The Jordan Canonical Forms of Complex s-orthogonal and s-skew symmetric Matrices
 S.Krishnamoorthy ${ }^{1, *}$ and K.Jaikumar ${ }^{2}$
 ${ }^{1}$ Department of Mathematics, Government Arts College (Autonomous), Kumbakonam, Tamil nadu, India.
 ${ }^{2}$ Department of Mathematics, Dharmapuram Adhinam Arts College Dharmapuram, Mayiladuthurai, Tamil nadu, India.

ARTICLE INFO

Article history:
Received: 5 April 2013;
Received in revised form:
15 October 2014;
Accepted: 28 October 2014;

Keywords

Jordan Canonical forms,
Complex s-orthogonal matrix,
Complex s-skew symmetric matrix.

ABSTRACT

We study the Jordan Canonical Forms of complex s-orthogonal and s-symmetric matrices, and consider some related results.
© 2014 Elixir All rights reserved.

Introduction

The study of secondary symmetric and secondary orthogonal matrices was initiated by Anna Lee [1] and [2]. In this paper we present some extended results of [3] in the context of s-orthogonal and s-skew symmetric matrices. We denote the space of $n \times n$ matrices and complex matrices by M_{n} and $£$ respectively. The secondary transpose of A is defined by $A^{s}=V A^{T} V$ and $A^{\Theta}=V A^{*} V$, where ' V ' is the fixed disjoint permutation matrix with units in its secondary diagonal.
Definition 1.1 [4]. Let $A \in £$
a) The matrix A is called s-symmetric, if $A^{s}=A$. That is $A^{T} V=V A$.
b) The matrix A is called s-skew symmetric, if $A^{s}=-A$. That is $A^{T} V=-V A$.
c) The matrix A is called s-orthogonal, if $A A^{s}=A^{s} A=I$. That is $A^{T} V A=V$.

Basic Results

Our main objective is to present a new approach to the following classical characterization of the Jordan Canonical Forms of Complex s-orthogonal and s-skew symmetric matrices.
Theorem 2.1. A $n \times n$ complex matrix is similar to a complex s-orthogonal matrix if and only if its Jordan Canonical Form can be expressed as a direct sum of matrices of only the following five types
(a). $J_{k}(\lambda) \oplus J_{k}\left(\lambda^{-1}\right)$ for $\lambda \in £ \backslash\{-1,0,1\}$ and any k,
(b). $J_{k}(1) \oplus J_{k}(1)$ for any even k ,
(c). $J_{k}(-1) \oplus J_{k}(-1)$ for any even k ,
(d). $J_{k}(1)$ for any odd k , and
(e). $J_{k}(-1)$ for any odd k .

Theorem 2.2. A $n \times n$ complex matrix is similar to a complex s-skew symmetric matrix if and only if its Jordan Canonical Form can be expressed as a direct sum of matrices of only the following five types
(a). $J_{k}(\lambda) \oplus J_{k}(-\lambda)$ for $\lambda \in £ \backslash\{0\}$ and any k,
(b). $J_{k}(0) \oplus J_{k}(0)$ for any even k , and
(c). $J_{k}(0)$ for any odd k.

The Complex s-orthogonal

Lemma 3.1. Let $A \in M_{n}$ be nonsingular. The following are equivalent
(a). A is similar to a complex s-orthogonal matrix
(b). A is similar to a complex s-orthogonal matrix via a complex s-symmetric similarity

Tele:

E-mail addresses: kjkdaac@gmail.com
(c). there exists a nonsingular complex s-symmetric S such that $A^{s}=S A^{-1} S^{-1}$ and
(d). there exists a nonsingular complex s-symmetric S such that $A^{s} S A=S$.

Proof: Assuming (a), suppose that X is nonsingular and $X A X^{-1}=L$ is complex s-orthogonal. The algebraic polar decomposition ensures that there is a nonsingular complex s-symmetric G and a complex s-orthogonal Q such that $X=Q G$. Then $L=X A X^{-1}=Q G A G^{-1} Q^{s}$, so $G A G^{-1}=Q^{s} L Q$ is a product of complex s-orthogonal matrices and hence is complex s-orthogonal.

Assuming (b), suppose that $A=G Q G^{-1}$ for some complex s-symmetric G and complex s-orthogonal Q . Then $A^{-1}=G Q^{s} G^{-1}$ and $A^{s}=G^{-1} Q^{s} G=G^{-2} A^{-1} G^{2}$, which is (c) with $S=G^{-2}$.

Now assume (c) and write $S=Y^{s} Y^{\text {for }}$ some $Y \in M_{n}^{\text {so }} A^{s}=S A^{-1} S^{-1}=Y^{s} Y A^{-1} Y^{-1} Y^{-s}$, ${ }^{\text {or }}\left(Y A Y^{-1}\right)^{s}=Y^{-s} A^{s} Y^{s}=Y A^{-1} Y^{-1}=\left(Y A Y^{-1}\right)^{-1} ; Y A Y^{-1}$ is therefore complex s-orthogonal and so (a) follows. The equivalence of (c) and (d) is clear.
Lemma 3.2. For any positive integer k and any $\lambda \neq 0, J_{k}(\lambda) \oplus J_{k}\left(\lambda^{-1}\right)$ is similar to a complex s-orthogonal matrix.
Lemma 3.3. For any odd positive integer k, each of $J_{k}(1)$ and $J_{k}(-1)$ is similar to a complex s-orthogonal matrix.
Lemma 3.4. Let r, k_{1}, \ldots, k_{r} be positive integers with k_{1} even, and suppose that $k_{1}>k_{2} \geq \ldots \geq k_{r}$ if $r>1$. Then neither $J_{k_{1}}(1) \oplus \ldots \oplus J_{k_{r}}(1)^{\text {nor }} J_{k_{1}}(-1) \oplus \ldots \oplus J_{k_{r}}(-1)$ is similar to a complex s-orthogonal matrix.
Theorem 3.5. Let r, k_{1}, \ldots, k_{r} and p, l_{1}, \ldots, l_{p} be positive integers with k_{1} and l_{1} even, suppose that $k_{1}>k_{2} \geq \ldots \geq k_{r}$ if $r>1$ and that $l_{1}>l_{2} \geq \ldots \geq l_{p}$ if $p>1$. Then $J_{k_{1}}(1) \oplus \ldots \oplus J_{k_{r}}(1) \oplus J_{l_{1}}(-1) \oplus \ldots \oplus J_{l_{p}}(-1)$ is not similar to a complex s-orthogonal matrix.
Lemma 3.6. Let $C \in M_{k}$ be similar to a complex s-orthogonal matrix. If $B \oplus C$ is similar to a complex s-orthogonal matrix for some $B \in M_{n}$, then B is similar to a complex s-orthogonal matrix.
Theorem 3.7. Let A be a complex s-orthogonal matrix. Then the even sized Jordan blocks of A corresponding to each of the Eigen values +1 and -1 are paired.
The s-skew symmetric
Lemma 4.1. A given $A \in M_{n}$ is similar to a complex s-skew symmetric matrix if and only if there is a non singular s-symmetric S such that $A^{s}=-S A S^{-1}$.
Lemma 4.2. For any positive integer k and any $\lambda \in £, J_{k}(\lambda) \oplus J_{k}(-\lambda)$ is similar to a s-skew symmetric matrix.
Lemma 4.3. For any odd positive integer $\mathrm{k}, J_{k}(0)$ is similar to a s-skew symmetric matrix.
Lemma 4.4. Let r, k_{1}, \ldots, k_{r} be positive integers with k_{1} even, and suppose that $k_{1}>k_{2} \geq \ldots \geq k_{r}$ if $r>1$. Then neither $J_{k_{1}}(0) \oplus \ldots \oplus J_{k_{r}}(0)$ is not similar to a s-skew symmetric matrix.
Lemma 4.5. Let C be similar to a complex s-skew symmetric matrix. If $B \oplus C$ is similar to a \quad s-skew symmetric matrix, then B is also similar to a s-skew symmetric matrix.
Theorem 4.6. Let $A \in M_{n}$ be s-skew symmetric. Then the even sized singular Jordan blocks of A are paired.

Reference:

[1] Anna Lee, "Secondary symmetric, skew symmetric and orthogonal matrices", Periodica Mathematica Hungarica., Vol. 7 (1) (1976), pp.63-70.
[2] Anna Lee, "On s-symmetric, s- skew symmetric and s- orthogonal matrices", Periodica Mathematica Hungarica., Vol. 7 (1) (1976), pp.71-76.
[3] Roger A. Horn and Dennis I. Merino, "The Jordan Canonical forms of Complex Orthogonal and Skew-symmetric Matrices", Linear Algebra and its Applications 302-303 (1999), pp.411-421.
[4] Krishnamoorthy.S and Jaikumar.K, "On s-orthogonal matrices", Global Journal of Computational Science \& Mathematics, Vol.1, No. 1 (2011), pp.1-8.

