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Introduction 

Diverse real world problems in nonlinear science associated with mechanical, structural, aeronautical, ocean, electrical, and 

control systems can be modeled and control by nonlinear evolution equations (NLEEs). Therefore, the studies of nonlinear differential 

equations have been a vigorous field of research for the past few decades. One of the central issues for these models is to obtain their 

traveling wave solutions. The traveling wave solutions of NLEEs play a momentous and very important role to comprehend the 

internal mechanism of nonlinear phenomena. Therefore, the inquisitiveness of searching traveling wave solutions of NLEEs is 

increasing day after day and has been a hot issue to the researchers. It is significant to observe that, all sorts of NLEEs cannot be 

solved by a unique method. Due to this reason, a lot of techniques have been successfully developed by different group of 

mathematicians, scientists, and engineers. For instance, the Backlund transformation [1], the Jacobi elliptic function method [2], the 

tanh-function method [3, 4], the auxiliary equation method [5], the trial function method [6], the variational iteration method [7-9], the 

homogenous balance method [10, 11], the  Hirota’s bilinear transformation method [12],  the homotopy perturbation method [13-15], 

the inverse scattering method [16], the Miura transformation [17] , the  Exp-function method [18-20], the F-expansion method [21], 

the sine-cosine method [22, 23], the truncated Painleve expansion method [24], the generalized Riccati equation [25], the asymptotic 

method [26], the non-perturbative method [27], the )/( GG -expansion method [28-34], the extended F-expansion Method [35], the 

Weierstrass elliptic function method [36], etc. 

The ))(exp(  -expansion method is promising for investigating solitary wave solutions of nonlinear differential equations [37]. 

In this article, we implement the method to the KdV equation and the (2+1) dimensional Zakharov-Kuznetsov (ZK) equations. The 

main idea of this method is the traveling wave solutions of a nonlinear evolution equation can be presented by a polynomial 

in ))(exp(  , where )(  satisfies the ordinary differential equation (ODE): 

    ,)(exp)(exp)(        (1) 

The degree of the polynomial can be determined by considering the homogeneous balance between the highest order derivatives 

and nonlinear terms and the coefficients of the polynomial can be obtained by solving a set of simultaneous algebraic equations. 
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The KdV equation and the (2+1)-dimensional Zakharov-Kuznetsov (ZK) equations have been studied by using different methods. 

Such as, Zhang [38] employed Exp-function method to investigate KdV equation for constructing exact solutions, Khalfallah [39] 

implemented homogeneous balance method for obtaining exact travelling wave solutions of the (2+1) dimensional Zakharov-

Kuznetsov (ZK) equation. 

The aim of this article is to find exact solutions of the KdV equation and the (2+1) dimensional Zakharov-Kuznetsov (ZK) 

equations using through the   exp  expansion method. 

This article is arranged as follows. In section 2, we give the basic idea of this method. In section 3, we apply this method to solve 

the KdV equation and (2+1) dimensional Zakharov-Kuznetsov (ZK) equations. Finally in section 4, we have drawn our conclusions.  

Basic Idea of the  )(exp  -expansion Method 

Suppose the nonlinear partial differential equation for ),( txu  is in the form 

  ,0,.....,,,,, xxxtttxt uuuuuuP                               (2) 

were P  is the polynomial in  txu ,  and its various partial derivatives, in which the highest order derivatives and nonlinear terms 

are involved. In order to determine  txu ,  explicitly by the   exp  expansion method, we have to carry out the following steps: 

Step1:  We introduce a traveling wave variable   combining the real variable x  and t  as follows: 

    Vtxtxuu      ,, ,                               (3)     

where V is the speed of the travelling wave. Using the traveling wave variable (3), equation (2) changes to an ODE for 

 uu  : 

  0.....,,,,  uuuuQ ,                    (4) 

where Q  is a function of  u  and its derivatives.  

Step 2: Suppose the solution of (4) can be expressed by a polynomial in  )(exp  : 

      




1

1 ))(exp())(exp(
n

n

n

nu      (5) 

where ,, 1nn   and V are constants to be determined later such that 0n
 and    satisfies (1). The unwritten part in 

(5) is also a polynomial in  )(exp  .  

Step 3: The positive integer n can be determined by considering the homogeneous balance between the highest order linear terms 

and nonlinear terms of the highest order appearing in equation (4). Our solutions of (1) depend on the parameters involved. 

When ,0,042    
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
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
 1

2
2

2

4
tanh4

2

1
ln c

.   (6)     

When ,0,042    

   
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
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


 1

2
2

2

4
tan4

2

1
ln c







.      (7) 

When ,042    ,0  and ,0  

 
  
  













1

2

1 22
ln

c

c






.                   (8) 
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When ,0,0    

 
   











1exp
ln

1c




.                   (9) 

When ,0,0    

   1ln c  .                   (10)   

Step 4: Substituting (5) in (4) and using (1), the left hand side of (4) is converted into a polynomial in  )(exp  . Equating each 

coefficient of this polynomial to zero, we obtain a set of nonlinear algebraic equations for  ,,, Vn   and . 

Step 5: Solving the algebraic equations obtained in Step 4 with the aid of a computer algebra system, we obtain the values of the 

constants  ,,, Vn   and  . The solutions of (1) together with the values of Vn ,, ; constitute traveling wave solutions for the 

nonlinear evolution equation (2). 

Applications of the Method 

In this section, we will put forth the ))(exp(  -expansion method to construct traveling wave solutions of the KdV equation 

and the (2+1) dimensional Zakharov-Kuznetsov (ZK) equations.  

The KdV Equation 

Let us consider the KdV equation 

0  xxxxt uuuu  .                             (11) 

Using the traveling wave variable tVx  , (11) is converted into the following ODE for  uu  : 

0  uuuuV  .                          (12)  

Integrating (12) with respect to   once, we obtain 

0  
2

 
2

 u
u

VuC 
,                             (13) 

where the primes denote the derivatives with respect to   and C  is an integration constant to be determined. Considering the 

homogeneous balance between the highest-order derivative u  and the nonlinear term 2u  , we obtain 2n . Therefore, the solution 

of (13) is given by 

  ,))(exp())(exp( 01
2

2  u
     (14)       

where 02  . 
0  and 

1
 are constants to be determined. 

By using (1), from  (14), we obtain 

    

  

   .2))(exp( 62

))(exp( 384

))(exp( 102))(exp(6

1

2

2

2

121

2

12

2

2

3

21

4

2











u
   (15)    

   

   .))((2))(exp( 2       

))(exp(2))(exp(

2
001

22
120

3
21

42
2

2







u
  (16) 

Substituting (14)-(16) into (13) and collecting all terms with the same power of ))(exp(   together, the left hand is 

transformed to a polynomial in ))(exp(  . Equating the coefficients of this polynomial to zero, we obtain an over-determined set 

of algebraic equations for ,1
 ,0

 ,  ,  C  and V  as follows: 
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06
2

1
2

2
2  

, 

0102 2121   , 

0
2

1
384 20
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2
2   V

, 

,06 2 21
2

1101   V  

  
.0

2

1
2 2

001
2

2   VC
 

Solving the set of simultaneous algebraic equations by using the symbolic computation systems, such as Maple 13, we obtain the 

following solutions: 

,8
2

1
1224 0

2
0

2
0

2222  C
 

0 0 ,  
 

1 12 ,    2 12   
    (17) 

where   and   are arbitrary constants. 

By using (17) into 14), we obtain 

, ))(exp(12 ))(exp(12 0

2  u                   (18) 

where tx  ) 8( 2

0   .  

Now making use of solutions (6)-(10) into (18), we obtain the following traveling wave solutions of the KdV equation (11): 

Type 1: When 042    and 0 , we obtain hyperbolic function solution 
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where tx  ) 8( 2
0   ,

1 c  is an arbitrary constant. 

Type 2: When 042    and 0 , we obtain trigonometric function solution 
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Type 3: When 042    but ,0,0    we obtain rational function solution 

   

  

 
   0

1

1
3

2
1

2
1

4

3
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
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
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c

c

c
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u

. 

Type 4: When 0  and 0 , we  obtain exponential function solution 

 

  
.

)(exp1

)(exp 12
  02

1
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4 
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
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Type 5: When 0  and 0 , we obtain rational function solution 

  0

2

15  12  


cu , 

where tx ) 8( 2

0   ,
1 c  is an arbitrary constant. 

 (2+1) dimensional Zakharov-Kuznetsov (ZK) equation 

Now we would like to construct the traveling wave solutions for the (2+1) dimensional Zakharov-Kuznetsov (ZK) equation by 

the proposed method. Let us consider the (2+1) dimensional Zakharov-Kuznetsov (ZK) equation 

0)()( 2  xyyxxxt uKubuau .                             (19) 

Utilizing the wave transformation tVyx  , (19) is converted into the following ODE for )(uu  : 

0 )()( 2  uKbuauV .                                         (20)  

Equation (20) is integrable, therefore integrating once with respect to , we obtain 

  0)( 2  uKbuauVC ,                            (21) 

where prime denotes derivatives with respect to   and C  is an integration constant. 

Balancing the highest order linear term u  and the nonlinear term of highest order 2u  in (21), we obtain 2n . Therefore, the 

solution of (21) is given by 

,))(exp()))(exp(( 01

2

2  u                                       (22)       

where 02  . 
0  and 

1
 are constants to be determined. 

Using (1) from (22), we obtain 

    

  

   .2))(exp( 62

))(exp( 384

))(exp( 102))(exp(6
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3
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4

2











u
                          (23)    

   

   .))((2))(exp( 2       

))(exp(2))(exp(

2
001

22
120

3
21
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2

2







u
               (24)  

Substituting (22)-(24) into (21) and collecting all terms with the same power of ))(exp(   together, the left hand is converted 

into a polynomial in ))(exp(  . Equating each coefficient of this polynomial to zero, we obtain an over-determined set algebraic 

equation for ,1
 ,0

 C  and V  as follows:  

0 66 2

2

22   baK . 01022102 212121   bbaKK .
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
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2
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





bK

KbbVKa . 

Solving the resulting algebraic system, we get following solutions: 

  

)12688          

6122412(
1

22222

000

0

222

0

222222

KbKaKaab

baaKbKKbb
a

C
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KaKbbV 2

0

2 288   ,
00   , 

 
a

Kb 





6
1

,  
a

Kb 


6
2

,                             (25) 

where   and   are arbitrary constants. 

Substituting (25) into (22), we obtain 

   
,))(exp(

6
)))(exp((

6
0

2 


 






a
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a
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u

               (26) 

where tKaKbbx  )288( 2

0

2    

By using (6)-(10), from (26) we obtain the following traveling wave solutions for the (2+1) dimensional Zakharov-Kuznetsov 

(ZK) equation.  

Category 1: When ,042   and 0 , we obtain the following solution 
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where tKaKbbx  )288( 2

0

2    ,
1c is an arbitrary constant.  

Category 2: When ,042   and 0 , we obtain the following solution 
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Category 3: When 042   , 0 , and 0 , the following solution is obtained 
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Category 4: When 0  but 0 , the following solution is obtained 
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Category 5: When 0  and 0 , the following solution is obtained 
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where tKaKbbx  )288( 2

0

2    ,
1c is an arbitrary constant.  

Conclusions 

In this article, we have successfully obtained exact traveling wave solutions for the Korteweg-de Vries equation and the (2+1) 

dimensional Zakharov-Kuznetsov (ZK) equation by means of the  )(exp  -expansion method. The obtained solutions are 
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presented through the hyperbolic, trigonometric, exponential, and rational functions. From this study, we observe that the performance 

of this method is useful, convincing, and reliable. The method is constructive, direct, and simple thanks to a computer algebra system. 

It is also adequate to find solitary wave solutions for NLEEs. The solutions we have achieved here exhibit the efficacy of the 

 )(exp  -expansion method. The method seems to be straightforward and applicable to many other nonlinear evolution equations. 
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