
M.Aravind Kumar et al./ Elixir Elec. Engg. 74 (2014) 26633-26636

26633

Introduction

The rapid growth of portable electronic devices with limited

power and area has opened a vast area of low-power and

compact circuit design opportunities and challenges for VLSI

circuit designers. Cellular phones, PDAs, and smart cards are

examples of portable electronic products that are becoming an

integral part of everyday life. The popularity of these devices

necessitates special considerations for their security subsystems.

Unlike computer network security systems that impose less

stringent limitations on the area and power consumption but put

more emphasis on high throughput (several Gigabit/s), portable

applications demand security hardware with more restrictions on

area and power and less on throughput (several hundred kilobit/s

to a few Megabit/s). This difference in requirements dictates a

different approach in the design and implementation of the

security systems for these devices.

Since next-generation, portable electronic devices will be

used for a wide range of applications their security system must

implement both private (symmetric) and public (asymmetric)

key algorithms, to accommodate various application

requirements.

Private Key algorithms with high throughput are suitable

for data communication, while public key algorithms with much

lower throughput are suitable for private key exchange and

authentication. Among all available algorithms, data encryption

standard (DES), advanced encryption standard (AES), and

elliptic curve cryptography (ECC), which are approved by

standards organizations [1]–[3], are selected for this application.

DES, for past compatibility, and AES, for high security and

throughput, are the major candidates for private key algorithms,

and ECC is the best candidate for the public key algorithm for

its encryption efficiency.

A cryptography system can be implemented in either

software or hardware. Software implementations allow multiple

algorithms to be supported on the same hardware platform, but

they are usually slow and cannot meet the required

specifications. Moreover, they are considered to be more

vulnerable to side-channel attacks compared to other

implementations. Side-channel attacks use physical

measurements on the device, for example, the power

consumption of the processor, to detect the encryption/

decryption key [4]–[6].

This paper introduces, a synthesis implementation of a

cryptography coprocessor (crypto-processor) that implements

two standard private-key algorithms (DES and AES), and one

standard public-key algorithm (ECC), in a single design

Problem Statement

In this section, a brief introduction of the three implemented

Algorithms is presented.

Data Encryption Standard (DES)

This is a well-established algorithm that has been used for

more than two decades (since 1977) in military and commercial

data exchange and storage. The algorithm is designed to

encipher and decipher blocks of data consisting of 64 b using a

56-b key. A block to be enciphered is subjected to an initial

permutation (IP), then to 16 rounds of a complex key-dependent

permutation, and, finally, to another permutation which is the

inverse of the IP , as shown in Fig. 1. The function f() in this

figure is the heart of this algorithm and consists of an expansion,

XOR, lookup table (LUT), and permutation, as depicted in Fig.

2. To decipher, it is necessary to apply the very same algorithm

to an enciphered message block, using the same key.

Since the processing power of current computers is much

higher than those of two decades ago, a brute-force attack

(checking all possible key combinations to decipher an

encrypted ciphertext) to this algorithm is possible in a relatively

short time (possibly as short as a few minutes). For this reason,

this algorithm is no longer considered to be a secure algorithm

for many applications by the National Institute of Standards and

Technology (NIST). A more secure algorithm based on DES

which is still supported by NIST is called the triple data

encryption algorithm (Triple DES, 3DES, or TDEA) depicted in

Fig. 3. In this figure, DES represents encryption and DES
-1

represents decryption. 3DES involves applying DES, then, DES
-

1
 followed by a final DES to the plain text using three different

Simulation & Synthesis of a Cryptography Processor for Portable Electronic

Devices
M.Aravind Kumar, A.Krishna Chaitanya Varma and P.S.Maitrey

Department of ECE, Vishnu Institute of Technology, Bhimavaram, AP, India.

ABSTRACT

Cryptography circuits for portable electronic devices provide user authentication and secure

data communication. These circuits should, in general, occupy small chip area, consume low

power, handle several cryptography algorithms, and provide acceptable performance. This

paper presents the simulation and synthesis of three standard cryptography algorithms on a

universal architecture. The cryptography processor implements both private key and public

key algorithms and meets the power and performance specifications. The mentor graphics

modelsim tool is used for design and simulation and also Synopsys Design Compiler tool is

used for synthesis. TSMC 65nm library is used for the synthesis.

 © 2014 Elixir All rights reserved

.

ARTICLE INFO

Article history:

Received: 22 June 2013;

Received in revised form:

20 August 2014;

Accepted: 29 August 2014;

Keywords

Synthesis,

Cryptography processor,

AES, DES,

ECC.

Elixir Elec. Engg. 74 (2014) 26633-26636

Electrical Engineering

Available online at www.elixirpublishers.com (Elixir International Journal)

Tele:

E-mail addresses: aravindkumarmtech@gmail.com

 © 2014 Elixir All rights reserved

M.Aravind Kumar et al./ Elixir Elec. Engg. 74 (2014) 26633-26636

26634

key options [1], which results in a cipher text that is much

harder to break.

Fig 1. DES block diagram (K1, K2,. . ., K16 refer to the key

values used in rounds 1–16)

Fig. 2. DES f()-box details

Fig 3. DES (TDEA) block diagram.

The implementation of DES needs four basic operations only,

namely, the XOR, shift, LUT, and permutation, which are

relatively simple to implement in hardware. The TDEA also

uses the same set of operations as DES.

Advanced Encryption Standard (AES)

AES, also known as Rijndael, is a block encryption

algorithm which encrypts blocks of 128 b using a unique key for

both encryption and decryption [2]. A block diagram

representation of the algorithm is shown in Fig. 4.

Fig. 1 3DES (TDEA) block diagram.

The implementation of DES needs four basic operations only,

namely, the XOR, shift, LUT, and permutation, which are

relatively simple to implement in hardware. The TDEA also

uses the same set of operations as DES.

Fig 4. AES block diagram.

Three versions of the algorithm are available differing only

in the key generation procedure and in the number of rounds the

data is processed for a complete encryption (decryption) [2].

AES-128 uses a 128-b key and needs 10 rounds. AES-192 and

AES-256, respectively, need 192-b and 256-b keys and 12 and

14 rounds for processing a block of data.

The 128-b input data is considered as a 4x4 array of 8-b

bytes (also called “state” in the algorithm). The state undergoes

M.Aravind Kumar et al./ Elixir Elec. Engg. 74 (2014) 26633-26636

26635

four different operations in each round, except for the final

round which has only three operations. These operations are

“ByteSub,” “ShiftRow,” “MixColumn,” and “AddRoundKey”

operations. “MixColumn” is omitted in the final round. Each

round of the algorithm needs a 128-b key, which is generated

from the input key to the algorithm. The key-scheduler block

(not shown in Fig. 4) consists of two sections: the key expansion

unit, which expands the input key bits to the maximum number

of bits required by the algorithm, and the key selection unit,

which selects the required number of bits from the expanded

key, for every round [2]. As mentioned before, aside from the

key values, all of the steps in all of the rounds are the same

except for the last round that MixColumn is not present.

Each byte in the state matrix is an element of a Galois Field

GF(2
8
),and all of the operations can be expressed in terms of the

field operations [2]. In simple terms, GF(2
n
) is a set of 2

n

elements each represented by an -bit string of 0’s and 1’s and

two basic operations: addition and multiplication. These two

operations are defined such that the closure, associativity, and

other field properties are satisfied [7].

From the implementation point of view, ByteSub operation

can be implemented by LUT. The ShiftRow can be implemented

using a circular shifter. The MixColumn is the most complicated

operation in this algorithm and needs GF(2
8
) field multiply and

add operations. Due to the specific choices of the parameters of

the algorithm, this operation can be expressed as a matrix

multiplication, which can be implemented using shift and XOR

operations. A more detailed analysis of the implementation

options of this block are presented in [8]. AddRoundKey is just a

logical XOR operation.

Elliptic Curve Cryptography (ECC)

The set of all (x,y) pairs satisfying the nonsupersingular elliptic

curve equation

y
2
+xy=x

3
+a2x

2
+a6

are called points on the elliptic curve E, where x,y,a2 and a6 are

elements of the GF(2
n
). The point addition (S=P+Q) and

multiplication (R=k.P, where k is a constant) operations are

defined such that both S and R are also points on the elliptic

curve E. Moreover, knowing R and P, it is pratically impossible

to find k. This property forms the fundamental foundation of

ECC [9].

Elliptic curves can be used in different forms in cryptography.

As an example, we will explain one of the basic applications,

which is the secret key exchange. The basic secret-sharing

algorithm, also known as the Diffie–Hellman protocol for key

exchange, is pictured in Fig. 5. [10] [11][12] In brief, both

users,A and B, agree on the elliptic curve E, a point P on E, and

a mathematical basis, such as polynomial basis or normal basis

(NB). Each user then chooses a secret key from GF(2
m
), Ka and

Kb and calculates her/his own public key (PKa=Ka.P and

PKb=Kb.P) and sends it to the other user. At this point both users

can calculate the secret point S(Xs,Ys)

S(Xs,Ys) = Ka.PKb = Kb.PKa = Ka.Kb.P

Note that, although both Xs and Ys are available, only one of

them should be used for higher security [13]

Fig 5. ECC secret-key-exchange algorithm block diagram

Cryptoprocessor Architecture

We are proposing the cryptoprocessor depicted in Fig. 6,.

Depending up on the control signal and the key value the AES

or DES or ECC will be selected and operated. Completed AES,

DES and ECC algorithms are designed in the cryptoprocessor

Fig 6. Detailed cryptoprocessor architecture

Fig. 7. Simulated waveform results of crytoprocessor

(AES,DES,ECC algorithms)

Implementation Results

This section highlights the simulation and synthesis of

cryptoprocessor architecture used for implementation of DES,

AES, and ECC algorithms.

The algorithms were designed in verilog HDL. The

simulated waveform of the cryptoprocessor is shown in fig

The cryptography processor is targeted to 65nm TSMC

library. The result obtained after synthesis are shown in form of

table.

Table 1. Results obtained for synthesis using TSMC 65nm

library
Total Dynamic

Power

Cell Leakage

Power

Total cell

area

Timing slack

(MET)

476.3306 uW 1.0324 mW 47353.32065 0.18ns

Conclusion

In this paper we have successfully designed the

cryptoprocessor. The simulation and synthesis of

cryptoprocessor are presented. We have tabulated the power

area and timing results obtained after synthesis.

Acknowledgment

We would like to acknowledge the “Center for VLSI

Design”, BVRIT to enable me to purse our research work.

References

[1] Data Encryption Standard (DES), Oct. 1999. Fed. Inf.

Process. Stan- dards Pub..

[2] Advanced Encryption Standard (AES), Nov. 2001. Fed. Inf.

Process. Standards Pub.

[3] IEEE Standard Specifications for Public-Key Cryptography,

Jan. 2000.

M.Aravind Kumar et al./ Elixir Elec. Engg. 74 (2014) 26633-26636

26636

[4] T. S.Messerges, E. A. Dabbish, and R. H. Sloan,

“Investigation of power analysis attacks on smartcards,” in Proc.

USENIXWorkshop Smartcards Technology, Chicago, IL, May

1999, p. 151 and 161.

[5] K. Okeya and K. Sakurai, “A multiple power analysis breaks

the ad- vanced version of the randomized addition-subtraction

chains counter- measure against side channel attacks,” in Proc.

IEEE Inf. Theory Work- shop, 2003, pp. 175–178.

[6] S. B. Ors, F. Gurkaynak, E. Oswald, and B. Preneel, “Power-

analysis attack on an ASIC AES implementation,” in Proc. Inf.

Technol.: Coding Computing, vol. 2, 2004, pp. 546–552.

[7] N. Biggs, Discrete Mathematics. Oxford, U.K.: Oxford Univ.

Press, 2002.

[8] X. Zhang and K. K. Parhi, “Implementation approaches for

the advanced encryption standard algorithm,” IEEE Circuits

Syst. Mag., vol. 2, no. 4, pp. 24–46, Apr. 2002.

[9] P. H. W. Leong and I. K. H. Leung, “A microcoded elliptic

curve pro- cessor using FPGA technology,” IEEE Trans. Very

Large Scale Integr. (VLSI) Syst., vol. 10, no. 5, pp. 550–559,

Oct. 2002.

[10] J. H. Kim and D. H. Lee, “A compact finite field processor

over GF(2 m) for elliptic curve cryptography,” in Proc. ISCAS,

vol. 2, pp. 340–343.

[11] M. Rosing, Implementing Elliptic Curve Cryptography.

Greenwich, CT: Manning, 1999

[12] I. Blake et al., Elliptic Curves in Cryptography. Cambridge,

U.K.: Cambridge Univ. Press, 1999.

[13] A.Menesez, Elliptic Curve Public Key Cryptosystems.

Dordrecht, The Netherlands: Kluwer, 1993, ch. 6, pp. 83–99.

