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Introduction 

The rapid growth of portable electronic devices with limited 

power and area has opened a vast area of low-power and 

compact circuit design opportunities and challenges for VLSI 

circuit designers. Cellular phones, PDAs, and smart cards are 

examples of portable electronic products that are becoming an 

integral part of everyday life. The popularity of these devices 

necessitates special considerations for their security subsystems. 

Unlike computer network security systems that impose less 

stringent limitations on the area and power consumption but put 

more emphasis on high throughput (several Gigabit/s), portable 

applications demand security hardware with more restrictions on 

area and power and less on throughput (several hundred kilobit/s 

to a few Megabit/s). This difference in requirements dictates a 

different approach in the design and implementation of the 

security systems for these devices. 

Since next-generation, portable electronic devices will be 

used for a wide range of applications their security system must 

implement both private (symmetric) and public (asymmetric) 

key algorithms, to accommodate various application 

requirements. 

Private Key algorithms with high throughput are suitable 

for data communication, while public key algorithms with much 

lower throughput are suitable for private key exchange and 

authentication. Among all available algorithms, data encryption 

standard (DES), advanced encryption standard (AES), and 

elliptic curve cryptography (ECC), which are approved by 

standards organizations [1]–[3], are selected for this application. 

DES, for past compatibility, and AES, for high security and 

throughput, are the major candidates for private key algorithms, 

and ECC is the best candidate for the public key algorithm for 

its encryption efficiency. 

A cryptography system can be implemented in either 

software or hardware. Software implementations allow multiple 

algorithms to be supported on the same hardware platform, but 

they are usually slow and cannot meet the required 

specifications. Moreover, they are considered to be more 

vulnerable to side-channel attacks compared to other 

implementations. Side-channel attacks use physical 

measurements on the device, for example, the power 

consumption of the processor, to detect the encryption/ 

decryption key [4]–[6]. 

This paper introduces, a synthesis implementation of a 

cryptography coprocessor (crypto-processor) that implements 

two standard private-key algorithms (DES and AES), and one 

standard public-key algorithm (ECC), in a single design 

Problem Statement 

In this section, a brief introduction of the three implemented 

Algorithms is presented. 

Data Encryption Standard (DES) 

This is a well-established algorithm that has been used for 

more than two decades (since 1977) in military and commercial 

data exchange and storage. The algorithm is designed to 

encipher and decipher blocks of data consisting of 64 b using a 

56-b key. A block to be enciphered is subjected to an initial 

permutation (IP), then to 16 rounds of a complex key-dependent 

permutation, and, finally, to another permutation which is the 

inverse of the IP , as shown in Fig. 1. The function f() in this 

figure is the heart of this algorithm and consists of an expansion, 

XOR, lookup table (LUT), and permutation, as depicted in Fig. 

2. To decipher, it is necessary to apply the very same algorithm 

to an enciphered message block, using the same key. 

Since the processing power of current computers is much 

higher than those of two decades ago, a brute-force attack 

(checking all possible key combinations to decipher an 

encrypted ciphertext) to this algorithm is possible in a relatively 

short time (possibly as short as a few minutes). For this reason, 

this algorithm is no longer considered to be a secure algorithm 

for many applications by the National Institute of Standards and 

Technology (NIST). A more secure algorithm based on DES 

which is still supported by NIST is called the triple data 

encryption algorithm (Triple DES, 3DES, or TDEA) depicted in 

Fig. 3. In this figure, DES represents encryption and DES
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represents decryption. 3DES involves applying DES, then, DES
-
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 followed by a final DES to the plain text using three different 

Simulation & Synthesis of a Cryptography Processor for Portable Electronic 

Devices 
M.Aravind Kumar, A.Krishna Chaitanya Varma and P.S.Maitrey 

Department of ECE, Vishnu Institute of Technology, Bhimavaram, AP, India. 

 

ABSTRACT 

Cryptography circuits for portable electronic devices provide user authentication and secure 

data communication. These circuits should, in general, occupy small chip area, consume low 

power, handle several cryptography algorithms, and provide acceptable performance. This 

paper presents the simulation and synthesis of three standard cryptography algorithms on a 

universal architecture. The cryptography processor implements both private key and public 

key algorithms and meets the power and performance specifications. The mentor graphics 

modelsim tool is used for design and simulation and also Synopsys Design Compiler tool is 

used for synthesis.  TSMC 65nm library is used for the synthesis. 

                                                                                                              © 2014 Elixir All rights reserved                          

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

. 

 

ARTICLE INFO    

Article  history:  

Received: 22 June 2013; 

Received in revised form: 

20 August 2014; 

Accepted: 29 August 2014;

 
Keywords  

Synthesis,  

Cryptography processor,  

AES, DES,  

ECC. 

 

Elixir Elec. Engg. 74 (2014) 26633-26636 
 

Electrical Engineering 

Available online at www.elixirpublishers.com (Elixir International Journal) 

 

Tele: 

E-mail addresses: aravindkumarmtech@gmail.com 

         © 2014 Elixir All rights reserved 



M.Aravind Kumar et al./ Elixir Elec. Engg. 74 (2014) 26633-26636 
 

26634 

key options [1], which results in a cipher text that is much 

harder to break. 
 

Fig 1. DES block diagram (K1, K2,. . ., K16 refer to the key 

values used in rounds 1–16) 

 

Fig. 2. DES f()-box details 
 

Fig 3. DES (TDEA) block diagram. 

The implementation of DES needs four basic operations only, 

namely, the XOR, shift, LUT, and permutation, which are 

relatively simple to implement in hardware. The TDEA also 

uses the same set of operations as DES. 

 

Advanced Encryption Standard (AES) 

AES, also known as Rijndael, is a block encryption 

algorithm which encrypts blocks of 128 b using a unique key for 

both encryption and decryption [2]. A block diagram 

representation of the algorithm is shown in Fig. 4. 

 

Fig. 1 3DES (TDEA) block diagram. 

 

The implementation of DES needs four basic operations only, 

namely, the XOR, shift, LUT, and permutation, which are 

relatively simple to implement in hardware. The TDEA also 

uses the same set of operations as DES. 

 
Fig 4. AES block diagram. 

Three versions of the algorithm are available differing only 

in the key generation procedure and in the number of rounds the 

data is processed for a complete encryption (decryption) [2]. 

AES-128 uses a 128-b key and needs 10 rounds. AES-192 and 

AES-256, respectively, need 192-b and 256-b keys and 12 and 

14 rounds for processing a block of data. 

The 128-b input data is considered as a 4x4 array of 8-b 

bytes (also called “state” in the algorithm). The state undergoes 
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four different operations in each round, except for the final 

round which has only three operations. These operations are 

“ByteSub,” “ShiftRow,” “MixColumn,” and “AddRoundKey” 

operations. “MixColumn” is omitted in the final round. Each 

round of the algorithm needs a 128-b key, which is generated 

from the input key to the algorithm. The key-scheduler block 

(not shown in Fig. 4) consists of two sections: the key expansion 

unit, which expands the input key bits to the maximum number 

of bits required by the algorithm, and the key selection unit, 

which selects the required number of bits from the expanded 

key, for every round [2]. As mentioned before, aside from the 

key values, all of the steps in all of the rounds are the same 

except for the last round that MixColumn is not present. 

Each byte in the state matrix is an element of a Galois Field 

GF(2
8
),and all of the operations can be expressed in terms of the 

field operations [2]. In simple terms, GF(2
n
) is a set of 2

n
 

elements each represented by an -bit string of 0’s and 1’s and 

two basic operations: addition and multiplication. These two 

operations are defined such that the closure, associativity, and 

other field properties are satisfied [7]. 

From the implementation point of view, ByteSub operation 

can be implemented by LUT. The ShiftRow can be implemented 

using a circular shifter. The MixColumn is the most complicated 

operation in this algorithm and needs GF(2
8
) field multiply and 

add operations. Due to the specific choices of the parameters of 

the algorithm, this operation can be expressed as a matrix 

multiplication, which can be implemented using shift and XOR 

operations. A more detailed analysis of the implementation 

options of this block are presented in [8]. AddRoundKey is just a 

logical XOR operation. 

Elliptic Curve Cryptography (ECC) 

The set of all (x,y) pairs satisfying the nonsupersingular elliptic 

curve equation 

y
2
+xy=x

3
+a2x

2
+a6 

are called points on the elliptic curve E, where x,y,a2 and a6 are 

elements of the GF(2
n
). The point addition (S=P+Q) and 

multiplication (R=k.P, where k is a constant) operations are 

defined such that both S and R are also points on the elliptic 

curve E. Moreover, knowing R and P, it is pratically impossible 

to find k. This property forms the fundamental foundation of 

ECC [9]. 

Elliptic curves can be used in different forms in cryptography. 

As an example, we will explain one of the basic applications, 

which is the secret key exchange. The basic secret-sharing 

algorithm, also known as the Diffie–Hellman protocol for key 

exchange, is pictured in Fig. 5. [10] [11][12] In brief, both 

users,A and B, agree on the elliptic curve E, a point P on E, and 

a mathematical basis, such as polynomial basis or normal basis 

(NB). Each user then chooses a secret key from GF(2
m
), Ka and 

Kb and calculates her/his own public key (PKa=Ka.P and 

PKb=Kb.P) and sends it to the other user. At this point both users 

can calculate the secret point S(Xs,Ys) 

S(Xs,Ys) = Ka.PKb = Kb.PKa = Ka.Kb.P 

Note that, although both Xs and Ys are available, only one of 

them should be used for higher security [13] 

 
Fig 5. ECC secret-key-exchange algorithm block diagram 

Cryptoprocessor Architecture 

We are proposing the cryptoprocessor depicted in Fig. 6,. 

Depending up on the control signal and the key value the AES 

or DES or ECC will be selected and operated. Completed AES, 

DES and ECC algorithms are designed in the cryptoprocessor 

 
Fig 6. Detailed cryptoprocessor architecture 

 
Fig. 7. Simulated waveform results of crytoprocessor 

(AES,DES,ECC algorithms) 

Implementation Results 

This section highlights the simulation and synthesis of 

cryptoprocessor architecture used for implementation of DES, 

AES, and ECC algorithms. 

The algorithms were designed in verilog HDL. The 

simulated waveform of the cryptoprocessor is shown in fig 

The cryptography processor is targeted to 65nm TSMC 

library.  The result obtained after synthesis are shown in form of 

table. 

Table 1. Results obtained for synthesis using TSMC 65nm 

library 
Total Dynamic 

Power 

Cell Leakage 

Power 

Total cell 

area 

Timing slack 

(MET) 

476.3306 uW 1.0324 mW 47353.32065 0.18ns 

Conclusion 

In this paper we have successfully designed the 

cryptoprocessor. The simulation and synthesis of 

cryptoprocessor are presented. We have tabulated the power 

area and timing results obtained after synthesis. 
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