
Qiuxia Yang et al./ Elixir Appl. Math. 75 (2014) 27918-27929 
 

27918 

Introduction 

In this paper, we investigate the singular Sturm-Liouville expression 

                         ),                          (1.1) 

where the weight function  changes its sign. Differential operators with indefinite weights have intensely been investigated in the 

recent years (see [1, 2, 3, 12, 5, 15, 18, 19]). We assume that (1.1) is in the limit point case at both  and  and that the 

functions  are real, a.e.. Then the maximal operator  associated to (1.1) is self-adjoint in the Krein space , 

where the indefinite inner product is defined by 

                   , .                  (1.2) 

  The operator  is a fundamental symmetry in the Krein space . Let us define the operator 

. Then  is a self-adjoint Sturm-Liouville operator in the Hilbert space . Two closed operators  and  in a 

Hilbert space  are called similar if there exist a bounded operator  with the bounded inverse  in  such that 

  and = . 

In general, the operator (1.1) considered on  has continuous spectrum. In the case, one considers the property of similarity 

either to a normal or to a self-adjoint operator. Using the Krein-Langer technique of definitizable operators in Krein spaces, urgus 

and Langer [6] have obtained the first result in the direction. In particular, their result yields that the J-self adjoint operator with 

=  is similar to a selfadjoint if  is a uniformly positive operator. Next urgus and Najman [7] showed that the operator 

 is similar to a self-adjoint one. In the paper [8], similarity of  type operators to normal and self-

adjoint operators were described. In [4, 15, 13] several necessary similarity conditions in terms of Weyl functions were obtained. 

Based on the concept of boundary triplet and the resolvent similarity criterion, references [16] and [20] investigate the main spectral 

properties of quasi-self-adjoint extensions of corresponding operator. 

Here we are interested in more general indefinite differential expression of the form (1.1) and the main goal is the similarity of the 

operator  to a self-adjoint operator. In Section 2, we summarize necessary definitions and statements from the spectral theory of 
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Sturm-Liouville operator . In Section 3, we give boundary triplets for Sturm-Liouville operator. Finally, in Section 4, we show 

that a necessary condition for the operator to be similar to a self-adjoint operator in Hilbert space.  

Throughout the article we use the following notations: Let  be a linear operator in a Hilbert space . In what follows 

dom , ker( ), ran( ) are the domain, kernel, range of , respectively. We denote by ( ), ) and  the resolvent 

set, the spectrum and the point spectrum. , ( ) is the resolvent of . We set :={ : 

Im >0}. 

Preliminaries 

Indefinite Sturm-Liouville Operators in  

Consider the differential expression 

                          ),                              (2.1) 

where , ,  are assumed to be real valued functions such that >0 and  for a.e., . Here we 

assume that the following condition holds: 

There exist , , such that the restrictions  and  satisfy  for a.e., 

 and  for a.e., . 

By  we denote the Krein space of all equivalence of measurable functions  defined on  for which 

. The indefinite and definite inner products on are 

                and .                   (2.2) 

Evidently, the operator  

                      ,                             (2.3) 

is the fundamental symmetry connecting the inner products in (2.2). By the space  we denote the Hilbert space 

, . 

 Let us assume that the Sturm-Liouville differential expression 

                         )                             (2.4) 

is in the limit point case at both singular endpoints  and . Then it is well known that the operator  defined 

on the usual maximal domain 

      (2.5) 

is self-adjoint in the Hilbert space . In the following we set 

), . 

The operator  is self-adjoint in the Krein space . Under some additional assumptions a first result on the spectral 

structure of  was proved in [12] with the help of a general perturbation result from [7]. Under semi-bounded from below of the 

operator , reference [18] gave the conclusion that the local definitizability in some open neighborhood of of the operator 

.  

Similarity to [12], we shall interpret the operator  as a finite rank perturbation in resolvent sense of the direct sum of three 

differential operators ,  and  defined in the sequel. We identify function with , where 

,  and  respectively. Similarly we denote the restrictions of ,  and 
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 onto the intervals  and  by , ,  and , , respectively. Moreover we denote the restriction of , 

 and  onto the interval  by ,  and . Besides the differential expression  in (2.4) we set 

), 

) 

and 

) 

respectively, and operators associated to them. Note that  and  are in the limit point case at  and  and regular at 

the endpoints  and , respectively, whereas  is regular at both endpoints  and . By  (  and 

) we denote the set in (2.5) if ,  and  are replaced by ,  and  (resp. , ,  and , 

, ). Therefore the operators 

), 

) 

and 

) 

defined on 

, 

 

and 

, 

with 

}, 

} 

and 

} 

are closed symmetric operators in the anti-Hilbert space , Hilbert space  and Krein space 

, respectively. The adjoint operators ,  and  are the usual maximal operators defined on , 

 and , respectively. 

Let  and let the operator  be defined on , 

                                                   (2.6) 

with respect to the Krein space . Then  is a closed symmetric operator in the 

Krein space  with finite defect . Moreover, we have 

, , 

where 

 

, , , .   (2.7) 

Theorem 2.1. If the operator  is semibounded from below, then . (see Th. 4.5 in [18]) 

If the operator  is nonnegative, , Theorem 2.1 together with spectral properties of self-adjojnt operators in Krein spaces 

implies the following theorem: 
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Theorem 2.2. If the operator  is nonnegative, then the spectrum of  is real, . 

Weyl-Titchmarsh m-coefficients 

Let  and  denote the linearly independent solutions of equation (2.4) satisfying the following initial conditions at  

,   

Since equation (2.4) is limit point at , the Weyl-Titchmarsh theorem (see [9]) states that there exists a unique holomorphic 

function , such that the function  belongs to . Similarly, the limit 

point case at yields the fact that there exists a unique holomorphic function , such that 

belongs to . 

The functions  and  are called the Weyl-Titchmarsh m-coefficients for (2.4) on  and on , respectively. 

We put 

,                                  (2.8) 

, .      (2.9) 

By the definition of , the functions and  belong to  and  for all 

, respectively. The function  ( ) is said to be the Weyl-Titchmarsh m-coefficient for equation (2.1) on 

 (on ). 

Definition 2.1. The class (R) consists of all holomorphic functions  such that , and 

 for  (see [10]). 

It is well known that 

        ,          (2.10) 

for all  (see [9]). These formulae imply that the functions  and  (as well as  and ) belong to the class 

(R). Moreover (see [11,12]) the functions  and  admit the following integral representation 

, .                                (2.11) 

Here  are nondecreasing functions on  with the following properties: 

, 

, . 

The functions  and  are uniquely determined by the Stieltjes inversion formulae 

, . 

The functions  and  are called spectral functions of the operators 

   (2.12) 

and 

,        (2.13) 

respectively. 

Boundary Triplets and Abstract Weyl Functions 

Let ( , ) be a Krein space and let  be a separable Hilbert space. Let  be a closed symmetric operator in  with 

equal and finite deficiency indices . 

  Recall the concepts of boundary triplets and abstract Weyl functions (see [13, 14]). 
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Definition 2.2. A triplet  consisting of an auxiliary Hilbert space  and linear mappings , 

, is called a boundary triplet for  if the following two conditions are satisfied: 

 (i) , ; 

 (ii) the linear mapping is surjective. 

 The mappings  and  naturally induce two extensions  and  of  given by 

, , . 

It turns out that  and  are self-adjoint operators in , , . 

 The  of the operator  corresponding to the boundary triplet is the operator function  

defined by , where . The function  is well-defined and holomorphic on 

. 

Definition 2.3. Let be a boundary triplet for the operator . The operator valued function  

defined by 

,  

is called the Weyl function of  corresponding to the boundary triplet . 

 Let . Considering the followingextension  of , , 

      , 

.    (2.14) 

Notice that each proper extension  of  has the form (2.14), i.e., if , then there exist  such that 

. 

Theorem 2.3. ([22]) Suppose be a boundary triplet for the operator ,  is the corresponding Weyl function, 

and , where  is defined by (2.14). Assume also that . Then: 

 (i)  if and only if . 

 (ii) For each  the following equality holds true 

.                     (2.15) 

Boundary triplets for Sturm-Liouville operator  

1. Let  and  be the operators defined in Subsection 2.1. Since equation (1.1) is in the limit point case at  

and , then the deficiency indices of the symmetric operator are (1,1) and for all ,  we have 

,           (3.1) 

.           (3.2) 

Hence the triplets  and , where 

, , , 

, , , 

are the boundary triplets for  and , respectively. By the definition of the functions  and  (see 

Subsection 2.2), we obtain 

, .            (3.3) 

Denote by  and  the corresponding to the boundary triplets  and . By (2.9) and (3.3), we get 
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, .             (3.4) 

Further, the self-adjoint extension  of  coincides with the operator . The Weyl function  

of  corresponding to the boundary triplets  is defined by 

, . 

Combining (3.4) with (2.8) and (2.9), one obtains , . In the sequel we will write 

 instead of .  

2. Consider the regular Strum-Liouville operator ,  is a densely defined closed symmetric operator in the Krein space 

 and has defect two, its adjoint  is given by 

), . 

For , we have 

 

Hence  is a boundary triplet for , where 

, . 

Let  be the fundamental solutions of , , satisfying the initial 

conditions 

,  and , . 

Since 

.                   (3.5) 

Denote by  the  corresponding to the boundary triplets . By (3.5), we get 

. 

Furthermore 

 

has the constant value 1, we find that the Weyl function (see [12]) is given by 

, . 

3. The operator  is a closed densely defined symmetric operator of defect 4 in the Krein space 

 and it is straightforward to check that , where 

, ,                             (3.6) 

 is a boundary triple for the adjoint operator . 

 Further, we put 

,                            (3.7) 

where 
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. 

Therefore, the operator function  defined by 

 

is the  corresponding to the boundary triplet . Moreover, the operator Weyl function (see [13]) has 

the following form 

, . 

Lemma 3.1. Let  be the operator associated with equation (2.1) and let the operator  be defined by (3.7). Then 

, where 

. 

Proof. Let us rewrite (2.6) as follows , where 

, . 

By Theorem 2.3,  if and only if . Since 

. 

We see that  exactly when . 

Similarity of the operator  

Theorem 4.1. Let  be the operator associated with equation (2.1). Then 

 (i) If , then  if and only if . 

(ii) If the operator  is semibounded from below and the operator  is semibounded from above, then .  

Proof. Statement (i) obviously follows from Lemma 3.1 and the fact that . 

 Let us prove (ii) The operator  and  are semibounded, i.e.,  and , . Therefore, there exists 

 such that  and . On the other hand, the operators  are unbounded. 

These facts imply . 

 Since , one immediately gets . By the stieltjes inversion formula (2.10) we 

conclude that on . 

Lemma 4.2. Let  be a closed operator in a Hilbert space H and . If  is similar to a self-adjoint operator, then 

there exists a positive constant  such that 

                 for all }.                      (4.1) 

Theorem 4.3. If  is similar to a self-adjoint operator, then the functions 

                             and                                 (4.2) 

are well defined and bounded on .  

Proof. Suppose that  is similar to a self-adjoint operator. Then . By Lemma 3.1, 
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 for all . Hence the functions (4.2) are well defined. 

 Further, by Lemma 4.2, there exists a positive constant  such that 

             for all }.                    (4.3) 

Since the operator  is self-adjoint, then 

             for all }.                   (4.4) 

Combining this inequality with (4.3), we get 

        , .              (4.5) 

Substituting  in (3.8), we obtain from (4.5) the following inequality 

 

and 

, , 

where  

, . 

Therefore, using (2.9), one immediately gets 

, 

and 

. 

Thus, for , we have 

 

and 

. 

Here , then 

, . 

This concludes the proof of Theorem 4.3. 

Corollary 4.4. Let , if  is similar to a self-adjoint operator in Hilbert space, then the functions 

 and  

are well defined and bounded on . 

Some examples 

The main object of this subsection is to present several explicit examples of indefinite Sturm-Liou ville operator of the form (2.1) 

with the singular critical point. 

1. Consider the following operator  
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, ,                      (5.1) 

where  

, 

Lemma 5.1. The differential equation 

                      ,                           (5.2) 

is in the limit point case at . Moreover, the function 

                    ,                     (5.3) 

is the Weyl-Titchmarsh m-coefficient for (5.2). 

 By Lemma 5.1, we obviously obtain 

,                   (5.4) 

and 

, .                   (5.5) 

Lemma 5.2. If  is similar to a self-adjoint operator in Hilbert space, then 

 

Proof.  and . So , ,   and 

. By Theorem 4.3, if  is similar to a self-adjoint operator in Hilbert space then the limit functions 

 and             (5.6) 

  Since the functions and  are even, one can easily show that . It follows from  

that . Moreover 

, . 

Combining the inequality (5.6) and Theorem 4.3, we complete the proof. 

Theorem 5.3. Let  be the operator of the form (5.1). Then 

 (i) The spectrum of  is real, . 

 (ii)  is not similar to a self-adjoint operator. 

Proof. (i) By Lemma 5.1, the differential expression (5.1) is in the limit point case at both  and . Hence the operator 

 is self-adjoint in Krein space . Evidently, the operator L is nonnegative. It follows from Theorem 2.2 that the spectrum of 

 is real, . 

  To prove (ii) we use Lemma 5.2. 

  Simple calculation show that 
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, 

 

and 

 

 

Thus  is not similar to a self-adjoint operator. 

2. Consider the following operator 

, ,                     (5.7) 

where 

 

 Using the method of WKB (see[21]), we can get uniformly valid asymptotic solutions of the equation (5.7), i.e., 

           (5.8) 

            (5.9) 

satisfying the initial conditions: 

,  and , , 

here 

, 

. 

Then it is easy to obtain that 

,  and , . 

Lemma 5.4. The differential equation  

                        (5.10) 

is in the limit point case at . Moreover, the function 
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    ,                 (5.11) 

is the Weyl-Titchmarsh m-coefficient for (5.10). 

By Lemma 5.4, we obviously obtain 

,                     (5.12) 

and 

, .                    (5.13) 

Theorem 5.5. Let  be the operator of the form (5.7). Then  

 (i) The spectrum of  is real, ; 

 (ii)  is not similar to a self-adjoint operator. 

Proof. (i) It is similar to the proof of Theorem 5.3 (i). 

 To prove (ii) we use Theorem 4.3. 

 Simple calculation show that 

, 

 

and 

. 

So 

 

, 

and we can easily get that  as . From this, it follows that 

, . 

Thus  is not similar to a self-adjoint operator. 
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