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Introduction 

 Decisions are complex in nature. It involves various 

conflicting objectives. Decisions may include uncertainty to 

some extent. Some decisions may be sequential in nature. 

Decision once made and executed is irrevocable. And so it is 

imperative that good decision be made at all point of time. Many 

decisions are made in situations of uncertainty too. Every 

decision is made within a decision environment, which involves 

the collection of information, alternatives, values, and 

preferences of the decision maker at the time of decision.  

Sequential Decision Making 

 In general, Decision Makers do not make decisions in the 

dark without observing something about the world, nor do they 

make just a single decision. Decision making involves 

sequential decision making as and when necessary. The essence 

of sequential decision making is that decisions made at one 

point of time may have both immediate and long-term 

effects[1].  A more typical scenario is that the decision maker 

(DM) makes an observation, decides on an action, carries out 

that action, makes observations in the resulting outcomes, then 

makes another decision conditioned on the observations and so 

on. Subsequent actions can depend on what is observed on 

outcomes, and what is observed can depend on previous actions. 

At this point in time, it is often the case that the sole reason for 

carrying out an action is to provide information for future 

actions.  Hence it is logical to mention that sequence learning is 

an important component of learning various tasks, domains of 

intelligent systems, decision, planning, reasoning, time series 

prediction and so on[2]. In sequential decision making one 

needs to take sequence of decisions one after the other. On 

taking one action, the decision maker attains one state. In 

general, a sequential decision consists of n  sequential states, 

independent or interdependent, where decision made at a state is 

passed on to the next state and the overall decision depends on 

the decision made at each state.  

Uncertainty  

 Representation and reasoning about actions is a basic 

component in decision making process. In reasoning about 

actions of a DM operating in real world environments, one of 

the most crucial problems that the DM has to face is uncertainty, 

both at the initial situation of the DM‟s world and about the 

results of the actions taken by the DM. Uncertainty touches most 

aspects of one‟s life, especially when one makes decisions that 

have consequences which cannot be predicted. Although much 

research has been done on uncertainty, there is a lack of 

consensus about the definition. Uncertainty is a general concept 

that reflects over lack of sureness about something or some one 

or lack of conviction about an outcome. It can be best described 

as the gap between the information available and the 

information a DM wants[3].  It is important to know that mere 

gathering of information cannot always minimize uncertainty. 

Uncertainty can also exist when there is excess of information 

too.  Often the factors (such as interests, objective and 

procedure) that determine an individual‟s decision would be 

different from the others and are uncertain to the others.   

 An ongoing debate on uncertainty is about objective versus 

perceived uncertainty. The objective view on uncertainty defines 

uncertainty as a characteristic of the environment that can be 

measured objectively. The perceptive view on uncertainty 

argues that uncertainty is dependent on the individual and 

cannot be measured objectively[4]. The term „perception‟ refers 

to the process by which individuals organize and evaluate 

stimuli from the environment. What is certain to one person 

need not be certain to another. The existence of information
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itself lacks meaning until an individual perceives it. 

Environment is therefore neither certain nor uncertain but are 

perceived differently by different people. In the study, 

uncertainty is viewed as a determinant of innovative behavior of 

the DM. Since perceptions of uncertainty can be seen as one of 

the driving forces of DM‟s behavior, „uncertainty‟ can be 

referred as „perceived uncertainty‟.  

 In almost all current approaches to decision making under 

uncertainty, it is assumed that the decision making under 

uncertainty as a Markov Decision Process and the decision 

problem is described by a set of states and a set of outcomes[4]. 

Sequential decision making under uncertainty is a system of 

moves from one „state‟ in a stochastic environment. In 

sequential decision making under  ncertainty, the DM must first 

formulate the problem in terms of states outcomes and a set of 

rules to identify how one state is transformed to another[5]. And 

in these problems DM must choose a sequence of actions so as 

to achieve his goal.  

 A state can be defined as a description of a system at a 

particular point of time. It is common to assume that the state 

kS (say) captures all information relevant to the DM‟s decision-

making process. In most cases, the DM will not have complete 

information of the current state. This incomplete information / 

constraints or uncertainty kC (say) about the current state can be 

captured using a probability distribution over the states in 

S where S  is a set of possible states of the decision problem. 

Hence, a typical state can be expressed mathematically as   

          ),,( 1 kkkk CISfS      

Where        

    kI    available information at state kS  

   kC  constraints at state kS  

   1kS  information from the state 1k . 

Probabilistic Distribution  

 Uncertainty over events will be modeled through the DM's 

degree of belief. Probability theory is the rational way to think 

about uncertainty. This means that a probability distribution 

must be assigned to every set of uncertain states of nature in the 

decision problem. Probability Theory is devoted to measuring 

quantitatively the likelihood that a given event occurs. Two 

definitions are derived from two different approaches to the 

concept of probability: subjective and objective[6]. The 

objective probability viewpoint posits the likelihood that a 

particular event will occur is a property of the system under 

study, which is ultimately grounded on the physical laws 

bearing on the given system. The subjective probability 

viewpoint argues that the likelihood of the occurrence of a 

particular event is a measure of the belief of the observer of the 

system given his/her state of information at the time. It is 

meaningless to talk about "the actual probability of occurrence" 

of an event because such a conception is unknowable and 

impossible to define outside the observer's mental space. It has 

been successfully viewed by the researchers that subjective 

beliefs can be modelled as probabilities called subjective 

probabilities. This allows us to treat uncertainty due to 

stochasticity and due to partial information in a unified 

framework for decision making. To extend the discussion from a 

deterministic world to a stochastic one, it is necessary to specify 

a probability distribution in place of the deterministic prediction 

or generation. 

 Sequential Decision Problem under Uncertainty defined 

Sequential decision problem involves sequence of decisions. 

While solving the sequential decision problem, the DM must 

consider 

 Availability of actions;  

 Availability of information ;  

 the outcomes / consequences of the actions; and  

 the desirability of the outcomes / consequences 

 From the above descriptions, it is understood that the 

Sequential Decision Problem under Uncertainty consists of a 

state space and probability distribution governing possible state 

transitions indicating how the next state of system is related on 

past states. It is important to understand that when an action is 

taken at a state, based on the outcome, the decision maker 

moves on to the next state ( s ). It is assumed that the finite set of 

actions are available to the DM. When an action is performed at 

one state, the state changes stochastically due to the action[7]. A 

DM chooses an action on the basis of outcomes that the chosen 

action produces. Other factors may interact with an action (state 

of the world) to produce a particular outcome. 

  }{aA  , set of possible well defined actions 

  }{sS  , set of possible states of the world  

  }{oO  , set of outcomes 

 A combination of an action Aa and a state Ss will 

produce a particular outcome Oo  such that 

.**: SOASf    

Choosing an action „ a ‟ determines an outcome over state-

dependent consequences associated with action „ a ‟ if f is 

constant to state of the world, then the decision is taken under 

certainty. More must be mentioned about the state of nature. 

With respect to any decision problem, the set of „state of nature‟ 

is assumed to form a mutually exclusive and exhaustive listing 

of those aspects of nature which are relevant to a particular 

choice of problem about which the decision maker is uncertain. 

Although the characterization is quite vague, often there is a 

natural enumeration of possible, pertinent, state of the world in 

particular contexts. Assume that there is a „true‟ state of the 

world which is unknown to the decision maker at the time of 

making a choice.  

 The decision problem model for the study is formulated as 

follows. Each action „ a ‟ when applied from the current state s , 

produces a new state s   based on outcome o  as specified by a 

state transition function f to express a state transition equation 

),,( oasfs  . Let )(sA denote the action space for each 

state s , which represents the set of all actions that could be 

applied from s . For distinct )(,, sASss  and )(sA   are not 

necessarily disjoint; the same action may be applicable to the set 

A of all possible actions all over the states. 

  )(sAA 
,
  Ss  

 A DM needs to achieve certain goals. A goal is a description 

of a set of desirable states of the world Sequential decision 

problems can be represented as a set of states and a set of rules 

of how one state is transformed to another. And in these 

problems the DM must choose a sequence of actions in order to 

attain his goal state. So the DM can start from the initial state 

and explore the state space and its objective is to reach one of 

the goal states GS (say) which is a subset of S  ie. SSG  . The 

task of optimal sequential decision making is to find a finite 

sequence of actions that when applied, transforms the initial 

state 1s to the final state or goal state GS . The model is 

summarized as a set of six elements as follows: 
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 ),,,,,( 1 GSsfOASP   

Where 

S : A non empty state space which is finite 

A : For each state Ss , a finite action space    
O : Set of consequences / outcomes  

f : A state transition function that produces a state 

Soasf ),,(  for every Ss , Aa  and Oo . 

The state transition equation is derived from f as ),,( oasfs    

i.e. SOASf **:    

1s : Initial state 

GS : A set of final states or goal states 

and SSG  . 

Measuring of Outcomes 

 When we make decisions, or choose between outcomes, we 

try to obtain a good outcome as possible according to some 

standard of what is good or bad.  Outcomes or consequences can 

be measured in a variety of ways, depending on the 

stakeholders. There is no consensus to date on the best approach 

to defining and measuring outcomes and outcome means 

different thing to different people. Outcomes measurement is 

defined as the systematic quantitative observation, at a point in 

time, of outcomes indicators. Although outcomes measures are 

continually evolving, they provide valid information that can 

assist DM in determining the optimal decision. Various types of 

outcomes measures include physical / performance / function / 

economic and humanistic measurements. The outcomes of an 

action include only those states of affairs that would be realized 

if the action was performed and they are probabilistically related 

to the action.  

Utility 

 Utility is the key factor which enables one to make the 

decision considering all rewards like costs, values and so on that 

is summed for each state on the way to the goal state[8]. In 

short, utility is something that satisfies the needs of the DM. 

Utility theory is a prescriptive theory and it specifies the course 

of action of a DM. It further allows him to be consistent with his 

preferences and judgments. In short, it states that if a DM 

accepts the following axioms of the utility theory, then the 

course of action which maximizes his expected utility must be 

used because  utility being a numerical scale over the decision 

maker's preferences.  

Axiom 1.  

For any two outcomes say 1o and 2o of an action a  can be 

ranked as 21 oo   or 12 oo  . 

Axiom 2.  

For any three outcomes of an action a say 21 , oo and 3o if 

21 oo  and 32 oo   then 31 oo  . 

Definition: A lottery is defined as the set 

 ),),....(,(),,( 2211 nn popopo such that 1
1




n

i
ip and  

10  ip . In ordinary lottery the outcome io
 

occurs with 

probability ip . 

Definition: The utility function of an outcome of an action can 

be defined as a mapping from S  to S  such that 

RSOASU : where R is a real number. 

 In the study, utility is a measure to determine the value of an 

outcome.  Here iu  is the utility associated to the outcome io  of 

an action a . That is, an outcome 1o  of an action a  having 

utility 1u
 
leads to a state 1s , an outcome 2o of an action a  

having utility 2u
 
leads to the state 2s and so on. We can usually 

assign a subjective preference for each outcome o of an action 

a , thus making the function u  well-defined. Value of an 

outcome can be an arithmetic product of the probability of the 

occurrence of that outcome and its utility. Values of the same 

kinds of utility can be compared on the basis of their probability 

distribution. Thus the value of an outcome is a single numeric 

value. i.e. )()( iii opouv  . 

 Definition: In any decision making process in the 

environment, the outcomes of an action Aa  say 

Ooo 21, and 1p and 2p  are the corresponding probabilities for 

the occurrence of the outcomes such that .121  pp
 
One 

shall prefer 1o to 2o and write   

21 oo   if and only if 2211 )()( poupou  and  21 oo   if and 

only if 2211 )()( poupou  . 

Policy 

 Given a finite horizon of size n  a DM executes n actions at 

stages 0  through 1n  of the process, ending up in a terminal 

state at stage n . The DM receives value for each state s passed 

through at stages 0 through n (its trajectory). In choosing the 

action to perform at stage k of the process, the DM can rely only 

on its knowledge of the initial state 0s
 
and the history of actions 

it performed and observations it received prior to stage k . 

Different observation leads a DM to choose different actions. 

Thus, a policy can be represented as a mapping from any initial 

state estimate, and k -stage history, to the action for stage 1k . 

That is, a policy is a function that determines the choice of 

action at any stage of the system‟s evolution. The value of a 

policy is the expected sum of values accumulated. A policy is 

optimal if no other policy has larger value. In general, human 

attitude towards decision making depends on beliefs and 

desires[9]. They play an essential role in action and decision in 

Sequential Decision Problems under Uncertainty.  Decision 

mechanisms need to maximize the outcome of choice by 

comparing the values of all available options and choosing the 

option which carries highest value.  

Modeling of a Complex System 

 All the world systems are complex in nature. Most of the 

real world systems are dynamical systems containing a large 

number of mutually interacting and mutually exclusive entities 

like components, agents, processes and so on whose aggregate 

activity is not derivable from the summations of the activity of 

individual entities. At any point in time, a dynamical system is 

characterized by its state [10]. Changes of the state over time are 

described by a transition function, which determines the next 

state of the system as a function of its previous state. The 

behavior of the system is best characterized in terms of state and 

its evolution over time. 

 Any scientific method or approach of studying complex real 

world systems relies on modeling. A model is a representation 

of reality. Necessarily, it is a simplification or abstraction. 

Models can be developed for a variety of reasons that include 

understanding   and learning about the behavior of the system, 

improving its performance and making decisions about its 

design or its operation. Complex systems are usually difficult to 

model, design, and control because the behaviors of complex 

systems depend on the elements of interactions.  

 To deal with this complexity of the real world systems, one 

should make several assumptions about the state space and the 
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transition function of dynamical systems[11]. One of these 

assumptions is that the system is observed and controlled at 

discrete steps of time and the intermediate state of the system 

between two steps is not relevant for determining future states. 

The second assumption is that the state space is discrete and 

finite. Finally, the most important assumption is known as 

Markov property: the state of the system is sufficient 

information for predicting its future states by using the transition 

function. In practice, the dynamics of a system depend on many 

variables but all cannot be included in a mathematical model, 

either for computational reasons or simply because they are 

unknowns. Hence, a stochastic transition function is used to 

overcome the effect of missing information. Presently stochastic 

(probabilistic) modeling plays a key role in modeling because 

dynamic systems become  more dependent on random events. 

Probability theory has turned out to be a powerful means to 

model and analyze unreliable or unpredictable behavior 

exhibited by a dynamic system[12]. 

 In general, problems having sequence of actions come under 

either Deterministic models or Stochastic models. Deterministic 

models have no components that are inherently uncertain, i.e., 

no parameters in the model are characterized by probability 

distributions, as opposed to stochastic models. For fixed starting 

values, a deterministic model will always produce the same 

result. A stochastic model will produce many different results 

depending on the actual values that the random variables take in 

each realization[9]. The mathematical model used in the study is 

categorized as Stochastic model. To be more specific, it is a 

discrete planning model. 

 In a discrete planning model, actions and behaviour are 

explained in terms of transition systems. The order in which 

actions can take is called „behaviour‟. This simple idea is 

captured by the notion of Labelled Transition Systems (LTS). 

Formally, a LTS consists of a set of states, a set of labels 

(actions), and a transition relation T describing a change of a 

state. A set of states includes an initial state and also terminating 

or final states. The most abstract process behaviour can be 

described as follows: a process p
 
performs an action „ a ‟ and 

becomes a process q . The same can be stated as follows:    

                qp
a
    

LTS can be defined as follows 

Definition: A LTS is a triple ),,( TrAS where 

- S is finitely countable set of states 

- A is a finitely countable set of actions 

- Tr  is a transition relation such that  SASTr   

 Transition ),,( sas   can be written as  ss
a   which 

means that s   is attained from s  by executing an action a .                                           

Processes are considered as agents or DMs that can execute 

actions in order to communicate with their environment. These 

actions can be observed by an eternal observer and determine 

the visible behavior of the process. Processes are understood as 

nodes of certain edge-labeled oriented graphs and a change of 

process states caused by performing an action is understood as 

moving along an edge labeled by the action name. Processes 

combining nondeterminism and probability can be described by 

means of extensions of the LTS model, in which every action-

labeled transition goes from an initial state to a probability 

distribution over target states. This work deals with the 

probabilistic extension of a non-deterministic calculus. So a 

probability distribution on the set of the possible next moves of 

the choice composition is explicitly given. They are essentially 

Markov decision processes [9]. 

Stochastic Transition Systems (STS) 

 STS describes the behavior of systems through state 

transition graphs in which every transition is labeled with both 

the action and the probability of the corresponding state change 

which means that each such process can be represented as a 

discrete-time Markov-Chain[13]. whose transitions are 

additionally labeled with actions. STS features both non-

deterministic and probabilistic behavior. It provides a concise 

and compositional way to describe the behavior of systems in 

terms of probability[6]. Nondeterministic choices can be 

specified in transition systems by having several transitions with 

different labels leaving from the same state.  Most of the times 

probabilistic choice is considered as a refined version of 

nondeterministic choice. That is, a probability distribution on 

the set of possible next moves of the choice composition can be 

given explicitly. As probabilities are associated with non- 

deterministic choices, it becomes quite natural to assume as 

underlying semantic model that of Probabilistic Transition 

System (PTS), namely transition systems whose arcs are labeled 

by both an event and a probability value[14].  

 Definition: PTS ),,,( pTrAS  is a LTS extended with a 

transition probability distribution  

]1,0[:  SASp
 
such that  

  Trsasifsaspp  ),,(),,,(       

    0 , otherwise 

and 1),,(  sasp , for all Ss  

 PLTS constitute a framework for the description of processes 

with stochastic behavior. However, they become very large- 

both in the number of states and in the number of transitions. In 

order to overcome this problem, Stochastic Finite Automata- a 

model that allows the representation of such systems in a finite, 

symbolic way is introduced. The semantics of Stochastic Finite 

Automata can be defined in terms of PTS.  

Stochastic Finite Automata 

A finite state automaton is a model of computation consisting of 

a set of states, an input alphabet, an initial state, a set of 

transition rules and a set of final states. Transitions are the rules 

in the following form:  (current-state) and (condition) then  

(activate-new-state) 

 The transitions rules may be given by a function or a 

relation, mapping or relating the current state and the actual 

input symbol to the next state. A finite state automaton can 

decide whether an input string is accepted or not. To this end, 

the finite state automaton performs a computation beginning 

with the initial state reading the first symbol from the input 

string. The computation consists of a series of transitions. In 

each transition, the next input symbol is read from the input 

string and the current state is changed according to the transition 

rules to establish a new state. The computation terminates when 

the automaton has read the last symbol from the input string. 

The automaton will accept the input string if it terminates in an 

accepting / final state. 

 A Finite Automaton can be defined mathematically as 

follows[15] 

Definition: A finite state automaton is a five-tuple 

),,,,( 0 FqQM   Where, 

Q : a non empty set of finite states S . 

 : a finite set of input symbols. 

QQ : : a transition function ( ) mapping from Q  
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into Q . i.e., from a state Qq  on taking an input symbol 

s there exists transitions to another state / states  

Qq 0 : start state or initial state. 

F : a set of final states or accepting states and QF   

 The language of the automaton is known as Regular 

Language which is the set of all accepted input strings over the 

input alphabet.  

 A finite state automaton is called stochastic if the transition 

rules are defined by transition probabilities and initial and final 

states are defined by probability distributions. A stochastic finite 

state automaton 
*M  is pair ),( pM can be defined as follows. 

),,,,,( 0
* FpqAQM   Where 

:Q  is a finite set of states 

:A  is a non empty set of actions 

:Qqo   
is the initial states 

QF 
 
 is a set of final states 

:QAQ  is a finite set of transitions between states 

and  

p
  

is a function ]1,0[  such that for all Qq  and for all 

Aa ,



Qq

qaqp 1),,(     

The function p  can be generalized to ]1,0[: **  QAQp in 

the following way: 

       1),,(* qaqp  if qq       

                       = 0 if qq   

and ),,().,,(),,( ** qaqpqxqpqxaqp
Qq

 


 

for all *Ax and Aa  and ,,, Qqqq    

A stochastic finite state automaton 
*M induces a function 

]1,0[: *  A  as follows:  

for all *Ax , ),,()( 0

* qxqPx
Fq




   

Therefore, 
*M also induces a weighted language in 

*A .   

 It has already been established that the Stochastic Regular 

Language as a Mathematical Model for the Language of 

Sequential Actions for Decision Making under Uncertainty [16].  

PTS can be extended using the outcomes O and when treated 

with the transition probability of an action as the transition 

probability of the outcomes of an action and it may be called as 

Modified Probability Transition System (MPTS). 

Definition: MPTS is a five tuple  ),,,,( pTrOAS  in such a way 

that the transition probability distribution p  is as 

]1,0[:  SOASp   such that      

  Trsoasifsoaspp  ),,,(),,,(   

     = 0 , otherwise 

and 1),,,(  soasp , for all Ss  and .Oo  The 

transition relation is defined as ]1,0[ SOASTr   

),,,( soasp  can be written as ss
poa  

,,
. If p  is the 

transition probability function given above, we can define for all 

AaSs  ,  

:, SSOo   

},|{),,,( ,, Sssspsoasp poa     

This can also be called as Modified Probabilistic Transition 

System (MPTS).  

Using MPTS, Stochastic Finite Automata can be extended by 

adding two components O  and U and it is a pair ),(  such 

that ),,,,,,( 0

* FUOqAQ  where  

QUOAQ * is a finite set of transitions between 

states and 

  is a function ]1,0[*   which means that probability can be 

assigned to the occurrence of the outcomes.     

Conclusion 

It has already been established by the researchers that for every 

Stochastic Regular Language there exists an equivalent 

Stochastic Finite Automaton[17]. Hence, it can conveniently be 

inferred from [16] and [17] that the extended Stochastic Finite 

Automata can be called as Stochastic Finite Automata for 

Sequential Decision Making under Uncertainty. From this, it is 

concluded that the Stochastic Finite Automata is a Mathematical 

Model for Sequential Decision Making under Uncertainty 
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