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Introduction
The study of secondary symmetric and secondary orthogonal matrices was initiated by Anna Lee [1] and [2]. In this paper we
present some extended results of [3] in the context of s-orthogonal and s-skew symmetric matrices. We denote the space of NxnN
matrices and complex matrices by N and £ respectively. The secondary transpose of A is defined by AS =VATV
n

and A® —\V/A"/ > Where “V’ is the fixed disjoint permutation matrix with units in its secondary diagonal.
Definition 1.1 [4]. Let Ae £

a) The matrix A is called s-symmetric, if ps _ a . Thatis AT\, —_\/A-

b) The matrix A is called s-skew symmetric, if os — _ o. Thatis AT\ — _\/A.

c) The matrix A is called s-orthogonal, if poas — AsA = | - Thatis AT\/A —\/ -

Basic Results

Our main objective is to present a new approach to the following classical characterization of the Jordan Canonical Forms of
Complex s-orthogonal and s-skew symmetric matrices.
Theorem 2.1. A NXN complex matrix is similar to a complex s-orthogonal matrix if and only if its Jordan Canonical Form can be
expressed as a direct sum of matrices of only the following five types

@3 (1) @I, (AY)or 2e£ \{-10,Tand anyk,
(). J, (1)@ J, (1) for any even k,

(©- J, (1) ® J, (1) for any evenkk,

(d)- J, (1) for any odd k, and

(e). J (-1 for any odd k.

Theorem 2.2. A N XN complex matrix is similar to a complex s-skew symmetric matrix if and only if its Jordan Canonical Form can
be expressed as a direct sum of matrices of only the following five types

(a). ‘]k (1)@ ‘]k (-A) for £ \{O}and any Kk,
(b). J (0)®J,(0) for any even k, and
(©). J, (0) for any odd k.

The Complex s-orthogonal
Lemma 3.1. Let A < M be nonsingular. The following are equivalent
n

(a). A is similar to a complex s-orthogonal matrix
(b). Ais similar to a complex s-orthogonal matrix via a complex s-symmetric similarity
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(). there exists a nonsingular complex s-symmetric S such that ps — ga-1g-1and

(d). there exists a nonsingular complex s-symmetric S such that pAsga — g -
Proof: Assuming (a), suppose that X is nonsingular and yax -1 — | is complex s-orthogonal. The algebraic polar decomposition
ensures that there is a nonsingular complex s-symmetric G and a complex s-orthogonal Q such that X =QG.-
Then | — xaXx ™ =QGAG_1QS' SOGAG™ =Q°LQ is a product of complex s-orthogonal matrices and hence is complex
s-orthogonal.

Assuming (b), suppose that A _ GQG’l for some complex s-symmetric G and complex s-orthogonal Q. Then
Al = GQSG—land AS = GleSG —G2AlG2, whichis (c) withg — g2

Now assume (c) and write g =ysy for some YeM,SOA = SAIS T —YSYAly Iy s,
or (YAY —1)s —YSAYS = YAy = (YAY_l)_l; YAY ! is therefore complex s-orthogonal and so (a) follows. The equivalence
of (c) and (d) is clear.
Lemma 3.2. For any positive integer k and any 4 =« (), J ()@, (}t‘l) is similar to a complex s-orthogonal matrix.
Lemma 3.3. For any odd positive integer k, each of J, ) and J (-1 is similar to a complex s-orthogonal matrix.

Lemma 3.4. Let ¢ Ky, K be positive integers with k, €ven, and suppose that k, >k, >..>k ifr >1. Then neither
Ky K, >.. 2K

JO®..eJ, @nor ], (-)@..®J, (- is similar to a complex s-orthogonal matrix.
Theorem 3.5. Let Ky K, and p, L., |p be positive integers with k, and |, even, suppose that k >k, >...>k if r>1and

that|1 > 1, 2_._2|p if p>1. Then Jkl(l)@)"'@‘]kr (1)@\]'1(_1)@__@\]%(_1) is not similar to a complex s-orthogonal

matrix.
Lemma 3.6. Let C < Mk be similar to a complex s-orthogonal matrix. If B @ C is similar to a complex s-orthogonal matrix for

some B < M » then B is similar to a complex s-orthogonal matrix.
n

Theorem 3.7. Let A be a complex s-orthogonal matrix. Then the even sized Jordan blocks of A corresponding to each of the Eigen
values +1 and -1 are paired.

The s-skew symmetric

Lemma 4.1. A given A ¢ M. is similar to a complex s-skew symmetric matrix if and only if there is a non singular s-symmetric S

such that AS = _SAS-
Lemma 4.2. For any positive integer kand any 4 e £ , J, D) J, () is similar to a s-skew symmetric matrix.

Lemma 4.3. For any odd positive integer k, J, (0) is similar to a s-skew symmetric matrix.
Lemma 4.4. Let k1 k be positive integers with k1 even, and suppose that k1 > k2 > >k ifr>1. Then neither
’ grrny BN = =Ny
J (0)@..®J (0) is not similar to a s-skew symmetric matrix.
s T

Lemma 4.5. Let C be similar to a complex s-skew symmetric matrix. If B @ C is similartoa s-skew symmetric matrix, then B is

also similar to a s-skew symmetric matrix.
Theorem 4.6. Let A = \ _be s-skew symmetric. Then the even sized singular Jordan blocks of A are paired.
n
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