27931

Available online at www.elixirpublishers.com (Elixir International Journal)

Applied Mathematics

Elixir Appl. Math. 75 (2014) 27931-27932

The Jordan Canonical Forms of Complex s-orthogonal and s-skew symmetric Matrices

S.Krishnamoorthy^{1,*} and K.Jaikumar²

¹Department of Mathematics, Government Arts College (Autonomous), Kumbakonam, Tamil nadu, India. ²Department of Mathematics, Dharmapuram Adhinam Arts College Dharmapuram, Mayiladuthurai, Tamil nadu, India.

ARTICLE INFO	ABSTRACT
Article history:	We study the Jordan Canonical Forms of complex s-orthogonal and s-symmetric matrices,
Received: 5 April 2013;	and consider some related results.
Received in revised form:	© 2014 Elixir All rights reserved.
15 October 2014;	
Accepted: 28 October 2014;	

Keywords

Jordan Canonical forms, Complex s-orthogonal matrix, Complex s-skew symmetric matrix.

Introduction

The study of secondary symmetric and secondary orthogonal matrices was initiated by Anna Lee [1] and [2]. In this paper we present some extended results of [3] in the context of s-orthogonal and s-skew symmetric matrices. We denote the space of $n \times n$ matrices and complex matrices by M_n and \pounds respectively. The secondary transpose of A is defined by $A^s = VA^T V$

and $A^{\Theta} = VA^*V$, where 'V' is the fixed disjoint permutation matrix with units in its secondary diagonal.

Definition 1.1 [4]. Let $A \in \mathfrak{t}$

- a) The matrix A is called *s*-symmetric, if $A^s = A \cdot \text{That is } A^T V = VA$.
- b) The matrix A is called *s*-skew symmetric, if $A^s = -A$. That is $A^T V = -VA$.
- c) The matrix A is called *s*-orthogonal, if $AA^s = A^sA = I$. That is $A^TVA = V$.

Basic Results

Our main objective is to present a new approach to the following classical characterization of the Jordan Canonical Forms of Complex s-orthogonal and s-skew symmetric matrices.

Theorem 2.1. A $n \times n$ complex matrix is similar to a complex s-orthogonal matrix if and only if its Jordan Canonical Form can be expressed as a direct sum of matrices of only the following five types

- (a). $J_{k}(\lambda) \oplus J_{k}(\lambda^{-1})$ for $\lambda \in \mathfrak{t} \setminus \{-1, 0, 1\}$ and any k,
- (b). $J_{k}(1) \oplus J_{k}(1)$ for any even k,
- (c). $J_{\mu}(-1) \oplus J_{\mu}(-1)$ for any even k,
- (d). $J_{k}(1)$ for any odd k, and
- (e). $J_{k}(-1)$ for any odd k.

Theorem 2.2. A $n \times n$ complex matrix is similar to a complex s-skew symmetric matrix if and only if its Jordan Canonical Form can be expressed as a direct sum of matrices of only the following five types

(a).
$$J_k(\lambda) \oplus J_k(-\lambda)$$
 for $\lambda \in \mathfrak{t} \setminus \{0\}$ and any k

(b). $J_k(0) \oplus J_k(0)$ for any even k, and

(c). $J_k(0)$ for any odd k.

The Complex s-orthogonal

Lemma 3.1. Let $A \in M$, be nonsingular. The following are equivalent

(a). A is similar to a complex s-orthogonal matrix

(b). A is similar to a complex s-orthogonal matrix via a complex s-symmetric similarity

Tele: E-mail addresses: kjkdaac@gmail.com

© 2014 Elixir All rights reserved

- (c). there exists a nonsingular complex s-symmetric S such that $A^s = SA^{-1}S^{-1}$ and
- (d). there exists a nonsingular complex s-symmetric S such that $A^{s}SA = S$.

Proof: Assuming (a), suppose that X is nonsingular and $XAX^{-1} = L$ is complex s-orthogonal. The algebraic polar decomposition ensures that there is a nonsingular complex s-symmetric G and a complex s-orthogonal Q such that X = QG. Then $L = XAX^{-1} = QGAG^{-1}Q^s$, so $GAG^{-1} = Q^sLQ$ is a product of complex s-orthogonal matrices and hence is complex s-orthogonal.

Assuming (b), suppose that $A = GQG^{-1}$ for some complex s-symmetric G and complex s-orthogonal Q. Then $A^{-1} = GO^sG^{-1}$ and $A^s = G^{-1}O^sG = G^{-2}A^{-1}G^2$, which is (c) with $S = G^{-2}$.

Now assume (c) and write $S = Y^s Y$ for some $Y \in M_n$ so $A^s = SA^{-1}S^{-1} = Y^s YA^{-1}Y^{-1}Y^{-s}$, or $(YAY^{-1})^s = Y^{-s}A^sY^s = YA^{-1}Y^{-1} = (YAY^{-1})^{-1}$; YAY^{-1} is therefore complex s-orthogonal and so (a) follows. The equivalence of (c) and (d) is clear.

Lemma 3.2. For any positive integer k and any $\lambda \neq 0$, $J_{\lambda}(\lambda) \oplus J_{\lambda}(\lambda^{-1})$ is similar to a complex s-orthogonal matrix.

Lemma 3.3. For any odd positive integer k, each of $J_k(1)$ and $J_k(-1)$ is similar to a complex s-orthogonal matrix.

Lemma 3.4. Let $r, k_1, ..., k_r$ be positive integers with k_1 even, and suppose that $k_1 > k_2 \ge ... \ge k_r$ if r > 1. Then neither $J_{k_1}(1) \oplus ... \oplus J_{k_r}(1)^{\text{nor}} J_{k_1}(-1) \oplus ... \oplus J_{k_r}(-1)$ is similar to a complex s-orthogonal matrix.

Theorem 3.5. Let $r, k_1, ..., k_r$ and $p, l_1, ..., l_p$ be positive integers with k_1 and l_1 even, suppose that $k_1 > k_2 \ge ... \ge k_r$ if r > 1 and that $l_1 > l_2 \ge ... \ge l_p$ if p > 1. Then $J_{k_1}(1) \oplus ... \oplus J_{k_r}(1) \oplus J_{l_1}(-1) \oplus ... \oplus J_{l_p}(-1)$ is not similar to a complex s-orthogonal matrix.

Lemma 3.6. Let $C \in M_k$ be similar to a complex s-orthogonal matrix. If $B \oplus C$ is similar to a complex s-orthogonal matrix for some $B \in M_k$, then B is similar to a complex s-orthogonal matrix.

Theorem 3.7. Let A be a complex s-orthogonal matrix. Then the even sized Jordan blocks of A corresponding to each of the Eigen values +1 and -1 are paired. **The s-skew symmetric**

Lemma 4.1. A given $A \in M_n$ is similar to a complex s-skew symmetric matrix if and only if there is a non singular s-symmetric S such that $A^s = -SAS^{-1}$.

Lemma 4.2. For any positive integer k and any $\lambda \in \mathfrak{t}$, $J_k(\lambda) \oplus J_k(-\lambda)$ is similar to a s-skew symmetric matrix.

Lemma 4.3. For any odd positive integer k, $J_{k}(0)$ is similar to a s-skew symmetric matrix.

Lemma 4.4. Let $r, k_1, ..., k_r$ be positive integers with k_1 even, and suppose that $k_1 > k_2 \ge ... \ge k_r$ if r > 1. Then neither $J_{k_1}(0) \oplus ... \oplus J_{k_r}(0)$ is not similar to a s-skew symmetric matrix.

Lemma 4.5. Let *C* be similar to a complex s-skew symmetric matrix. If $B \oplus C$ is similar to a s-skew symmetric matrix, then *B* is also similar to a s-skew symmetric matrix.

Theorem 4.6. Let $A \in M_n$ be s-skew symmetric. Then the even sized singular Jordan blocks of A are paired.

Reference:

[1] Anna Lee, "Secondary symmetric, skew symmetric and orthogonal matrices", Periodica Mathematica Hungarica., Vol.7 (1) (1976), pp.63-70.

[2] Anna Lee, "On s-symmetric, s- skew symmetric and s- orthogonal matrices", Periodica Mathematica Hungarica., Vol.7 (1) (1976), pp.71-76.

[3] Roger A. Horn and Dennis I. Merino, "The Jordan Canonical forms of Complex Orthogonal and Skew-symmetric Matrices", Linear Algebra and its Applications 302-303 (1999), pp.411-421.

[4] Krishnamoorthy.S and Jaikumar.K, "On s-orthogonal matrices", Global Journal of Computational Science & Mathematics, Vol.1, No.1 (2011), pp.1-8.