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Introduction 

Medical data supported the study of affected scenes in 

pictures, clinical data; physiological signals square measure the 

obligatory aspectsin screening, medicine, and treatment. 

Medical imaging is that the product of development that echoed 

few decades past because the exponential elevate within the 

study of medical-Instrumentation and information-exchange. 

Few merchandise emerged that revolutionized the medical 

segments were: digital imaging processes for tube-shaped 

structure, vas and distinction imaging, nuclear medical imaging 

with single gauge boson emission CT, CT, resonance imaging, 

antilepton emission pictorial representation and diagnostic 

ultrasound imaging. the pictures generated from such resources 

look for the inner structure of animal, subject to the modalities 

used for image acquisition. The applications of digital pictures 

aren't finite to one utility. Aerial Communications, artificial 

Aperture radiolocation, pc assisted  picturing, physics area unit 

few examples that employs digital imaging techniques. The 

preponderating issue sweet-faced by researchers is that the 

received quality of digital pictures. The mixture of noise renders 

pictures to be creaky, corrupted and incomplete in nature [1] 

throughout the acquisition by camera sensors, receivers, 

environmental conditions, improper lighting, undesirable read 

angles etc [2]. The characteristics of creaky pictures visible to 

naked eyes recognizing, granular and hoary image effects thus 

the phase of recovery of original or best fitting image has gained 

hefty attention by researchers in recent years [3]. The image 

denoising method is that the study of recovery of image by the 

estimation of desired image from corrupted image [4] [5]. The 

denoising processes studied mustn't destroy the anatomical 

details from clinical purpose of read. Thus, proposing of a 

strong methodology for noise removal that works well for 

various modalities of medical pictures [8] with the given 

constraints has invariably been a big challenge for researchers. 

From the literature of [9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 

20, 21, 22, 23, 24, 25] it will be expressed the quantity of 

analysis presently going down during this field. 

Proposed Methodology- A new modest non-Gaussian quantity 

likelihood distribution perform to excellent the statistics of riffle 

coefficients of natural pictures. The model arrests the 

dependence amongst a riffle constant &amp; its parent. 

exploitation Bayesian estimation theory we have a tendency to 

develop from this model a modest non-linear shrinkage perform 

for riffle denoising, that take a broad read of sentimental 

thresholding approach. The new shrinkage perform, that suspend 

on each the constant &amp; its parent, produces improved 

results for wavelet-based image denoising. planned PSO-based 

window choice methodology obtains council range of windows. 

when the classification of nearest windows denoising is 

sustained exploitation the previous windows. 

 First take a medical image as an input for our Proposed 

Denoising Approach. 

 As a preprocessing step, we apply RGB to GRAY conversion, 

since most of the digital filters works only on individual single 

page two dimensional matrix data, not on multi-dimensional 

data. 

 Before Applying our proposed Denoising process, we have to 

add noise (Any, like Gaussian noise, speckle noise, Poisson 

noise etc.) in clean medical images with an appropriate value of 

variance. 

The denoising of an image corrupted by white Gaussian 

noise will be considered, i.e. 

          

Where n is independent Gaussian noise. We observe g (a 

noisy signal), and wish to estimate the desired signal x as 

accurately as possible according to some criteria. In the wavelet 

domain, if we use an orthogonal wavelet transform, the problem 

can be formulated as 

          

Where y is the noisy wavelet coefficient, w is the original 

coefficient and n is noise, which is independent Gaussian. This 

is a classical problem in estimation theory. Our aim is to 

estimate w from the noisy observation, y. The maximum a 

posteriori (MAP) estimator will be used for this purpose. We use 
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bivariate models for this problem to derive a new MAP 

estimator. 

Here, we modify the Bayesian estimation problem so as to 

take into account the statistical dependency between adjacent 

wavelet coefficients. Let w2 represent the parent of w1: (w2 is 

the wavelet coefficient at the same position as w1, but at the 

next coarser scale.) Then 

             

             

Where y1 and y2 are noisy observations of w1 and w2; and n1 

and n2 are noise samples. 

 The obtained window of pixels are transformed to 

multiwavelet transformation domain as follows 

                           Wi (a,b) = FGHM(a,b).wi(a,b).F
T

GHM(a,b) 

                           Wj (a,b) = FGHM(a,b).wj(a,b).F
T

GHM(a,b) 

Where, 0 ≤a ≤m −1, 0 ≤b ≤n −1 and mXn indicates the window 

size. 

FGHMis the concatenated filter coefficient of GHM multi-

wavelet transformation, Wiand Wjare wiand wjin multi-wavelet 

domain, respectively.For each Wi,Wjthat are nearer to Wiare 

selected founded on L2 norm distance (L2ij), which can be 

calculated using 

 

Using the L2ij, the Wjwindows that are nearer to theWi, W 
„
L2ijcan be demarcated as W 

„
L2ij= WL2ij-, where, WL2ijis given as 

 

The fitness function is given as: 

 

Wher, fi(l) is the fitness of thel
th

element generated for the i
th

 

window &L2ilk is the L2 norm distance determined between the 

wi& the window indexed by the k
th

 atom of the l
th

 element. The 

L2ilk is determined as follows 
 

Where, W‟rilk is the window indexed by rilk that is converted 

to multi-wavelet transformation domain 

 Adjust window size and the corresponding filter for the 

selected window for bivariate shrinkage function. 

 Define number of filtering stages and Symmetric Extension as 

per the length of filtering stages.  

 Apply Farras nearly symmetric filters for orthogonal 2-

channel perfect reconstruction filter bank for Forward discrete 

wavelet transform structure in third module and Kingsbury Q-

filters for the dual-tree complex Discrete wavelet transform in 

fourth module in order to apply forward transform on noise 

added images. 

 After that, We Have to Apply 2D discrete Wavelet transform 

in third module and 2D dual tree complex discrete wavelet 

transform in fourth module using the analysis filter bank 

structure (Low pass and High pass filtering in different circular 

shift). 

 After applying forward transform we have to apply Noise 

variance estimation procedure by using robust median estimator. 

 Before applying inverse transform, we have to calculate 

bivariate shrinkage function of the image using noisy 

coefficients, noisy parents and Threshold value estimation. 

The standard MAP estimator for w given the corrupted 

observation y is 

 ̂( )          ( | )( | ) 

After some manipulations, this equation can be written as 

 ̂( )          ( | )( | )   ( ) 

   ( )           (   )   ( )                                  
From this equation, Bayes rule allows us to write this 

estimation in terms of the probability densities of noise and the 

prior density of the wavelet coefficients. In order to use this 

equation to estimate the original signal, we must know both 

pdfs. We assume the noise is i.i.d. white Gaussian, and we write 

the noise pdf as 

  ( )  
 

    
  

exp (
 

  
    

 

   
 )

                                     

The same problem as in marginal case appears. What kind 

of joint pdf models the wavelet coefficients? The joint empirical 

coefficient-parent histogram can be used to observe   ( ). The 

joint histogram, can be computed (Empirical Joint parent-child 

histogram of wavelet coefficients). 

It is hard to find a model for this pdf, but we use the 

following pdf 

  ( )  
 

       ( 
 

 
√  

    
 
) 

With this pdf,    and    are uncorrelated, but not 

independent. Before going further with this new model, let‟s 

consider the case where    and    are assumed to be 

independent Laplacian, then the joint pdf can be written as 

  ( )  
 

       ( 
√ 

 
(
|  |  |  |)) 

Let‟s continue on developing the MAP estimator given, 

which is equivalent to 

 ̂( )             (  (   ))     (  ( )) 

Let‟s define,  ( )      (  ( )) 

Hence,  

 ̂( )           
(     ) 

   
  

(     ) 

   
 

+f(w)] 

This is equivalent to solving the following equations 

together, if   ( ) is assumed to be strictly convex and 

differentiable. 
    ̂ 

  
 

 +  ( )̂    

    ̂ 

  
 

 +  ( )̂    

Where    and    represent the derivative of  ( ) with 

respect to    and    respectively. 

This rule applies the soft threshold function to    to 

estimate   . 

Hence,  ( ) can be written as 

 ( )     (
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From this,  
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The MAP estimator (or “the joint shrinkage function”) or simply 

we can say that the bivariate function can be written as 

  ̂  

(√  
    

  
√   

 

 
)

√  
    

 
   

 

The models which use the independence assumption do not 

care what the parent value 

(  ) is. For example, in scalar soft thresholding, for all 

coefficients the threshold value is fixed and independent from 

other coefficients - if the coefficient is below the threshold 

value, we make it zero. However the estimated value should 

depend on the parent value. The smaller the parent value, the 

greater the shrinkage. 

  The Threshold value estimation can only possible with noisy 

coefficients, noisy parents and signal variance estimation by 

convoluting noisy coefficients with window filters output. 

Result & Discussion- From all the above discussion, data and 

analysis which carried out for four different images (Salt & 

pepper, Gaussion, Speckle and Poisson noise) for standard 

variance of 0.01 and different values of PSNR, MSE, WPSNR, 

SSIM for various noise types are found. We observed that the 

test images has shown some improvement in most of the 

parameter in consideration (PSNR, MSE, WPSNR, SSIMfor 

various noise type).Image denoising using bivariate shrinkage 

function and PSO algorithm in all the images has shown a much 

significant improvement.  

 

    (a)                                 (b)                                           (c) 

Figure 2: Image (a) original image, (b) Image with Gaussian 

noise (c) denoised image 

Nearly 60% improvement is seen in PSNR, whereas MSE 

has decreased to nearly 99% after adaptive filters. These 

improvement has helped to achieve better WPSNR between 

17% to 50% improvement in various image type. SSIM has 

increased in all the noise type,8-79% which means better 

structural similarity is obtained with the original image.  

Conclusion- In this paper, new technique has been given. The 

projected quantity and PSO primarily based technique approach 

not solely computationally economical however additionally 

offers higher performance indicated by performance indices 

PSNR, MSE, WPSNR, SSIM and time. Finally, it's terminated 

that the projected approach in terms of PSNR, WPSNR 

improvement is outperformed. The projected technique optimize 

the likelihood of low pass constant from every sub band based 

on quantity of shrinkage is said to signal dependent noise 

variance. In this paper a replacement technique is projected to 

mitigate the noise in pictures. consistent with results the novel 

quantity technique optimized by Particle Swarm improvement is 

computationally economical and performs considerably superior 

in performance indices indicated by PSNR, MSE, WPSNR, 

SSIM and time. Finally, we are able to conclude that in terms of 

WPSNR and PSNR the projected approach is outperformed. 

Table 1: Performance comparison of proposed methodology and its effect on various noise and image type 
Image-Barbara PSNR MSE WPSNR SSIM TIME 

POISSON NOISE 37.9248 11.2008 43.1271 0.977244 0.235509 

GAUSSIAN NOISE 35.3078 23.1155 38.7427 0.78342 0.132728 

SALT & PEPPER NOISE 47.2095 16.2363 47.8016 0.960089 0.118133 

SPECKLE NOISE 35.164 23.9279 38.123 0.968154 0.228614 

Image-Leena PSNR MSE WPSNR SSIM TIME 

POISSON NOISE 38.8394 10.594 44.088 0.963933 0.206691 

GAUSSIAN NOISE 38.3205 18.1 39.5271 0.880729 0.212508 

SALT & PEPPER NOISE 48.0804 15.27364 47.9249 0.854926 0.253186 

SPECKLE NOISE 35.7653 20.7047 38.6693 0.963108 0.174577 

Image-SPECT PSNR MSE WPSNR SSIM TIME 

POISSON NOISE 37.0613 20.1743 41.7958 0.924622 0.128942 

GAUSSIAN NOISE 35.5149 21.9926 37.1528 0.689865 0.108839 

SALT & PEPPER NOISE 47.8002 17.8571 42.8698 0.898432 0.222314 

SPECKLE NOISE 35.7675 25.3103 39.7148 0.849395 0.120501 

 
Image-MRI PSNR MSE WPSNR SSIM TIME 

POISSON NOISE 35.8795 20.1415 41.5439 0.971004 0.221137 

GAUSSIAN NOISE 34.8518 24.7853 38.4314 0.867568 0.211641 

SALT & PEPPER NOISE 49.5434 20.8093 43.8133 0.860776 0.196596 

SPECKLE NOISE 34.3418 31.1235 39.8567 0.960667 0.225587 
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