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1. Introduction 

 Oscillatory flow in porous media has gained importance lately because of its wide range of applications in the fields of industry, 

geophysical applications such as enhanced oil recovery, reservoir, land erosion, chemical engineering etc. With such a vast array of 

potential applications, it is fairly evident that a lot of people have put in their minds and thoughts, trying to invent more innovations in 

this prevalent field. Initially the work was done by Hasimoto [8] on a sphere theorem on the Stokes equation for axisymmetric viscous 

flow. Similar work was followed by Collins [3]. Beavers and Joseph [1] derived the boundary conditions at the permeable wall. The 

boundary condition for the porous medium was developed by Saffman [25]. Many researchers [13, 24, 26] modified the boundary 

conditions of the porous material. Higdon et al. [9] and Qin et al. [20] discussed the Stokes flow past a porous material. A singularity 

method for unsteady lineralized flow was derived by Pozrikidis [17,18].  Flow through porous particles and porous sphere was 

examined by many authors [5, 15, 16, 21]. They used the Stokes equation, Brinkman equation and Darcy’s law for the free flow 

region and the porous region. Raja Sekhar and Amaranath [22] discussed the Stokes flow past a porous sphere with an impermeable 

core. Again Raja Sekhar, Padmavathi and Amaranath [23] gave a theoretical explanation to complete general solution of  Brinkman 

equation. 

 Dragon et al. [6] studied the mass transport in a flexible tube with oscillatory flow in the year 1991. Oscillatory Stokes flow in 

porous media was discussed by Chapman et al. [2]. Many studies were gone through the field of oscillatory flow through porous 

media in the year 2000. Later, Graham and Higdon [7] worked on the oscillatory forcing of flow through porous media. Looker and 

Carnie [12] discussed the hydrodynamics of an oscillating porous sphere. Enhancements in the chemical and process industry using 

oscillation was derived by Nr et al. [14]. Axial dispersion in packed beds of spheres was done by Crittenden et al. [4].The forces on a 

porous particle for an oscillating flow was studied by Vainshtein and Shapire [28]. Faxen derived the law for drag and torque in the 

year 1924. After that, Howells [10] had done the research on drag due to the motion of Newtonian fluid through the small fixed rigid 

bodies. Similarity between Faxen’s relation and singularity solution like fluid-fluid, fluid-solid and solid-solid dispersions were 

derived by Kim and Lu [11]. Cell model calculation of drag parameters in spheres was discussed by Umnova et al. [27]. Recently 

Prakash, Raja Sekhar and Kohr [19] derived the Faxen’s law for an arbitrary oscillatory Stokes flow past a porous sphere. They 

derived the drag and torque for the oscillatory Stokes flow and discussed the results with some examples like uniform oscillatory flow, 

oscillating Stokeslet, linear oscillatory shear flow. Hydrodynamics of a porous sphere with Newtonian fluid was used to derive the 

Faxen law. 
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In this paper, the magnetohydrodynamic oscillatory Stokes flow past a porous sphere 

has been discussed. A uniform magnetic field is applied transversely to the flow field. 

Flow outside the porous region is governed by unsteady Stokes equation and Darcy’s 

law is used in the porous region. Drag and torque are calculated using Faxen’s law. It is 

observed that the increase or decrease of the drag and torque depends on the effect of 
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 So far no research has been done on the effect of magnetic field for the oscillatory flow using Padmavathi’s solution in the porous 

region. In this paper, Magnetohydrodynamic oscillatory viscous incompressible Stokes flow past a porous sphere is considered. The 

flow inside the porous sphere is governed by Darcy’s law and the flow outside the porous sphere is governed by unsteady Stokes 

equation. Continuity of the pressure field and continuity of the normal velocity components are used as the boundary condition. 

Saffman’s boundary condition is used for the tangential components of the velocity field. Faxen’s law for the magnetohydrodynamic 

oscillatory unsteady Stokes flow is derived.  Drag and torque is obtained for the oscillatory uniform flow, doublet and the oscillatory 

Stokeslet. Results are discussed using the graphs. 

2. Mathematical Formulation: 

 Consider an arbitrary oscillatory magnetohydrodynamic flow of a viscous incompressible fluid past a porous sphere of radius ''a . 

A uniform magnetic field is applied transversely to the flow field with magnetic induction 
0B . Let us assume that the flow inside the 

porous sphere  ar   is governed by the Darcy’s law  

 









 1

2

011 qq B
k

p 
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Where 
1p  is the pressure inside the porous sphere, 

1q
 is the velocity,   is the coefficient of viscosity , k  is the permeability of the 

porous medium,   is the electrical conductivity and  
0B  is the magnetic induction. 

The flow outside the porous sphere  ar   is governed by the unsteady Stokes flow 

 
qq 2

0

2 Bp
t

q
 



          (3) 
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where  is the density of the fluid, p and q  represent the pressure and velocity of the fluid outside the sphere. Let us introduce the 

oscillatory flow with frequency    then the velocity and pressure fields as tie  2qq   and  tiepp  2
 

Thus the equation of the flow outside the porous sphere is transformed to  

  2

2
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2

22 qqq Bip            (5) 
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The physical quantities are non-dimensionalized by using the transformation 
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where eix , and Eiy , .  
0q

 is the velocity of the basic flow and M  is the magnetic parameter. Hence the nondimensional 

form for the flow inside the porous region is  

 i

i

ip q          (8) 

 0.  iq           (9) 

where  21 kMi   

And the equation for the flow outside the porous region is  

   e

e

ep q22          (10) 
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 0.  eq           (11) 

where 
Ee

a

k
qq

2


,   /22

1

2 aiMe  ,



 22

02

1

aB
M 

,and

2a

k
Da 

is the Darcy number. 

3. Boundary conditions: 

Let   qqq ,,r
be the velocity components in spherical coordinate system and the corresponding stress components be  
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 Beavers and Joseph proposed a condition for porous liquid interface. Saffman suggested the boundary condition at the surface of 

a porous medium. Looker and Carnie applied Saffman’s condition to oscillatory flow, under low frequency. Prakash and Raja sekhar 

proposed the following condition for oscillatory Stokes flow past a porous sphere. 

i) Continuity of the pressure field on  1r  

 ie pp            (15) 

ii) Continuity of the normal velocity component 

 Daqq i

r

e

r 
         (16) 

iii) Saffman’s boundary condition for the tangential components of the velocity field 
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r

qDa
q

e

e











         (18) 

 is the dimensionless slip coefficient. 

4. Method of solution: 

 Padmavathi et al. proposed the solution for the porous region involving Brinkman’s equation. The general form for the velocity 

components are 
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where
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  is the transverse part of the Laplacian. 

Let us assume the velocity corresponding to the basic flow is  

    000 rBCurlrACurlCurl q        (22) 
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And 
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where )( rf en  is the modified spherical Bessel function of the first kind and )(m

nP is the associated Legendre polynomial. 

Velocity components and the pressure for the magnetohydrodynamic oscillatory flow in the free flow region is  

    eee rBCurlrACurlCurl q        (27) 
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where )( rg en   is the modified spherical Bessel function of the second kind. '' , nn  and '

n
are unknown constants to be determined 

using the boundary conditions. 

The velocity component for the modified flow in the region  1r becomes 
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In the porous region  the pressure field is harmonic and finite at the origin. The velocity and pressure components become 

 

),(csc1 





 rSnr n

n

n

i


















 q

      (34) 

 

),(
1

0  rSrPp n

n

n

n

i 





       (35) 



C.Loganathan and S.R.Prathiba/ Elixir Appl. Math. 74 (2014) 26960-26974 
 

26964 

The unknown constants can be determined in terms of the known constants by using the boundary conditions given in equations (15)-

(18). 

The velocity components for the porous region  1r    is 
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Now using the above boundary conditions (15)-(18) on the permeable boundary 1r  can be written as  
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 The unknown coefficients ''' ,, nnn  and 
n

in the above equations be determined in terms of the known coefficients
nn  , and 

n
by using Mathematica 8.0  

5. Faxen’s law for the porous sphere: 

 Faxen derived the laws for drag and torque in the year 1927. That is for an unbounded arbitrary stokes flow, the forces drag D and 

torque T acting on the rigid sphere of radius ''a are 
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00
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where  
0

is the evaluation at the centre of the sphere. The force D exerted on the porous sphere in the region  1r   and the torque 

T are given by 
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where e

rrT , e

rT 
 and e

rT 
 are the normal, tangential and azimuthal stress components acting on the surface of the sphere 1r   

respectively. 
eer

ˆ,ˆ and
ê are the unit vectors corresponding to the spherical coordinates ),,( r . e

rrT , e

rT 
  and e

rT 
 are computed 

using the expressions given in equations (12)-(14) and are used in equations (43) and (44). 

 We now derive the Faxen’s law for the drag and torque acting on a porous sphere in an unbounded magnetohydrodynamics 

arbitrary oscillatory Stokes flow. 
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where 
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1111101111 ,,,, DCABA   and 

10C   are known constants. 

6. Examples 

i) Uniform oscillatory flow 

An uniform flow  along Z direction past a porous sphere, then the corresponding   
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Comparing this 
0A and 

0B with the basic flow equations 
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Hence the drag and torque can be written as  
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 The variation of drag with various measures has been plotted. The drag is found to decrease with increase in l  values as seen in 

fig.1. It is also affected by the oscillating frequency, due to which the higher the frequency, the lower is the drag. Similarly, the drag 

decreases with increasing l value but drag increases for increasing slip coefficient, as observed in fig.2. Contrary to this behaviour, the 

drag rises with increment in magnetic parameter and this increment is very high with respect to l , as found in fig.3. With the 

introduction of magnetic field, the drag is again found to decrease with increase in l value. As found in fig.4, higher the permeability 

higher is the drag. 

 When drag is plotted against permeability, it increases for increasing permeability as shown in the figures. For increasing values 

of l , the drag is found to decrease in fig.5.The magnetic parameter seems to increase with drag and higher the magnetic parameter, 

higher is the drag, rightly shown in fig.6. It is also observed from fig.7 that for increasing frequency the drag decreases but for lower 

values of frequency, the drag initially increases before facing a dip in the value due to increase in permeability. 

ii) Doublet in a uniform flow 

 A doublet of strength m  is in a uniform flow, at ),0,0( c . The basic flow is given by ),( 00 BA  where  
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In this case, the corresponding coefficients are given by 
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 01  for 1n          (56)   

     

The  drag and torque can be written as 
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 For doublet, the behaviour of drag with the variation of magnetic parameter, slip coefficient and permeability is almost similar to 

that for the uniform flow.The drag is found to increase with respect to the increase in slip coefficient, as seen in fig.8. It is also 

affected by the oscillating frequency, due to which the higher the frequency, the lower is the drag, as found in fig.9. Also, the higher 

the permeability the higher is the drag, besides which the increase in magnetic parameter results in increase in drag, as seen in fig.10. 

iii)        Oscillating Stokeslet 

Let us consider the velocity 
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Consider an oscillatory Stokeslet of strength m  at ),0,0( c   whose axis is along the positive axis.The velocity of such  an oscillatory 

Stokeslet in Cartesian form is given by 
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where 
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When the basic flow is an oscillatory Stokeslet the drag and torque becomes 
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 In the case of oscillatory Stokeslet, the drag decreases with increasing frequency and increases with increasing l as shown in 

fig.11. Furthermore, the drag decreases gradually with increasing slip coefficient as seen in fig.12. It is also observed from fig.13 that 

for increasing permeability the drag decreases due to the effect of magnetic parameter. This magnetic effect makes the drag decrease 

gradually as found in fig.14 though there is a definite rise in drag observed for the lower values of magnetic parameter. For various 

parameters, drag decreases in the case of an oscillatory Stokeslet.  

 While observing torque in oscillatory Stokeslet, it is found that torque increases for increasing l . But against increasing 

frequency, the torque is found to decrease in fig.15. Also for increasing c value, the torque decreases but for various magnetic 

parameters, though the torque decreases steadily, it is constant for 3c as seen in fig.16. This is better observed in fig.17 where it is 

clear that the torque decreases for increasing c and for various slip coefficient, due to the effect of magnetic parameters, but for 

greater values of c , the torque becomes constant. With the effect of oscillating frequency in fig.18, the torque decreases and the effect 

is the same as observed in the previous figure. Also, torque increases gradually for increasing b  values but decreases for various c

values. 

7. Results and Conclusion: 

 The effect of a uniform magnetic field on an oscillatory Stokes flow past a porous sphere of radius ''a  is considered. Unsteady 

Stokes equation is used outside the porous sphere and Darcy’s law is used for inside the porous sphere. At the porous liquid interface 

appropriate boundary conditions are applied. Padmavathi’s solution is used to solve the governing equations. Drag and torque are 

derived by using Faxen’s law. Examples like uniform oscillatory flow, doublet in a uniform flow and oscillating Stokeslet are 

discussed. The graphs are plotted for various parameters and the results are discussed by using the figures. 
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 Graphs are plotted for uniform flow using various parameters. Generally drag decreases when its variation with l  values. More 

over drag decreases for varying oscillating frequency. For varying slip coefficient permeability and magnetic parameter, drag 

increases. That is drag increases if the parameters are high except oscillating frequency. Variation of drag with permeability is also 

considered. It is a known thing that if the permeability increases then drag increases. Here also drag increases for all the parameter 

except the oscillating frequency. 

 In the case of doublet drag behaves like a uniform flow. All the parameter effects are same like uniform flow. Another example is 

oscillatory stokeslet, it plays an important role in porous flows. Variation of drag with several parameters are discussed. Figures 11 to 

14 shows the effect of drag for various parameters. Mostly drag decreases for frequency, slip coefficient, magnetic parameter. Figures 

15 to 19 represents the effect of torque for various parameters. Torque decreases in all the cases except frequency against l  values. 

Even though torque decreases steadily, it is constant for the high values. 

Figures: 

 

Fig.1. Variation of drag with l for different frequency in the case of uniform flow 

 

Fig.2. Variation of drag with l for different slip coefficient in the case of uniform flow 

 

Fig.3. Variation of drag with l for different magnetic parameter in the case of uniform flow 
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Fig.4. Variation of drag with l for different permeability in the case of uniform flow 

 

Fig.5. Variation of drag with permeability for different l in the case of uniform flow 

 

Fig.6. Variation of drag with permeability for different magnetic parameter in the case of uniformflow 

 

Fig.7. Variation of drag with permeability for different frequency in the case of uniform flow 
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Fig.8. Variation of drag with l for different slip coefficient in the case of doublet in uniform flow 

 

Fig.9. Variation of drag with l for different frequency in the case of doublet in uniform flow 

 

Fig.10. Variation of drag with permeability for different magnetic parameterin the case of doublet in  uniform flow 

 

Fig.11. Variation of drag with l for different frequency in the case of oscillating stokeslet 
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Fig.12. Variation of drag with l for different slip coefficient in the case of oscillating stokeslet 

 

Fig.13. Variation of drag with l for different permeability in the case of oscillating stokeslet 

 

Fig.14. Variation of drag with l for different magnetic parameter in the case of oscillating stokeslet 

 

Fig.15. Variation of torque with l l for different frequency in the case of oscillating stokeslet 
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Fig.16. Variation of torque with c for different magnetic parameter in the case of oscillating stokeslet 

 

Fig.17. Variation of torque with c for different slip coefficient in the case of oscillating stokeslet 

 

Fig.18. Variation of torque with c for different frequency in the case of oscillating stokeslet 

 

Fig.19. Variation of torque with b for different c values in the case of oscillating stokeslet 
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