27668

Available online at www.elixirpublishers.com (Elixir International Journal)

Mechanical Engineering

Elixir Mech. Engg. 75 (2014) 27668-27673

Reliability based design optimization of hollow shaft using integrated probabilistic response surface methodology

M. Naga Phani Sastry and K. Devaki Devi

Department of Mechanical Engineering, G Pulla Reddy Engineering College, Kurnool, Andhra Pradesh, India.

ARTICLE INFO

Article history: Received: 19 July 2014; Received in revised form: 20 September 2014; Accepted: 13 October 2014;

Keywords

Reliability Based Design, Hollow shaft, Mathematical models, Response Surface Methodology, Optimization, Design of Experiments.

ABSTRACT

Classical reliability based design procedures require tedious calculations and time consuming. The goal of reliability of mechanical component adequately performs its intended function when operating under specified environmental conditions. Mechanical component design by safety factors using nominal values without considering uncertainties may lead to designs that are unsafe, or too conservative and thus not efficient. Design of a hollow shaft is one of complex and time consuming design procedure. This paper presents development of mathematical models to predict the outer diameter of a typical hollow shaft. This paper presents unique method to investigate engineering problem, its analysis, mathematical modeling and optimization with the help of RSM-response surface methodology and design of experiments (DOE). Response surface methodology, which is a statistical approach of design of experiments, is being applied with combined probabilistic design to optimize the design responses in the case of simultaneous variations of its design parameters. The technique is proved to be efficient and general purpose modeling a variety of components.

© 2014 Elixir All rights reserved.

Introduction

A shaft is a rotating member, usually of circular cross section used to transmit power or motion. Shafts form the important elements of machines. Shafts support rotating parts like gears and pulleys and in turn, they are themselves supported by bearing resting in the rigid machine housings. Shafts are subjected to torque due to power transmission and bending moment due to reactions on the members that are supported by them. Shafts are made to have circular cross section and could be either solid or hollow. A hollow shaft has greater strength and stiffness than solid shaft of equal weight.

The design of a shaft may require the interrelated considerations of a number of factors, such as material and heat treatment, strength for power and loading requirements, stiffness, bearing performance, gear operation, critical speeds, weight and space limitations, and stress considerations.

Failure of a shaft usually necessitates a costly and time consuming major overhaul. A stress analysis at a specific point on a shaft can be made using only the shaft geometry in the vicinity of that point. Shafts are generally made of ductile materials and the maximum shear stress theory which gives results on the safe side is simple to apply and in consequence, is widely used to determine the shaft diameter.

In this section of the present work, a hollow circular shaft subjected to combined bending and torsion is designed using the probabilistic design procedure on the basis of strength.

Design procedures Deterministic design

When a hollow shaft is subjected to combined bending (M) and torsion (T), according to maximum stress theory, maximum shear stress induced in the shaft is

$$\tau_{\max} = \frac{16}{\pi d_0^{3} (1 = k^4)} \sqrt{M^2 + T^2}$$
 --- (1)
and

Introducing factor of safety,

$$d_{0} = \left(\frac{16n}{\pi d_{0}^{3}(1=k^{4})\tau_{\max}S}\sqrt{M^{2}+T^{2}}\right)^{1/3}$$
(3)

Equation (3) is used to determine the shaft diameter. **Probabilistic design**

Probability of failure of a shaft is defined as the probability that induced stress in the shaft exceeds the strength of the shaft material. Hence reliability is a function of material strength and the external load acting on the shaft. The bending moment (M), torsion (T), induced stress and strength of the material are assumed as random variables. All the random variables are assumed to follow normal distribution. The design parameter is the outside diameter of the hollow shaft which is also considered to be probabilistic in nature. Ratio of inside to outside diameter (k) is assumed to be known.

 $\tau = K \frac{T_e}{d_0^{-3}}$ Induced shear stress $K = \frac{16}{\pi (1 - k^4)}$ Where

Equivalent torque, $T_c = (M^2 + T^2)^{0.5}$

Approximate mean, standard deviation and coefficient of variation of induced stress can be obtained from the relationships

$$f \approx f(\bar{x}_1, \bar{x}_2, \dots, \bar{x}_n)$$

Tele: <u>E-mail addresses: devi.navya9@gmail.com</u> © 2014 Elixir All rights reserved And

$$\sigma_f \approx \left[\sum_{x=1}^n (\partial f / \partial x_i)^2 (\sigma_{xi})^2\right]^{1/2}$$

Which holds when the dispersion of each random variable, $C = \sigma_x / c_z$

$$\begin{aligned} \bar{\tau} &= K \frac{\bar{T}_{e}}{\bar{d}_{0}^{3}} & -----(5) \\ \sigma_{t} &= \frac{K}{\bar{d}_{0}^{3}} \left[\sigma_{te}^{2} + \left(\frac{3\bar{T}_{e}\sigma_{d0}}{d_{0}} \right)^{2} \right]^{0.5} & ----(6) \\ C_{\tau}^{2} &= C_{te}^{2} + 9C_{d0}^{2} & -----(7) \end{aligned}$$

Mean and standard deviation of T_e are

$$\overline{T}_{e} = \left[\left(\overline{M}^{2} + \overline{T}^{2} \right)^{2} + 2 \left(\overline{M}^{2} \sigma_{T}^{2} + \overline{T}^{2} \sigma_{M}^{2} + \sigma_{M}^{2} \sigma_{T}^{2} \right)^{125} - \dots (8)
\sigma_{Te} = \left[\left(\overline{M}^{2} + \sigma_{M}^{2} + \overline{T}^{2} + \sigma_{T}^{2} \right) - \overline{T}_{e}^{2} \right]^{0.5} - \dots (9)$$

The standard normal variate (Z) is term of the expected values and the standard deviations of the random variables 'S' and ' τ ' is

$$Z = -\frac{S - \bar{\tau}}{\left(\sigma_s^2 + \sigma_\tau^2\right)^{0.5}} -----(10)$$

$$\bar{d}_0^6 + \frac{2K\bar{T}_e}{\bar{S}(Z^2C_s^2 - 1)}\bar{d}_0^3 + \frac{(K\bar{T}_e)^2(Z^2C_r^2 - 1)}{\bar{S}^2(Z^2C_s^2 - 1)} = 0 -----(11)$$

The quadratic equation in d_0 is solved for the mean outside diameter using a computer program developed in 'C'.

Hypothetical case:

The following numerical data is used for the computation. Mean values of bending moment, torsion and shear strength are taken as 800000 N-mm, 200000 N-mm and 170 N/mm² respectively. Coefficient of variation of M, T, S and d₀ is taken as 0.01 the value of $k=d_i/d_0 = 0.75$.

Results

a. By changing reliability values from 0.9 to 0.999999 and keeping all the other variables constant, the outside diameter (d_o) is obtained in the table (1) and are compared with the results

obtained from deterministic design. R Vs d_o plot is shown in figure 1.

Table 1: variation of \overline{d}_{o} with R										
R	0.9	0.9)9	0.999	0.9999	0.99999	0.999999			
\overline{d}_{o}	33.518	8 33	.8886	34.1554	34.3729	34.5603	34.7262			
$C_{d0} =$	$= \mathbf{C}_{\mathbf{M}} = \mathbf{C}$	$C_{\rm T} = C_{\rm c}$	s = 0.0)1						
				R vs dmear	ı					
348 34.6 34.4 34.4 33.8 33.6 33.4 33.6 33.4 33.4 33.6 33.4 33.4			0.999 R	0.9999						

Figure 1: reliability Vs outer diameter

b. By changing the value of C_M from 0.01 to 0.1 and keeping all the other variables constant, the outside diameter (d_o) is obtained

in the table (2) and are compared with the results obtained from deterministic design. $C_M Vs \overline{d}_o$ plot is shown in figure 2.

Figure 2: C_M Vs outer diameter

c. By changing the value of C_T from 0.01 to 0.1 and keeping all the other variables constant, the outside diameter (d_o) is obtained in the table (3) and are compared with the results obtained from

deterministic design. $C_T Vs d_o$ plot is shown in figure 3.

	Table 3: variation of a_o with C_T										
CT	0.01	0.03	0.05	0.07	0.09	0.1					
\overline{d}_{o}	34.3729	34.3748	34.3284	34.3839	34.3913	34.3956					

 $C_{d0} = C_M = C_S = 0.01, R = 0.99999.$

Figure 3: C_T Vs outer diameter

d. By changing the value of C_s from 0.01 to 0.1 and keeping all the other variables constant, the outside diameter (d_o) is obtained in the table (4) and are compared with the results obtained from

deterministic design. C_s Vs d_o plot is shown in figure 4.

Figure 4: C_S Vs outer diameter

e. By changing the value of C_{do} from 0.01 to 0.1 and keeping all the other variables constant, the outside diameter (d_0) is

obtained in the table (5) and are compared with the results obtained from deterministic design. C_{do} Vs \overline{d}_{o} plot is shown in figure 5.

Figure 5: C_{do} Vs outer diameter d_o obtained from deterministic design = 41.655mm. Constant parameters:

 \overline{M} =800000, N-mm, \overline{T} =200000 N-mm, \overline{S} =170 N/mm², k=0.75.

Reliability Based Response Surface Design Optimization

Response surface methodology is proved to be an efficient tool for obtaining optimum conditions for designing of mechanical components. The design parameters are considered to be random and no parameter, in practice, will be constant, while the other parameter is subjected to change. Therefore, simultaneous random variation in the design parameters is considered in the present research, which appreciably changes the design response.

The experiments are conducted for the design matrix obtained depending upon the number of factors and their levels. The design responses are extracted from the C programs. The experimental values are used to predict a model, which optimizes the design parameters within the predefined range. The model converges to single or more optimized outputs, based upon complexity of the problem.

The output data from the probabilistic design is utilized for getting the optimum response values (minimized value of face width), with maximized range of reliability. The input design parameters taken for designing the hollow shafts are Reliability(R), coefficient of variation of bending moment (C_M), Coefficient of variation of torsion (C_T), coefficient of variation of bending strength (C_S) and coefficient of variation of outer diameter(C_{do}), for which the outside diameter (d_o) is the design response. Central composite design is being selected for producing the design matrix, and is given in the table (7). The ranges of the design parameters are tabulated as

Table 6: Maximum and minimum ranges of design

parameters

Design parameter	Low	High
	level	level
Reliability R	0.9	0.999999
Coefficient of variation of bending moment	0.01	0.1
(C_{M})		
Coefficient of variation of torsion (C _T)	0.01	0.1
coefficient of variation of bending strength	0.01	0.1
(C_S)		
coefficient of variation of outer diameter(C _{do})	0.01	0.1

Run order	R	C _M	C _T	C _s		d ₀
1	0.9999	0.1	0.01	0.1	0.01	39.7571
2	0.9999	0.01	0.01	0.01	0.1	38.6969
3	0.94995	0.055	0.055	0.055	0.055	36.2441
4	0.9	0.1	0.1	0.1	0.1	37.6176
5	0.9	0.01	0.01	0.01	0.1	37.0609
0	0.9	0.01	0.1	0.01	0.01	33.3377
/	0.9999	0.01	0.1	0.1	0.1	44.425
8	0.9999	0.1	0.01	0.01	0.1	42.7000
9	0.9999	0.1	0.1	0.1	0.01	39.7033
10	0.9	0.01	0.1	0.055	0.1	26.255
12	0.94993	0.055	0.1	0.055	0.055	30.233
12	0.9999	0.1	0.1	0.1	0.1	44.755
13	0.9999	0.055	0.055	0.055	0.055	39.692
14	0.9	0.01	0.1	0.01	0.1	37.0649
15	0.94995	0.055	0.055	0.1	0.055	37.901
10	0.9999	0.1	0.01	0.1	0.1	44.748
1/	0.9999	0.1	0.1	0.01	0.1	42.771
18	0.94995	0.055	0.052	0.055	0.055	36.243
19	0.9999	0.01	0.1	0.1	0.01	38.705
20	0.94995	0.055	0.055	0.055	0.055	36.2441
21	0.831148209	0.055	0.055	0.055	0.055	35.116
22	0.94995	0.055	0.055	0.055	0.1	40.553
23	0.9999	0.1	0.1	0.01	0.01	36./11
24	0.9	0.01	0.01	0.1	0.01	34.7757
25	0.94995	0.052	0.055	0.055	0.055	30.2317
20	0.9	0.1	0.01	0.01	0.1	37.2330
27	0.9	0.1	0.01	0.01	0.01	34.489
28	0.9	0.1	0.01	0.1	0.1	24 2972
29	0.9999	0.01	0.1	0.01	0.01	24.3073
21	0.9	0.01	0.1	0.052	0.01	26 2202
22	0.94995	0.055	0.055	0.052	0.055	27.0121
22	0.94993	0.01	0.035	0.055	0.055	20,6060
24	0.9999	0.01	0.01	0.1	0.01	39.0909
25	0.9999	0.01	0.1	0.01	0.1	42.410
26	0.94995	0.055	0.055	0.055	0.055	26 2441
27	0.94993	0.033	0.033	0.055	0.055	27.4511
29	0.9	0.01	0.01	0.1	0.1	26 7044
20	0.9999	0.055	0.01	0.01	0.01	26.2441
40	0.94993	0.055	0.033	0.055	0.033	25 2622
40	0.9	0.01	0.01	0.1	0.01	33.2023
41	0.9	0.01	0.01	0.01	0.01	44.4204
42	0.9999	0.01	0.01	0.1	0.1	36 1170
43	0.94993	0.035	0.035	0.035	0.032	27 2275
44 45	0.9	0.1	0.1	0.01	0.1	36.2441
46	0.9	0.1	0.01	0.1	0.01	35.2579
47	0.9	0.1	0.1	0.01	0.01	34.4941
48	0.9999	0.01	0.01	0.01	0.01	34.3648
49	0.94995	0.055	0.055	0.055	0.055	36.24411
50	0.94995	0.055	0.055	0.055	0.055	36.24411
<u> </u>						

Table 7: Design matrix

Analysis of Variance (ANOVA)

ANOVA is a collection of statistical models, and their associated procedures, in which observed variance in a particular variable is partitioned into components due to different sources of variation. ANOVA provides a statistical test whether or not the means of several groups or all are equal. Ftest and p-test are conducted to test the validity and significance of the model developed through regression. Table 8 shows the ANOVA conducted on model developed for hallow shaft.

	Table 8: ANUVA table									
	Sum of		Mean	F	p-value					
Source	Squares	df	Square	Value	Prob > F					
Model	388.01	20	19.4008	12.1327	< 0.0001	significant				
A-r	151.7	1	151.749	94.899	< 0.0001					
B-cm	6.08	1	6.08025	3.80241	0.0609					
C-ct	0.187	1	0.18728	0.11712	0.7346					
D-cs	31.56	1	31.5649	19.7398	0.0001					
E-cdo	140.5	1	140.561	87.9029	< 0.0001					
AB	1.687	1	1.68728	1.0551	0.3128					
AC	0.234	1	0.23416	0.1464	0.7047					
AD	15.01	1	15.0141	9.38939	0.0047					
AE	15.59	1	15.5955	9.75301	0.0040					
BC	0.234	1	0.23471	0.14678	0.7044					
BD	2.125	1	2.12530	1.32910	0.2584					
BE	0.258	1	0.25826	0.16151	0.6907					
CD	0.701	1	0.70110	0.43845	0.5131					
CE	0.685	1	0.68509	0.42843	0.5179					
DE	1.324	1	1.32405	0.82802	0.3703					
A^2	6.18629	1	6.18629	3.86873	0.0588					
\mathbf{B}^2	2.12166	1	2.12166	1.32683	0.2588					
C^2	0.93160	1	0.93160	0.58259	0.4515					
D^2	4.14028	1	4.14028	2.58921	0.1184					
E^2	13.7987	1	13.7987	8.62934	0.0064					
Residual	46.3724	29	1.59905							
Lack of Fit	46.3724	22	2.10783							
Pure Error	0	7								
Cor Total	434,389	49								

Observations from ANOVA (table-8):

• The Model F-value of 12.13 implies the model is significant. There is only a 0.01% chance that a "Model F-Value" this large could occur due to noise.

• Values of "Prob > F" less than 0.0500 indicate model terms are significant. In this case A, D, E, AD, AE, E² are significant model terms.

• Values greater than 0.1000 indicate the model terms are not significant. If there are many insignificant model terms (not counting those required to support hierarchy), model reduction may improve the model.

Table 9: R squared results

Std. Dev.	1.264535	R-Squared	0.893247
Mean	37.62566	Adj R-Squared	0.819624
C.V. %	3.360833	Pred R-Squared	0.523691
PRESS	206.9036	Adeq Precision	12.22854

R-squared results (table 9):

 \mathbf{R}^2 is a measure of amount of reduction in the variability of response obtained by regressor variables in the model. Always, there exists a condition that $0 < R^2 < 1$, and also for significance of the model, R²should tend to unity. The following are the observations from the R-square table (table 9).

• The "Pred R-Squared" of 0.5237 is not as close to the "Adj R-Squared" of 0.8196 as one might normally expect. This may indicate a large block effect or a possible problem with your model and/or data.

• "Adeq Precision" measures the signal to noise ratio. A ratio greater than 4 is desirable. Your ratio of 12.229 indicates an adequate signal.

Mathematical Model:

 $d_0 \!\!=\!\!-5.28 \!+\! 40.55 \!\!*R \!\!+\! 9.33 \!\!*C_M \!\!+\! 1.05 \!\!*C_T \!\!+\! 22.5 \!\!*C_S \!\!+\! 47.5 \!\!*C_{do}$

Table (10) gives the predicted values for their corresponding experimental values:

Table 10: Predicted	Values of Outer Diameter (d _o)

Table .	IU: Prec	licted	value	S 01 U	uter L	nameter	(\mathbf{a}_0)
Run Order	R	c _m	c _t	c _s	c _{do}	d _o	d _{op}
1	0.9999	0.01	0.1	0.1	0.1	44.425	42.0796
2	0.9999	0.1	0.01	0.01	0.1	42.7666	41.1292
3	0.9999	0.1	0.1	0.1	0.01	39.7633	38.9818
4	0.9	0.01	0.1	0.1	0.1	37.4551	37.9338
5	0.95	0.06	0.16	0.06	0.06	36.255	37.9142
6	0.9999	0.1	0.1	0.1	0.1	44.753	42.8879
7	1.0688	0.06	0.06	0.06	0.06	39.692	42.8704
8	0.9	0.01	0.1	0.01	0.1	37.0649	36.1518
9	0.95	0.06	0.06	0.16	0.06	37.901	39.9202
10	0.9999	0.1	0.01	0.1	0.1	44.748	42.9112
11	0.9999	0.1	0.1	0.01	0.1	42.771	41.1059
12	0.95	0.06	0.05	0.06	0.06	36.243	37.9688
13	0.9999	0.01	0.1	0.1	0.01	38.705	38.1736
14	0.95	0.06	0.06	0.06	0.06	36.2441	37.9402
15	0.8311	0.06	0.06	0.06	0.06	35.116	33.0058
16	0.95	0.06	0.06	0.06	0.16	40.553	42.2802
17	0.9999	0.1	0.1	0.01	0.01	36.711	37.1998
18	0.9	0.01	0.01	0.1	0.01	34.7757	34.0512
19	0.95	0.05	0.06	0.06	0.06	36.2317	36.9524
20	0.9	0.1	0.01	0.01	0.1	37.2336	36.9834
21	0.9	0.1	0.01	0.01	0.01	34.489	33.0774
22	0.9	0.1	0.01	0.1	0.1	37.6137	38.7654
23	0.9999	0.01	0.1	0.01	0.01	34.3873	36.3916
24	0.9	0.01	0.1	0.1	0.01	34.781	34.0278
25	0.95	0.06	0.06	0.05	0.06	36.2203	35.7622
26	0.95	0.16	0.06	0.06	0.06	37.0121	38.8382
27	0.9999	0.01	0.01	0.1	0.01	39.6969	38.197
28	0.9999	0.01	0.1	0.01	0.1	42.418	40.2976
29	0.95	0.06	0.06	0.06	0.06	36.2441	37.9402
30	0.95	0.06	0.06	0.06	0.06	36.2441	37.9402
31	0.9	0.01	0.01	0.1	0.1	37.4511	37.9572
32	0.9999	0.1	0.01	0.01	0.01	36.7044	37.2233
33	0.95	0.06	0.06	0.06	0.06	36.2441	37.9402
34	0.9	0.1	0.1	0.1	0.01	35.2623	34.836
35	0.9	0.01	0.01	0.01	0.01	33.5472	32.2692
36	0.9999	0.01	0.01	0.1	0.1	44.4204	42.103
37	0.95	0.06	0.06	0.06	0.05	36.1179	33.1662
38	0.9	0.1	0.1	0.01	0.1	37.2375	36.96
39	0.95	0.06	0.06	0.06	0.06	36.2441	37.9402
40	0.9	0.1	0.01	0.1	0.01	35.2579	34.8594
41	0.9	0.1	0.1	0.01	0.01	34.4941	33.054
42	0.9999	0.01	0.01	0.01	0.01	34.3648	36.415
43	0.95	0.06	0.06	0.06	0.06	36.2441	37.9402
44	0.95	0.06	0.06	0.06	0.06	36.2441	37.9402
45	0.9999	0.01	0.1	0.1	0.1	44.425	42.0796
46	0.9999	0.1	0.01	0.01	0.1	42,7666	41.1292
47	0.9999	0.1	0.1	0.1	0.01	39.7633	38 9818
48	0.9	0.01	0.1	0.1	0.01	37 4551	37 9338
49	0.95	0.06	0.16	0.06	0.06	36 255	37 9142
50	0.95	0.00	0.1	0.1	0.1	44 753	42 8870
50	0.2777	0.1	0.1	0.1	0.1	++./33	+2.00/9

Optimization of Hollow Shafts:

Hollow shaft is designed for optimum outer diameter (d_0) with the design parameters: R, C_M, C_T, C_S and C_{do}, and the optimum value of the response extracted by predicting the model. As the main criterion is to have minimum outer diameter combined with higher reliability, the model is evaluated for the optimum face width and is given in the table (11).

Table 11:	Optimum	values
-----------	---------	--------

R	C _M	C _T	Cs	C _{do}	d _o
0.9984	0.020	0.020	0.020	0.020	35.1156

Tables 12- 16 give the comparison of probabilistic output versus RSM values, which shows a proven reduction in outer diameter. **Table 12: Probabilistic Versus Response Values of Outer**

Diameter 'd_o' with Variation of 'R'

R	0.9	0.99	0.999	0.9999	0.99999	0.9999	
						99	
\overline{d}_{o}	33.518 8	33.888 6	34.155 4	34.372 9	34.5603	34.726 2	
$\overline{d}_{o}_{(\text{RSM})}$	32.018 8	33.668 3	34.033 2	34.067	34.0734	34.075	

Table 13: Probabilistic Versus Response Values of Outer Diameter 'd₀' with Variation of 'C_M'

		<u> </u>			111	
См	0.01	0.03	0.05	0.07	0.09	0.1
d _o (probabilisti	34.372 9	34.726 1	35.25	35.831 8	36.427 9	36.725 5
$\overline{d}_{o}_{(\text{RSM})}$	34.069 7	34.256 3	34.44 2	35.629 5	35.816 1	36.099 4

Table 14: Probabilistic Versus Response Values of Outer Diameter 'd.' with Variation of ' C_T '

CT	0.01	0.03	0.05	0.07	0.09	0.1
\overline{d}_{o}_{o} (probabilisti	34.372	34.374	34.328	34.383	34.391	34.395
	9	8	4	9	3	6
$\overline{d}_{o}_{(\mathrm{RSM})}$	34.069	34.090	34.111	34.132	34.153	34.164
	7	7	7	7	7	2

Table 15: Probabilistic Versus Response Values of Outer

Diameter a_0 with variation of C_S						
Cs	0.01	0.03	0.05	0.07	0.09	0.1
<i>d</i> _o (probabilisti	34.372	34.890	35.725	36.778	38.033	38.745
c)	9	4	9	2	9	7
$\overline{d}_{o}_{(\mathrm{RSM})}$	34.069	34.519	34.969	35.419	36.869	37.094
	7	7	7	7	4	7

Table 16: Probabilistic Versus Response Values of Outer Diameter 'd ' with Variation of ' C . '

Diameter u_0 with variation of C_{d0}						
C _{do}	0.01	0.03	0.05	0.07	0.09	0.1
$\overline{d}_{o}_{(\text{probabilisti})}$	34.372	34.446	38.355	40.097	41.	42.460
	9	9	4	4	702	3
$\overline{d}_{o}_{(\mathrm{RSM})}$	34.069	34.019	36.969	38.919	39.869	40.344
	7	7	7	7	7	7

Graphical analysis:

Predicted versus experimental response:

Figure (6) shows the plot of scatter of predicted values of outside diameter d_0 , from its experimental values.

Figure 6: Predicted versus actual values of d₀

Figure 7: Perturbation curve

Perturbation curve:

Figure (7) shows the convergence of all the parameters at the prescribed optimum response (d_o) .

Interaction plot:

Figure (8) indicates the relationship between the most influencing parameters: reliability and coefficient of variation of bending moment (C_M) at optimum value of face width $d_o = 36.9904$.

Figure 9: Contour plot for d_o

Contour plot:

Figure (9) is the contour graph to represent the optimum outer diameter (d_o) across R and C_M.

3D surface plot:

The three dimensional variation of the response surface with the most influencing input parameters (R and C_M) within the range of minimum and maximum values is given in the 3D surface plot in the figure (10).

Figure 10: 3D surface plot for optimum d_o Ramped plot:

A desirability of 0.963 indicates the satisfactory response within the safe range of its responses, as shown in the figure (11).

Figure 11: Ramped plot for the optimized outer diameter (d_o) of the hollow shaft with its corresponding parameters Summary and Conclusions

Optimization is quite often associated almost exclusively with the use of mathematical techniques to model and analyze decision problems and these mathematical and stochastic models are usually tailored to fit to specific real life problems. A known fact is that it is difficult to conceive a model that reflects the reality as close as possible and simple for analysis. For this reason, different models each representing one or more problem situations are developed. During the past three decades a substantial body of literature has been developed on reliability models.

Design of hollow shaft with probabilistic nature of its elements, reliability, coefficient of variation of bending moment, coefficient of variation of torsion, coefficient of variation of shear stress and coefficient of variation of outer diameter to give out the outer diameter, which is also a probabilistic element of criterion.

Response surface method has been applied to model the elements with a relationship (linear/quadratic) for predicting the responses. This application has given the optimal values of the responses satisfying the prescribed constraints of the input parameters.

Ultimately, integration of probabilistic design with response surface design has proven to be an efficient and a simple method for reliability based design optimization of the mechanical components.

Scope for future work

• In the present work, the machine elements are idealized with only a few parameters. In future, effect of all the other parameters may be studied.

• In the present work, the random parameters are assumed to follow normal distribution. Other types of distributions may also be worked out.

• Apart from Response Surface Methodology, other non-traditional techniques (GA, Neural Networks, etc) may be studied for application.

• Reliability based design of a complete machine requires consideration of reliability design of individual elements. In future works, the same may be extended to the reliability based design of complete machine.

References:

1. D. Kececioglu and D. Cotmier, "*Designing a Specified Reliability into a Component*", proc. Of Third Annual Aerospace Reliability and Maintainability Conference, Society of Automotive Engineers, Inc., New York, June 1964, pp546-565.

2. Kecicioglu D. and G. Lamarre, "*Designing Mechanical Components to a Specified Reliability and Confidence Level*", Nuclear Engineering and Design, 50, 1978, 149-162.

3. Williams, B.E., "*The Probability of Failure for Piping systems*", In Failure Prevention and Reliability, F.T.C.Loo, Ed., New York, ASME, 1981, pp 147-150.

4. Joshi M.G. and P. Vasudevan, "*Computer Aided Reliability Assessment of Spur an Helical Gears*", In Advanced Technologies for Design and Manufacture, Proceedings of the 15^{trh} All India Machine Tool Design and Research Conference, December 3-5, 1992, Coimbatore, India.

5. Frangopal D. and J. Rondal, "*Optimum Probability Design of Plastic Structures*", Engineering Optimisation, 3, 1977, pp 17-25.

6. Jozwaik S.F., "Probability based optimization of Truss structures", Computers and Structures, vol.32, No.1, 1989, pp 87-91.

7. Frangopal D.M., "*Structural Optimisation using Reliability Concepts*", Journal of Structural Engineering, ASCE, vol.111, No.11, 1985, pp 2288-2301.

8. Jain A.K. and S.B.L. Beohar, "*Optimum Design of a Solid Flywheel for minimum weight applying probabilistic approach*", Institute of Engineers India Journal=MC, vol.76, Feb. 1996,pp 194-197.

9. Tu J., K.K. Chi and Y.M. Park, "A New Study on Reliability Based Design Optimization", Journal of Mechanical Design, Transactions of ASME, vol.121, Dec,1999, pp 557-564.

10. Hunter J.S., "Statistical Design Applied to Product Design", Journal of Quality Technology, vol.17, No.4, 1986, pp 210-221.

11. Gopal K., Aggarwal K.K. and Gupta J.S., "*An Improved Algorithm for Reliability Optimization*", IEEE Transactions on Reliability, vol.R-27, No.5, December 1978, pp 325-328.

12. J. Arora, "Introduction to optimum design". McGraw hill, 1989 SYSTAT version 12, Systat, Inc.