~L} & \mathrm{~L} & \mathrm{O} \\
\mathrm{O} & \mathrm{O} & \mathrm{O} & \mathrm{O} & \mathrm{M} \\
\mathrm{M} & \mathrm{O} & \mathrm{O} & \mathrm{O} & \mathrm{M} \\
\mathrm{M} & \mathrm{O} & \mathrm{O} & \mathrm{O} & \mathrm{O} \\
\mathrm{O} & \mathrm{~L} & \mathrm{~L} & \mathrm{O} & m n
\end{array}\right)\right)^{m}=\frac{1}{(m n)^{2}} \times(m n)^{m n}=(m n)^{m n-2} .
\end{gathered}
$$

## 7. Number of spanning trees of Strong Sum of Graphs

The Strong, $G_{1} \oplus G_{2}$, of two graphs $G_{1}$ and $G_{2}$ is the simple graph with $V\left(G_{1} \oplus G_{2}\right)=V_{1} \times V_{2}$, where $\left(u_{1}, u_{2}\right)$ and $\left(v_{1}, v_{2}\right)$ are adjacent in $G_{1} \oplus G_{2}$ iff $u_{2}$ is adjacent to $v_{2}$ in $G_{2}$ and either $u_{1}$ is adjacent to $v_{1}$ in $G_{1}$, or $u_{1}=v_{1}$ [12].

Theorem 7.1 For $m \geq 1$ and $n \geq 2$, we have:

$$
\tau\left(K_{m} \oplus P_{n}\right)=2^{(m-1)(n-2)} \times m^{m n-2}
$$

Proof: Applying Lemma 1.1, we get:

$$
\begin{aligned}
\tau\left(\boldsymbol{K}_{m} \oplus \boldsymbol{P}_{n}\right)=\frac{1}{(m n)^{2}} \operatorname{det}(m n \boldsymbol{I}-\overline{\boldsymbol{D}}+\overline{\boldsymbol{A}}) \\
=\frac{1}{(m n)^{2}} \operatorname{det}\left(\begin{array}{ccc}
A & B & \mathrm{~L} \\
\boldsymbol{m} & B \\
B & \mathrm{O} & \mathrm{O} \\
\mathrm{M} & \mathrm{M} \\
\mathrm{O} & \mathrm{O} & B \\
B & \mathrm{~L} & B
\end{array} A_{m \times m} \quad ; A=\left(\begin{array}{cccccc}
m+1 & 0 & 1 & \mathrm{~L} & \mathrm{~L} & 1 \\
0 & 2 m+1 & \mathrm{O} & \mathrm{O} & \mathrm{O} & \mathrm{M} \\
1 & \mathrm{O} & \mathrm{O} & \mathrm{O} & \mathrm{O} & \mathrm{M} \\
\mathrm{M} & \mathrm{O} & \mathrm{O} & \mathrm{O} & \mathrm{O} & 1 \\
\mathrm{M} & \mathrm{O} & \mathrm{O} & \mathrm{O} & 2 m+1 & 0 \\
1 & \mathrm{~L} & \mathrm{~L} & 1 & 0 & 2 m
\end{array}\right)_{n \times n}, B=\left(\begin{array}{cccccc}
1 & 0 & 1 & \mathrm{~L} & \mathrm{~L} & 1 \\
0 & \mathrm{O} & \mathrm{O} & \mathrm{O} & \mathrm{O} & \mathrm{M} \\
1 & \mathrm{O} & \mathrm{O} & \mathrm{O} & \mathrm{O} & \mathrm{M} \\
\mathrm{M} & \mathrm{O} & \mathrm{O} & \mathrm{O} & \mathrm{O} & 1 \\
\mathrm{M} & \mathrm{O} & \mathrm{O} & \mathrm{O} & \mathrm{O} & 0 \\
1 & \mathrm{~L} & \mathrm{~L} & 1 & 0 & 1
\end{array}\right)_{n \times n}\right.
\end{aligned}
$$

Using Lemma 2.5, we get:

$$
\begin{gathered}
\tau\left(K_{m} \oplus P_{n}\right)=\frac{1}{(m n)^{2}}[\operatorname{det}(A-B)]^{m-1}[\operatorname{det}(A+(m-1) B)] \\
=\frac{1}{(m n)^{2}}\left(\operatorname{det}\left(\begin{array}{ccccc}
m & \mathrm{O} & \mathrm{~L} & \mathrm{~L} & \mathrm{O} \\
\mathrm{O} & 2 m & \mathrm{O} & \mathrm{O} & \mathrm{M} \\
\mathrm{M} & \mathrm{O} & \mathrm{O} & \mathrm{O} & \mathrm{M} \\
\mathrm{M} & \mathrm{O} & \mathrm{O} & 2 m & \mathrm{O} \\
\mathrm{O} & \mathrm{~L} & \mathrm{~L} & \mathrm{O} & m
\end{array}\right)\right)^{m-1} \operatorname{det}\left(\begin{array}{ccccc}
2 m & \mathrm{O} & m & \mathrm{~L} & m \\
\mathrm{O} & 3 m & \mathrm{O} & \mathrm{O} & \mathrm{M} \\
m & \mathrm{O} & \mathrm{O} & \mathrm{O} & m \\
\mathrm{M} & \mathrm{O} & \mathrm{O} & 3 m & \mathrm{O} \\
m & \mathrm{~L} & m & \mathrm{O} & 2 m
\end{array}\right) \\
=\frac{1}{(m n)^{2}}\left[m^{2}(2 m)^{n-2}\right]^{m-1} \times m^{n} n^{2}=2^{(m-1)(n-2)} \times m^{m n-2} .
\end{gathered}
$$

Theorem 7.2 For $m \geq 1$, and $n \geq 3$, we have:

$$
\tau\left(K_{m} \oplus C_{n}\right)=2^{(m-1) n} \times n m^{m n-2}
$$

Proof: Applying Lemma 1.1, we get:

$$
\begin{gathered}
\tau\left(\boldsymbol{K}_{m} \oplus C_{n}\right)=\frac{1}{(m n)^{2}} \operatorname{det}(m n \boldsymbol{I}-\overline{\boldsymbol{D}}+\overline{\boldsymbol{A}}) \\
=\frac{1}{(m n)^{2}} \operatorname{det}\left(\begin{array}{cccc}
A & B & \mathrm{~L} & B \\
B & \mathrm{O} & \mathrm{O} & \mathrm{M} \\
\mathrm{M} & \mathrm{O} & \mathrm{O} & B \\
B & \mathrm{~L} & B & A
\end{array}\right)_{m \times m} \quad ; A=\left(\begin{array}{cccccc}
2 m+1 & 0 & 1 & \mathrm{~L} & 1 & 0 \\
0 & \mathrm{O} & \mathrm{O} & \mathrm{O} & \mathrm{O} & 1 \\
1 & \mathrm{O} & \mathrm{O} & \mathrm{O} & \mathrm{O} & \mathrm{M} \\
\mathrm{M} & \mathrm{O} & \mathrm{O} & \mathrm{O} & \mathrm{O} & 1 \\
1 & \mathrm{O} & \mathrm{O} & \mathrm{O} & \mathrm{O} & 0 \\
0 & 1 & \mathrm{~L} & 1 & 0 & 2 m+1
\end{array}\right)_{n \times n}, B=\left(\begin{array}{cccccc}
1 & 0 & 1 & \mathrm{~L} & 1 & 0 \\
0 & \mathrm{O} & \mathrm{O} & \mathrm{O} & \mathrm{O} & 1 \\
1 & \mathrm{O} & \mathrm{O} & \mathrm{O} & \mathrm{O} & \mathrm{M} \\
\mathrm{M} & \mathrm{O} & \mathrm{O} & \mathrm{O} & \mathrm{O} & 1 \\
1 & \mathrm{O} & \mathrm{O} & \mathrm{O} & \mathrm{O} & 0 \\
0 & 1 & \mathrm{~L} & 1 & 0 & 1
\end{array}\right)_{n \times n}
\end{gathered}
$$

Using Lemma 2.5, we get:

$$
\tau\left(K_{m} \oplus C_{n}\right)=\frac{1}{(m n)^{2}}[\operatorname{det}(A-B)]^{m-1}[\operatorname{det}(A+(m-1) B)]
$$

$$
\begin{aligned}
& =\frac{1}{(m n)^{2}}\left(\operatorname{det}\left(\begin{array}{cccccc}
2 m & \mathrm{O} & \mathrm{~L} & \mathrm{~L} & \mathrm{~L} & \mathrm{O} \\
\mathrm{O} & \mathrm{O} & \mathrm{O} & \mathrm{O} & \mathrm{O} & \mathrm{M} \\
\mathrm{M} & \mathrm{O} & \mathrm{O} & \mathrm{O} & \mathrm{O} & \mathrm{M} \\
\mathrm{M} & \mathrm{O} & \mathrm{O} & \mathrm{O} & \mathrm{O} & \mathrm{M} \\
\mathrm{M} & \mathrm{O} & \mathrm{O} & \mathrm{O} & \mathrm{O} & \mathrm{O} \\
\mathrm{O} & \mathrm{~L} & \mathrm{~L} & \mathrm{~L} & \mathrm{O} & 2 m
\end{array}\right)\right)^{m-1} \operatorname{det}\left(\begin{array}{cccccc}
3 m & \mathrm{O} & m & \mathrm{~L} & m & \mathrm{O} \\
\mathrm{O} & \mathrm{O} & \mathrm{O} & \mathrm{O} & \mathrm{O} & m \\
m & \mathrm{O} & \mathrm{O} & \mathrm{O} & \mathrm{O} & \mathrm{M} \\
\mathrm{M} & \mathrm{O} & \mathrm{O} & \mathrm{O} & \mathrm{O} & m \\
m & \mathrm{O} & \mathrm{O} & \mathrm{O} & \mathrm{O} & \mathrm{O} \\
\mathrm{O} & m & \mathrm{~L} & m & \mathrm{O} & 3 m
\end{array}\right) \\
& =\frac{1}{(m n)^{2}}(2 m)^{n(m-1)} \times m^{n} n^{3}=2^{(m-1) n} \times n m^{m n-2} .
\end{aligned}
$$

Theorem 7.3 For $m, n \geq 2$, we have:

$$
\tau\left(K_{m} \oplus K_{n}\right)=\frac{1}{(m n)^{2}}(n(m-1))^{n(m-1)} \quad(n(m-1)+m)^{n}
$$

Proof: Applying Lemma 1.1, we get:

$$
\begin{aligned}
\boldsymbol{\tau}\left(\boldsymbol{K}_{m} \oplus \boldsymbol{K}_{n}\right)=\frac{\mathbf{1}}{(\boldsymbol{m n})^{2}} \operatorname{det}(\boldsymbol{m n} \boldsymbol{I}-\overline{\boldsymbol{D}}+\overline{\boldsymbol{A}}) \\
=\frac{1}{(m n)^{2}} \operatorname{det}\left(\begin{array}{cccc}
A & B & \mathrm{~L} & B \\
B & \mathrm{O} & \mathrm{O} & \mathrm{M} \\
\mathrm{M} & \mathrm{O} & \mathrm{O} & B \\
B & \mathrm{~L} & B & A
\end{array}\right)_{m \times m}, A=\left(\begin{array}{cccc}
n(m-1)+1 & 0 & \mathrm{~L} & \mathrm{~L} \\
0 & \mathrm{O} & \mathrm{O} & \mathrm{O} \\
\mathrm{M} & \mathrm{O} & \mathrm{O} & \mathrm{O} \\
\mathrm{M} & \mathrm{O} & \mathrm{M} \\
0 & \mathrm{O} & \mathrm{O} & 0 \\
0 & \mathrm{~L} & 0 & n(m-1)+1
\end{array}\right)_{n \times n}, B=\left(\begin{array}{ccccc}
1 & 0 & \mathrm{~L} & \mathrm{~L} & 0 \\
0 & \mathrm{O} & \mathrm{O} & \mathrm{O} & \mathrm{M} \\
\mathrm{M} & \mathrm{O} & \mathrm{O} & \mathrm{O} & \mathrm{M} \\
\mathrm{M} & \mathrm{O} & \mathrm{O} & \mathrm{O} & 0 \\
0 & \mathrm{~L} & \mathrm{~L} & 0 & 1
\end{array}\right)_{n \times n}
\end{aligned}
$$

Using Lemma 2.5, we get:

$$
\begin{aligned}
& \tau\left(\boldsymbol{K}_{m} \oplus C_{n}\right)=\frac{1}{(m n)^{2}}[\operatorname{det}(\boldsymbol{A}-\boldsymbol{B})]^{m-1}[\operatorname{det}(\boldsymbol{A}+(m-\mathbf{1}) \boldsymbol{B})] \\
& =\frac{1}{(m n)^{2}}\left(\operatorname{det}\left(\begin{array}{ccccc}
n(m-1) & 0 & \mathrm{~L} & \mathrm{~L} & 0 \\
0 & \mathrm{O} & \mathrm{O} & \mathrm{O} & \mathrm{M} \\
\mathrm{M} & \mathrm{O} & \mathrm{O} & \mathrm{O} & \mathrm{M} \\
\mathrm{M} & \mathrm{O} & \mathrm{O} & \mathrm{O} & 0 \\
0 & \mathrm{~L} & \mathrm{~L} & 0 & n(m-1)
\end{array}\right)\right)^{m-1} \operatorname{det}\left(\begin{array}{ccccc}
n(m-1)+m & 0 & \mathrm{~L} & \mathrm{~L} & 0 \\
0 & \mathrm{O} & \mathrm{O} & \mathrm{O} & \mathrm{M} \\
\mathrm{M} & \mathrm{O} & \mathrm{O} & \mathrm{O} & \mathrm{M} \\
\mathrm{M} & \mathrm{O} & \mathrm{O} & \mathrm{O} & 0 \\
0 & \mathrm{~L} & \mathrm{~L} & 0 & n(m-1)+m
\end{array}\right) \\
& = \\
& \frac{1}{(m n)^{2}}(n(m-1))^{n(m-1)}
\end{aligned}
$$

## 8. Conclusion

The number of spanning trees $\tau(G)$ in graphs (networks) is an important invariant. The evaluation of this number is not only interesting from a mathematical (computational) perspective, but also, it is an important measure of reliability of a network and designing electrical circuits. Some computationally hard problems such as the travelling salesman problem can be solved approximately by using spanning trees. Due to the high dependence of the network design and reliability on the graph theory we introduced the above important theorems and their proofs.

## 9. References

[1] A. K. Kelmans and V. M. Chelnokov, A certain polynomials of a graph and graphs with an extermal number of trees J. Comb.
Theory (B) 16, (1974) 197-214.
[2] F.T. Boeschand and H. Prodinger, Spanning tree Formulas and Chebyshev Polynomials, J. of Graphs and Combinatorics 2, (1986) 191-200.
[3] F.T. Boesch and Z. R. Bogdanowicz, The number of spanning trees in a Prism, Inter. J. Comput. Math., 21, (1987) 229-243.
[4] G. A. Cayley, A Theorm on Trees, Quart. J. Math. 23, (1889) 276-378.
[5] G. G. Kirchhoff, Uber die Auflosung der Gleichungen, auf welche man be ider Untersuchung der Linearen Verteilung galvanischer Storme gefuhrt wird, Ann. Phys. Chem. 72, (1847) 497 - 508.
[6] J. L. Gross and T. W. Tucker, Topological graph theory, John Wiely \& Sons, New York, U. S. A. (1987).
[7] J. Sedlacek, Lucas number in graph theory. In: Mathematics (Geometry and Graph theory) (Chech), Univ. Karlova, Prague (1970) 111-115.
[8] J. Sedlacek, On the Skeleton of a Graph or Digraph. In Combinatorial Structures and their Applications (r. Guy, M. Hanani, N. Saver and J. Schonheim, eds), Gordon and Breach, New York (1970) 387-391.
[9] L. Clark, On the enumeration of multipartite spanning trees of the complete graph, Bull. Of the ICA 38, (2003) 50-60 .
[10] N. S. Qiao and B. Chen, The number of spanning trees and Chains of graphs, J. Applied Mathematics, no.9, (2007) 10-16.
[11] P. L. Hammer and A. K. Kelmans, Laplacian spectra and spanning trees of threshold graphs, Discrete Appl. Math. 65, (1996) 255-273.
[12] R. Balakrishnan and K. Ranganathan, Textbook of graph theory, Springer-Verlag Inst., New York, (2000).
[13] S. N. Daoud, On a class of some pyramid graphs and Chebyshev polynomials, Journal of Mathematical problems in engineering Hindawi Publishing Corporation Volume 2013,(2013) Article ID 820549, 11 pages.
[14] S. N. Daoud, Some Applications of spanning trees in Complete and Complete bipartite graph, American Journal of Applied Sciences, Sci Pub. 9(4), (2012) 584-591.
[15] S. N. Daoud, Chebyshev polynomials and spanning tree formulas, Int. J. Math. Combin. 4 , (2012) 68-79.
[16] S. N. Daoud, Complexity of Some Special named Graphs and Chebyshev polynomials International journal applied Mathematical and Statistics, Ceser Pub. Vol. 32, No. 2 , (2013) 77- 84.
[17] S. N. Daoud, Complexity of Products of Some Complete and Complete Bipartite Graphs, Journal of applied Mathematics Hindawi Publishing Corporation Volume 2013, (2013) Article ID 673270, 25 pages .
[18] T.J. Brown, R.B. Mallion, P. Pollack and A. Roth, Some methods for counting the spanning trees in labeled molecular graphs, examined in relation to certain fullerenes, Discrete Appl. Math. 67, (1996) 51-66.
[19] W. M. Yan, W. Myrnold and K. L. Chung, A formula for the number of spanning trees for a multi-star related graph, Inform. Process. Lett.68, (1998) 295-298.
[20] Xue-rong Yang, Talip, Acenjian, the number of spanning trees of the cubic cycle $C_{n}^{3}$ and the quadruple cycle $C_{n}^{4}$. Discrete Math 169, (1997) 293-298.
[21] Y. Zang, X. Yong and M. J. Golin, The number of spanning trees in circulant graphs. Discrete Math.223, (2000) 337-350.
[22] Z. Yuanping, Y. Xuerong and J. Mordecai, Chebyshev polynomials and spanning trees formulas for circulant and related graphs. Discrete Mathematics, 298 , (2005) 334-364.

