27918 Qiuxia Yang et al./ Elixir Appl. Math. 75 (2014) 27918-27929

Available online at www.elixirpublishers.com (Elixir International Journal)

Applied Mathematics

1 2229-712X

Aaking N
e\ - S0 AEpk DL, 75 (@01 272D

NSRRI G '.,’.
QPRI AN

A necessary condition for similarity of indefinite sturm-liouville operators
Qiuxia Yang"" and Wanyi Wang?
'Department of Computer Science and Technology, Dezhou University, Dezhou 253023, P.R.China.
*Mathematics Science College, Inner Mongolia University, Huhhot 010021, P.R.China.

ARTICLE INFO ABSTRACT

Article history: We consider a singular Sturm-Liouville differential expression with an indefinite weight
Received: 13 March 2013; function and we present a necessary condition for similarity of indefinite Sturm-Liouville
Received in revised form: operators to self-adjoint operators. Using this result, we construct two examples and prove
15 October 2014, that none of them is similar to a self-adjoint operator.

Accepted: 28 October 2014, © 2014 Elixir All rights reserved
Keywords

Sturm-Liouville operator,
Indefinite weight,
Similarity,

Weyl function.

Introduction

In this paper, we investigate the singular Sturm-Liouville expression
a@) = 1/r() (-py" )" +qy) 1)
where the weight function 4~ changes its sign. Differential operators with indefinite weights have intensely been investigated in the
recent years (see [1, 2, 3, 12, 5, 15, 18, 19]). We assume that (1.1) is in the limit point case at both —py and 4y and that the
functions p.g.r are real, r = ¢ a.e.. Then the maximal operator 4 associated to (1.1) is self-adjoint in the Krein space LZ( R,
where the indefinite inner product is defined by

If. g1 = | feogreydx  f-9 € LH(R): (1.2)
JE

The operator J: £(x) v» sgn(r{x))f(x) is a fundamental symmetry in the Krein space L3(R. Let us define the operator
L=]4 - Then 1 is a self-adjoint Sturm-Liouville operator in the Hilbert space Lfﬂ(]lﬂj-. Two closed operators T, and Ty ina
Hilbert space gy are called similar if there exist a bounded operator § with the bounded inverse §71 in g such that
5ldom(T],)= Tz and T;=5T,57*.

In general, the operator (1.1) considered on LZ{ R has continuous spectrum. In the case, one considers the property of similarity
either to a normal or to a self-adjoint operator. Using the Krein-Langer technique of definitizable operators in Krein spaces, ¢ urgus

and Langer [6] have obtained the first result in the direction. In particular, their result yields that the J-self adjoint operator with

r{x)= sgnx is similar to a selfadjoint if 7 is a uniformly positive operator. Next ¢ urgus and Najman [7] showed that the operator

(sgnx)d? is similar to a self-adjoint one. In the paper [8], similarity of i 42 ' type operators to normal and self-
T sgnx | _d =+ cd |
| 2

adjoint operators were described. In [4, 15, 13] several necessary similarity conditions in terms of Weyl functions were obtained.
Based on the concept of boundary triplet and the resolvent similarity criterion, references [16] and [20] investigate the main spectral
properties of quasi-self-adjoint extensions of corresponding operator.

Here we are interested in more general indefinite differential expression of the form (1.1) and the main goal is the similarity of the

operator 4 to a self-adjoint operator. In Section 2, we summarize necessary definitions and statements from the spectral theory of
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Sturm-Liouville operator 4 . In Section 3, we give boundary triplets for Sturm-Liouville operator. Finally, in Section 4, we show
that a necessary condition for the operator 4 to be similar to a self-adjoint operator in Hilbert space.

Throughout the article we use the following notations: Let T be a linear operator in a Hilbert space g . In what follows
dom(T}, ker(T ), ran(T ) are the domain, kernel, range of T , respectively. We denote by o (T ), a(T ) and @, (T} the resolvent
set, the spectrum and the point spectrum. R (A} = (T —AI}7Y, 1 ¢ o (T ) is the resolvent of 7. We set €C;:={1eC:
Imy >0}

Preliminaries
Indefinite Sturm-Liouville Operators in L2{ R
Consider the differential expression
a() = 1/r(-py" )" +qy ) (21)

where p~1t, g re L%r_:-r.: (m) are assumed to be real valued functions such that p >0 and y = g for ae., x ER . Here we
assume that the following condition holds:

There exist g, h € R , @ < b, such that the restrictions v, : = 7 I (b, +c0} and y; = ¢ [ (—en, q) satisfy 7, {x} = 0 forae,
x E(b,+o)andr_{x} < 0 forae, y g (—oo,a)-

By Li(R) we denote the Krein space of all equivalence of measurable functions ¢ defined on R for which

~too . . The indefinite and definite inner products on LZ{R} are
b IFOP@ldx < +oo
=—d
-+ _ and ) ) -+ . (22)
[f.gl=1{ fgrdx (figi=1 Ffalrldx
== “—m
Evidently, the operator ]
Jf)x) = (sgnr(x) ) f(x) * ER (2.3)

is the fundamental symmetry connecting the inner products in (2.2). By the space LfrII:E:I we denote the Hilbert space

L2 (R, (- ) -
Let us assume that the Sturm-Liouville differential expression
10):= 1/0r D2y )" + gy ) (2:4)

is in the limit point case at both singular endpoints —gg and +gg - Then it is well known that the operator [.{y} = [{y-) defined
on the usual maximal domain

[ Dinax= { € LTy (R)zy.py" € AC1oc BRI € LH(R)}  (25)

is self-adjoint in the Hilbert space L% {R}. In the following we set

A= JLy = 1r((—py" )" 4+ qv ) dom(A) = dom(JL) = Dy -

The operator 4 is self-adjoint in the Krein space I2(R). Under some additional assumptions a first result on the spectral
structure of 7, was proved in [12] with the help of a general perturbation result from [7]. Under semi-bounded from below of the
operator J, , reference [18] gave the conclusion that the local definitizability in some open neighborhood of - of the operator
A=]JE .

Similarity to [12], we shall interpret the operator 4 as a finite rank perturbation in resolvent sense of the direct sum of three

differential operators A_, A,; and A, defined in the sequel. We identify function f e l3(R) with f=Ff+4fu+f where

f.el? ((—co,a)) fap € L2 a':. (@b andf+ c L§,+|f (b, +ca)] respectively. Similarly we denote the restrictions ofp ' q and
_ J b J 1 J
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+ onto the intervals {(—oo, @} and (b, +o0) by p_, p, ., g-.g, and r—, ¥, , respectively. Moreover we denote the restriction of 4 ,
p and g onto the interval (@, b) by 7ap . Pap and g4 . Besides the differential expression  in (2.4) we set
L= fO=1r— (s~ 2AH-0"Y'—aq— f1-)
DL+ fFO=1n+ (Co+ SARHIVI" a4 fi4)
and
Olab fO,ab = 1frab ((—pyab Of 1abZV )" + q,ab fiab )
respectively, and operators associated to them. Note that I_ and I, are in the limit point case at —gg and +gg and regular at
the endpoints 5 and p , respectively, whereas [z is regular at both endpoints o and p . BY pymax®— (Dymax'+ and
DymaxTah ) We denote the set in (2.5) if - , R and ; are replaced by r_, (—gg,q) and I_ (resp. vy, (b, +c0), I, and rgp,
(@ b}, I,z ). Therefore the operators
DAymin-) fO—=1ry = (o~ ZfHi— 2" —aq— f1-),
DA (mind) fO+=1/ri 4+ (oot ZAHAFI"I+ @+ 1 +)
and
25,ab fOyab = 1fryab ((—pyab 2f,abZv )" + q,ab fiab )
defined on
Zdom(AD(min—- ) ={f;—€ Dmax"™:f;— (a)=p,— Zfi—- V" (@) =01,
Tdom(AZD(mint)) = {fit€ Dmax"™+: 1+ (D) =p;+ 2+ IV () =0}
and
Jdom(SZ ab) = {f,ab € Dymaxab: fiab (a) = piab 0f,ab”" (@) = f,ab (b) = pyab Zfabl" (b) = 0} ,
with
Dymax"-= {f~€ L,(C|rDy ~ )'2 ((~0.@)): fi=.py = Ofy = 0 € DACT loc ((~w, @), If € L(CrT, — )'2 (-0, a)) }
Dymax ™= {f 4e Li(ri+)"2 (b, +=)): fi+. 2.+ Of 4+ 0" e ZACTloc (b, +00)), If 14 E Ly(ri+)'2 ((b, +0)) }
and
Dymax"ab = {f,ab € Ly(Z|r2.ab "2 ((a b)): flab,pyab Zf,abl" € CACTloc ((a, b)), Ifiab € Ly(DrZ,ab )2 (@, b)) 3
are closed symmetric operators in the anti-Hilbert space Li_': [—mlaj], Hilbert space L3~+': |:b,+m:|:| and Krein space

Liah{(g, b)), respectively. The adjoint operators A, AL, and 57, are the usual maximal operators defined on p max™— .
DymaxT+ and DymaxTah . respectively.

Let dom(S) = [dom(A] ;Y@ dom(S] , /@ldom (41, ) and let the operator § be defined on gom (5},

Arin- D 0 (2.6)
5= ( 0 San 0 )
0 0 Amln+
with respect to the Krein space 13 .: (—oo,a) :. @Liaa{{ﬂ’ b}}@f_ﬁm .: (b, +co) :. . Then 5 is a closed symmetric operator in the

Krein space L% (R} with finite defect 4 . Moreover, we have
S=Alms A=5" Iy
where
D =dom(4) = {f € "dom” (4,(min—)" + }@®@"dom"” (5,ab" * )®"dom" (4;(min+)" = ):
f-@ = far(@. p_f (@) = pop fap (@) [+ BV = Far ®) p_ £, "B) = pop fop () 27)
Theorem 2.1. If the operator j, is semibounded from below, then plA) o - (see Th. 4.5in [18])
If the operator 7, is nonnegative, J, =  , Theorem 2.1 together with spectral properties of self-adjojnt operators in Krein spaces

implies the following theorem:
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Theorem 2.2. If the operator 7, is nonnegative, then the spectrumof 4 isreal, 7( 4 c R -

Weyl-Titchmarsh m-coefficients

Let -(x, A} and s{x, 1) denote the linearly independent solutions of equation (2.4) satisfying the following initial conditions at 5
cla, ) =ps(aA)=1 pc'la. ) =s(a, i) =0

Since equation (2.4) is limit point at 4+ g5 , the Weyl-Titchmarsh theorem (see [9]) states that there exists a unique holomorphic
functionm _{-) € CY\ R — € , such that the function s (x, A} — m , (A)c, (x, 1) belongs to L§,+ .: (b,+oo) :. . Similarly, the limit
point case at —gg yields the fact that there exists a unique holomorphic function m_(.-) € T% R — €, such that
s_{x, A} —m_{A)c_{x, A} belongs to I3, .: (—co,a) :. }

The functions m . and m _ are called the Weyl-Titchmarsh m-coefficients for (2.4) on (b, +co} and on ( —cs, ) , respectively.
We put

Mi(d) = tm;(14), (28)
Y, A)=5,004) - M, (e, (0, A), -(x, ) = —(s]-(x, ) — M_(A)es(x, 1)) (2.9)

By the definition of m, the functions 1, (x, A} and ¥ _{x,4) belong to L§,+|: (b,+oo) :. and LE,,_I: (—oo,a) :. for all
AEC\R . respectively. The function M, (-} (M_(-]) is said to be the Weyl-Titchmarsh m-coefficient for equation (2.1) on
(b,+c2) (on (—eo,a))-

Definition 2.1. The class (R) consists of all holomorphic functions g:¢, u€_ — € such that G{I) = G(1}. and
ImA-ImG(1) =0 for3 e, uc_ (see[10]).

It is well known that

=+ 00 i -..’ ) . - . I .‘l'f_f,l\ 210
‘L Tl (x,A) 2] r(x) dx = w J_m-_-_5125|1p__[x,,1]| Clerix)dy = % (2.10)

forall J £ R (see [9]). These formulae imply that the functions M, and M_ (as well as m . and m _) belong to the class

(R). Moreover (see [11,12]) the functions M, and M_ admit the following integral representation

tudr,(s), EC\R - (2.11)
M@= ST
Here 7;: K — R are nondecreasing functions on R with the following properties:
o dr, (s} ,
— < 400
.l_.x. 1+1sl

T, (b)=1(a)=0 ,14(s) =1;:(s - 0).
The functions T, and T_ are uniquely determined by the Stieltjes inversion formulae

T+{3+ﬂ}+1r+(5—ﬂ},li T_(s+0y+7_(s—10).

1 1 ¢
I-IJTE.L ImM, (t + ig)dt = ?E.L ImM_(t + is)dt =

= 2 EL 2
The functions T, and T_ are called spectral functions of the operators
O AT|(0-) == 4;(min—)"+ |{y € dom(4,(min—) *+): p,— Ty, — "V (a) = 0} (2.12)

and
O AT (04) = A|(min+) s |{y € dom(4 (min+) = ): p; + Ty, + IV (B) =0}, (213)
respectively.
Boundary Triplets and Abstract Weyl Functions
Let (5, [- -] ) be a Krein space and let H be a separable Hilbert space. Let 5 be a closed symmetric operator in g with
equal and finite deficiency indicesn (s} =n_{s}=n < oo .

Recall the concepts of boundary triplets and abstract Weyl functions (see [13, 14]).



27922 Qiuxia Yang et al./ Elixir Appl. Math. 75 (2014) 27918-27929

Definition 2.2. A triplet [ = {7, I Iy} consisting of an auxiliary Hilbert space 3 and linear mappings I;:dom(57)—H ,
{j = 0,1}, is called a boundary triplet for 5* if the following two conditions are satisfied:

() (5*F. 90 — (F. 59 = T1f.To@ler — Tof.T10)s¢. £, g € dom(S”) :

(i) the linear mapping 2T = {I'™ 2,0 £, ;1 f}:"dom(™ 5T+ ") — " H@H is surjective.

The mappings 'y and ', naturally induce two extensions 5, and 5, of § given by

It turns out that 54 and 5, are self-adjoint operatorsin gy , 57 = 5;, {j = 0,1}.

The y — figld of the operator § corresponding to the boundary triplet [y is the operator function ¥{-}: p{5¢} — [#, 315(51]
defined by 4(1) = ([, I 9;(5))~1, where Ji;(5) = Ker(5" —Al') . The function j, is well-defined and holomorphic on
plSq):

Definition 2.3. Let [T = {gr,T,,I, } be a boundary triplet for the operator 5. The operator valued function p(.): p(S4) — [#]
defined by

M) =Ly(1) A € p(5g)
is called the Weyl function of g corresponding to the boundary triplet [ .

Let ¢, p = [H] - Considering the followingextension § of § , 5§ = §,
5T =05,(C.D):= 52"+t "dom(" 5,(C. 1)) -

"dom(" S)(C.D)) = {f € "dom™ (ST * ):C T 1 f4+ DT ,0f=01 - (214)

Notice that each proper extension § of § has the form (2.14), i, if § £ § = 5=, then there exist ¢, p = [H] such that
§= Seo-
Theorem 2.3. ([22]) Suppose [T = {2, T, rl} be a boundary triplet for the operator 5%, ps(.) is the corresponding Weyl function,
and § = Sep where 5S¢ is defined by (2.14). Assume also that ¢, i, (CC* 4+ DD}t = [3]- Then:

() 2 € p(S,)n p(&) ifand only if 0 e p(D 4+ CM{2)}-

(ii) For each 7 & (53 1 p(5) the following equality holds true

(5-2) "= S — D~y D+ M) Cy* (1) @19

Boundary triplets for Sturm-Liouville operator 4

1. Let A, ;ps and A, ;n— be the operators defined in Subsection 2.1. Since equation (1.1) is in the limit point case at +gg

and—gg , then the deficiency indices of the symmetric operator are (1,1) and for all f5 , g+ € dom (Ar-nln+) we have
[ (Alimin+fer8+) = (forAfmns 0+ ) = (P fe )09+ (b) — Fr®)p+g+ )B) (31)
[ (Aliinforg-) = (FoAlpn_g-) = (p_f-" J@)g-(a) — f-(@)(p-g-")a) (3-2)

Hence the triplets [1* = {c, r;lr:} and M~ = {€,I,,M;}, where

Mofe = (p.f. )O) [ife = —f. () f. € dom{Af,,. ),

of-= (p-£-)@ T1f- = —f-(@). f- e dom(AL,, ).

are the boundary triplets for A7 . . and A7 _, respectively. By the definition of the functions ¢, (-, 1} and y_{-, 4} (see
Subsection 2.2), we obtain

O N4 (Ay(mint) ): = "Ker(" Ay(mint)T« -4 ") = {"c; + (- A)ceC} A C\R - (3.3)

Denote by ¥* and ¥~ the y — fields corresponding to the boundary triplets 1 and 1™ . By (2.9) and (3.3), we get
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Yﬂ&)c:(r,,i rﬁA{ﬂmini})_lc=c-a,bi(x,,l}”:E‘E: AEC\ R - (3.4)

Further, the self-adjoint extension Afpns T Ker(ls) Of Amins coincides with the operator Ay . The Weyl function fﬁi )
of Aqins corresponding to the boundary triplets p= is defined by

My (D) =iy 4 € pl4os )

Combining (3.4) with (2.8) and (2.9), one obtains jﬁ,ru}.g =cM.(1) c EC, AEC\R-In the sequel we will write
My instead of jf, (-}

2. Consider the regular Strum-Liouville operator 5,3 , 555 IS a densely defined closed symmetric operator in the Krein space
Liahl:: (a,b) ::. and has defect two, its adjoint 57, is given by

syab flab = 1fryab ((—pyab Zf1ab2" )" + qyab fiab ), Cdom(5T ab" +) = Dymaxab .

For [f,g e dom(5]7, ), we have

far(@)(Pabgan')(@) + (Pasfan') (@)gan(a)
far(B)(PasGan )(B) — (Pavfan') (2)Gan (b))

Hence =& — {c, ras, Fﬁb} is a boundary triplet for 57, , where

et T\ et (Fan (@Y.
r:b — 'Pabfatr- (ﬂ}) I B —_
e ( Pasfar @ ) )

Let g y; € Liﬂh{(a,b}} be the fundamental solutions of {—pabhr}r 4+ qh=Ar,h' A€C, satisfying the initial

[':S:Ebfag]_ (ﬁfébg} = (

conditions
0@ =1, (poe) Ny =0 andYa@ =0 (p_ y, )@ =1
Since
Na(Sap) = Ker[(SIZ, —A)=splep¥a). AeC\R- (3.5)
Denote by 2% the ¥ — field corresponding to the boundary triplets pj2& . By (3.5), we get
ytab c = O(M,0%ab [ M)A (5,0b ))ZT(-1) € = "sp{” ¢, 4. Y A} -
Furthermore

L = @a(x)(plap P 100 = (papea (XY (0) = 1
has the constant value 1, we find that the Weyl function m 55 (see [12]) is given by

Mgy = — = ((przb"'abir){b} 1 )’AE C\R -
E Pan©a Xb) 1 ©1(B)
3. The operator § — Amiﬂ‘@%aeﬁ, _ is a closed densely defined symmetric operator of defect 4 in the Krein space
min+

L2 {{—o0,a))®LE ; ({a. b}}@L§,+ {{b, +00)) and it is straightforward to check that {€*, 'y, I3}, where
- a

Faf-\: rf ) (36
Fof=| Tafs | If=| Tifs
Mo’ fab M fab
{(foforfap}Bdom{4},, J@dom(4y,,, }@dom(S, ) is aboundary triple for the adjoint operator S, =+ .
J‘i‘lmi|:'1—ﬂ:lm+

Further, we put

So= 15"t Ker(Tp)=4p-g4 3.7)

B+EA ,

where



27924 Qiuxia Yang et al./ Elixir Appl. Math. 75 (2014) 27918-27929

Ay0ab = 5,ab" «t {y € "dom" (5,ab" = ): (p,ab ZyvyabZ" Y(a@) = (pyab ZyabIV )Y =0 -
Therefore, the operator function (.}: p(5,} — [C4, 9} ;(57] defined by

C_

y(-}( Cs ) =y, +y e +y°° (Degp = P, + P + 6 @3 + 3y
Cak
is the y — field corresponding to the boundary triplet [T = {c*, Ig.13}- Moreover, the operator Weyl function (see [13]) has

the following form

M) = (Jad,- (eo@o&M,+ (7))  (080) 2(000) @ M0 %080 &0)  M((ebIH A" )(b)(piab Jo AT )(b) &1/(y
A e pl5y)
Lemma 3.1. Let 4 be the operator associated with equation (2.1) and let the operator 5, be defined by (3.7). Then

g{A}n p(5y) = {1 € p(Sy: A = 03, where
A= (pabmr)(b}M,, () — @a(BIM_(A) — (pap@a WOIM_(IM, (1) + Y (b)
Proof. Let us rewrite (2.6) as follows dom({4) = {f € dom(5*):CT, f + DIf = 0}, Where

101 o, 000 o0
0101 000 o0
€= 0000 b= 101 0
0000 01 0-1
By Theorem 2.3, 3 € p(4) 1 p(5,) ifand only if g e oD + CM(A) - Since
{pﬂb":'-l‘].lr}(b} 1
- - Newen® P Gnen®
det! D+ CM(2)) = |Par®Pa . ?E;;"“
w22
—— —————+M, (1)
@ar0)B)  Pap @B

Wesee that 3 e p(4) N pf5,) exactlywhenp = p .
Similarity of the operator g

Theorem 4.1. Let 4 be the operator associated with equation (2.1). Then
()If3em . then 3 g g4y ifandonly ifA=10 .

(i) If the operator A, is semibounded from below and the operator 45— is semibounded from above, then M, {4} # M_{A}.

Proof. Statement (i) obviously follows from Lemma 3.1 and the fact that p(S,)CR -

Let us prove (ii) The operator Ay, and Ag_ are semibounded, i.e., Ag, = ngl and —ngl , 775 € R . Therefore, there exists
My € (—oo,mp] suchthat (4.} < [n,, +oo) and g{4,_) = (—oo, —1,] - On the other hand, the operators A4 are unbounded.
These facts imply al{dg. ) # aldp)-

Since z{Ay4 ) = suppdrt, . one immediately gets suppdr, # suppdr_- By the stieltjes inversion formula (2.10) we
conclude that M, {4} # M_(4} on \R -

Lemma 4.2. Let T be a closed operator in a Hilbert space H and #(T) = g . If T is similar to a self-adjoint operator, then

there exists a positive constant { = g such that

|Ima| - (T —2)7 |, <c forallzec\r } (4.1)
Theorem 4.3. If 4 is similar to a self-adjoint operator, then the functions
ImM, (A} and ImM_{4) (4.2)
A i

are well defined and bounded on ¢\ R -

Proof. Suppose that 4 is similar to a self-adjoint operator. Then 7{4} — g - By Lemma 3.1,
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A =0 forall 3 £ m - Hence the functions (4.2) are well defined.
Further, by Lemma 4.2, there exists a positive constant ¢ = g such that
|ImA| - (A —2)72]|, =¢c foralzec\mr } (4.3)
Since the operator A, = Aj is self-adjoint, then
[ImA| - [[(4g —2)72|, <1 Torallzecy\r } (4.4)
Combining this inequality with (4.3), we get
Imal-[[(4~2)7 ~ (4o~ )74|| <c+1 2EC\R (45)

Substituting FO) =1, {’_ I:l in (3.8), we obtain from (4.5) the following inequality

WP INULHIY I+ -1+ T2l + lleall)

[Im4] - ] =2iC+1),AeC\R

and

oSS ”TJL}H el % oW lp- I + lloall) = 2(C +1)' F € EN R
where

K = (papo; Wb) L = (paps WOIM, (A) — @ (BIM_(R)-
Therefore, using (2.9), one immediately gets

|
x,'lil ImMy (DL TImML ()] + [ ImM_(A)] )
[ 4]

=2(C +1)AEC\R

and

! - r r "
\,'lil ImM_ (A L) [ ImM A + [ ImM_(A)] )
| LA

Thus, for 3 € C\ R . We have

IL1Tm M, (A)]
1Al

=2{C+1)AeC\R

=2(C+1)

and

ImM_{4}]
ILA|

Here J, = g , then

ImM, (AN < 2(C + 1), [TmM_{A)]
a1 1Al

This concludes the proof of Theorem 4.3.

=2{C + 1y

= 2ILI(C + 1)

Corollary 4.4. Let 5 = p , if 4 issimilar to a self-adjoint operator in Hilbert space, then the functions

ImM,_ {1} and ImM_{1)
M,D-M-() M. - M-(D

are well defined and bounded on ¢\ m -

Some examples
The main object of this subsection is to present several explicit examples of indefinite Sturm-Liou ville operator of the form (2.1)
with the singular critical point.

1. Consider the following operator
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ATy — 72 |
[ (Al = ——+domICAl,) = Lj,(®), (5.)
rixi(—y")
where
[Sgu(x +1)
—4_.3(-' = 4
(1—3x) =
rx) =4 sanlx),—-1<x <1
sgnlx — 1)
I gn—‘ =1
\ (1+3x) =

Lemma 5.1. The differential equation

(-y")60 = (1 +3x) Sy(y ¥ > 1 2)

is in the limit point case at 4y . Moreover, the function

mid) = _1 + L_ - EL_ arctan1’ 4 € R, (53)
A =1 m/=]

v—A4
is the Weyl-Titchmarsh m-coefficient for (5.2).

By Lemma 5.1, we obviously obtain

M+|j,1j|:—%+%_%%amtan1ait§tﬂ\n (5.4)
V=A
and
M()=—1_1,21 i AEC\R. (5.5)
A Wi w2l
v

Lemma 5.2. If A, is similar to a self-adjoint operator in Hilbert space, then
i ImM,(ig) < 400
m ———————— .

=+o0FeM,iie) +1

Proof. l_if;l}@islzl'-:l =1 and l—i—%i’bf"l:x] =x4+1- S0 E—i—%@f"uj =1, E_i_%@i’:_uj =0, Li_%qpn_uj =2 and
111-%1’.5;5 (1) = 1 . By Theorem 4.3, if A, is similar to a self-adjoint operator in Hilbert space then the limit functions

E—

. md.Gs)  __and ImM, (i) (5.6)
coro PN Ge) = M_(5) + 2 SRoM.(ie) —M_(ie) +2

Since the functions . and p(-) are even, one can easily show that m _{A} = m . {4}. It follows from M {4} = +m ;(£4)}
that M_{A)} = —M_ (—A4). Moreover
M, (ig)— M_(id= M, (ie) + M (—ig) = M, (i) + M, (ic) £ >0 -
Combining the inequality (5.6) and Theorem 4.3, we complete the proof.
Theorem 5.3. Let A, be the operator of the form (5.1). Then
(i) The spectrum of 4, isreal, [g{A];)c R .
(ii) A, is not similar to a self-adjoint operator.
Proof. (i) By Lemma 5.1, the differential expression (5.1) is in the limit point case at both 453 and —gg . Hence the operator
A, is self-adjoint in Krein space LR . Evidently, the operator L is nonnegative. It follows from Theorem 2.2 that the spectrum of
Ay isreal, [o{AT{)c R .
To prove (ii) we use Lemma 5.2.

Simple calculation show that



27927 Qiuxia Yang et al./ Elixir Appl. Math. 75 (2014) 27918-27929

1 1 1 )
II:I]M_'_(EE'} = _+ ..—+ F, —s—— —
£ w28, — 7 Ve +1 arctany 2s
|my2s)l In — |
' ' I'I. £ + "..'25‘ + 1 £— 1 .l'I
1 1
ReM, (is) = —+ r —— —
V2 —f Vet +1 arctany 2g
|my2g)| In = - |
-E R | e—1
and
1 1 1
E+ —+ ; - —
Vs Vvel+1 arctany/ 2e
{my2e)l In — + —
ImM, (is) \ oe+2e+1 £
ReM,(is)+1~ 1 + 1
{ffrs.-"ﬁxj In s.-'g_*_—l— 1 _ arctan {-‘25
\ "\ oe+\2e+1 £
J2 4+ 1 In m-'sj 1 " arctan ;ZE
1 TV e4+42e+1 £~
=— — — — 4o, = 40.
vE 1 veZ+1  arctany2e

1+-|In —
Tr( e+y2e+1 -1 )

Thus A, is not similar to a self-adjoint operator.
2. Consider the following operator

Z (A1) = —— domIGiL,) = [ ). &1
rix)(—y")
where
sgn(x + 1), x=-1,
rix) = [ ggu_xl:xz +2x—4),-1=<x=1,
sgnlx — 1), x= 1L

Using the method of WKB (see[21]), we can get uniformly valid asymptotic solutions of the equation (5.7), i.e.,

@A O~ [m(C[r(— 12T /4) cosVA [ (—1) =2V (0r(r)) dr2)/ 210 (1/4), —1=x<0,|i = oo
(5.8)

(5.9)
satisfying the initial conditions:
(-1 =1 ,¢i(—-1)=0 and (-1 =1 ,y;(-1)=0,

here

i — —_—
i [r(—1)]% cos x"ﬂ_l_nl Jyrmdr ’

1T [Exp (\",'_l _I: N} —T"(T}dT) + exp (— Vi _I'nl N —T{T}ti‘r)]

sin 1{','_1_]'_“1 JrTdr
VAl (-0 [exp (VI 3/ =7@dr) + exp (—v2 Y =r0ar)]
Then it is easy to obtain that
A1) = 2ky, o (1) = —2k, and Y1) = 2k3, 4 (1) = —2k, -

Lemma 5.4. The differential equation

k

F

-y"(x) = Asgn(x — 1)y(x),x > 1 (5.10)

is in the limit point case at 4 . Moreover, the function
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P 1 21
mild) = —————arc
y—A4 Ty —4
V=1

is the Weyl-Titchmarsh m-coefficient for (5.10).

tanl' A€ TR, (5.11)

By Lemma 5.4, we obviously obtain

{'AEC\R (5.12)

P 1 21
M |__4l,| = — — ———=arctan
+ \-._-'1 ﬂ-'n.-'—_..l

W=
and

M_(4)= —é+géarctani'}L EC\R - (5.13)

VA TTyd

VA
Theorem 5.5. Let A, be the operator of the form (5.7). Then
(i) The spectrum of A3 isreal, [o(Al.})c R ;
(if) A5 is not similar to a self-adjoint operator.
Proof. (i) It is similar to the proof of Theorem 5.3 (i).
To prove (ii) we use Theorem 4.3.
Simple calculation show that
1

1
ImM, (is)=—+ '

vac

i ==, Wer+1  arctany2s)
(my2e)l In — |
\e+\2e+1 e=1

1

1
ReM, (i) = —— - —— —
/ P— Vet +1 arctan+/ 2g |
(myv2e)| In - |

s+42g+1 e—1

and
A= =2k M, (A= 2k, M_(A) + 2k, M_GAM (A + 2k
So

ImM, (ig) _ ImM, (is)
A —2k M, (is) — 2k, M_(is) + 2k M_(i5)M, (is) + 2k,

-1 -1
= [exp (xﬁ l J —T{T}dr) + exp (— Vis l J —T{T}dT)] flis)
=0 =0
and we can easily get that f(ig) = 0(1) @ g — +po - Fromthis, it follows that

ImM, (ig)

-1 .
A [EXP("TE l x’—T(T}dT)+exP(—xﬁ | ,,J'der)]am Soqop T TR
-0 Jo

Thus A5 is not similar to a self-adjoint operator.
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