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Introduction 

 The theory of micropolar fluids was originally formulated by Eringen [1]. In essence, the theory introduces new material 

parameters, an additional independent vector field, the microrotation and new constitutive equations which must be solved 

simultaneously with the usual equations for Newtonian flow. The desire to model the non-Newtonian flow of fluid containing rotating 

micro-constituents prporous media, turbulent shear flows, and flowing capillaries and microchannels by Lukaszewiez [2]. 

We analyze the effect of the variable viscosity and the variable thermal conductivity on self-similar boundary layer flow of a 

micropolar fluid in a porous channel, where the flow is driven by uniform mass transfer through the channel walls. The corresponding 

Newtonian fluid model was first studied by Berman [3], who described an exact solution of the Navier-Stokes equations by assuming 

a self-similar solution and reducing the governing partial differential equations to a nonlinear ordinary differential equation of fourth 

order. The solution is of potential value in understanding more realistic flow in channels and pipes, and study of Berman’s exact 

solution and generalizations of it have attracted numerous studies subsequently, for example Yuan [4], Robinson [5], Zaturska et. al. 

[6], Desseaux [7].Through the viscosity and thermal conductivity are assumed as constant properties but in actual these are 

temperature dependent (Schlichiting [8], Eckert[9]). Therefore, in this paper we consider the effect of variable viscosity and variable 

thermal conductivity on stagnation flow of a micropolar fluid towards a vertical permeable surface. 

Formalation of the problem: 

Consider a laminar two-dimensional stagnation flow of an incompressible micropolar fluid impinges normal to a vertical plate. It 

is assumed that the free stream velocity ( )U x  and the temperature of the plate ( )wT x vary linearly with the distance x from the 

stagnation point, i.e. ( )U x ax  and ( )wT x T bx  , where a, b are positive constants. The steady laminar boundary layer 

equations governing the flow are 

Equation of continuity 

0
u v

x x

 
 

 

         (1) 

Equation of momentum 
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ABSTRACT 

A computer oriented numerical approach to study the effects of variable viscosity and 

thermal conductivity of stagnation flow of a micropolar fluid towards a vertical permeable 

surface is investigated in this study. The external flow impinges normal to the heated plate 

and we have assumed the viscosity and thermal conductivity as the inverse linear function 

of temperature. The partial differential equations governing the problem under 

consideration have been transformed into a system of non-linear ordinary differential 

equations by the similarity transformation and solved them numerically by shooting 

method. Numerical results are carried out for various dimensionless parameters of the 

problem especially variable viscosity parameter, thermal conductivity parameter, micro-

rotation parameter along with the Prandtl number. The results are presented graphically for 

velocity distribution, temperature distribution and micropolar distributions for various 

values of non-dimensional parameters. It is found that the effects of the parameters 

representing variable property of viscosity and thermal conductivity are significant. 
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The angular momentum equation 
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                  (3) 

The energy equation 

2

2

T T T
u v

x y y


  
 

  

                    (4) 

subject to the boundary conditions 

 0u  , 1
,

2
w

u
v V N

y


  



 , ( )wT T x  at 0y                   (5) 

( )u U x , 0N  , T T  as y   

Where u and v are the velocity components along the x-axis respectively, T is the fluid temperature, N is the component of the 

microrotation vector normal to the x-y plane,  is the density, j is the microinertia density,  is the dynamic viscosity, k is the gyro-

viscosity,  is the spin gradient viscosity and 
wV is the uniform surface mass flux. The last term on the right hand side of equation (2) 

represents the influence of the thermal buoyancy force on the flow field with “+” and “-“ signs pertaining respectively to the buoyancy 

assisting and the buoyancy opposing flow regions. We assume that  

1
2 2

k K
j j  

   
      
   

, where k
K




 is the material parameter.  

To seek similarity solutions for equations (1)-(4) subject to the boundary conditions (5), introduce the following dimensionless 

similarity variables: 
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       (6) 

where  is the independent similarity variable,  f  is dimensionless stream function,  g  is dimensionless 

microrotation,     is dimensionless temperature and   is the kinemetic viscosity of the fluid. Further,   is the stream function 

which is defined in the usual way as 
u

y





 and 
v

x


 



 so as to identically satisfy equation (1). Using (6), we get 

( )u Uf  , 
   

1

2v a f  
            (7)   

The fluid viscosity is assumed to be inverse linear function of temperature   as  

   
1 1 1

1 , rT T a T T
  





      

, a= 



and 1
rT T


 

    (8)                                      

where a and  
rT  are constants and their values depends on the reference state and the thermal property of the fluid. In general a>0 for 

liquids and a<0 for gases. 
rT  is transformed reference temperature related to viscosity parameter. α is constant based on thermal 

property and  
 is the viscosity at T=T

  similarly, consider the variation of thermal conductivity as,  



Bhairab Borgohain/ Elixir Materials Science 75 (2014) 27598-27602 
 

27600 
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  and   1
kT T


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                        (9) 

where b and  
kT  are constants and their values depends on the reference state and thermal property of the fluid   is constant 

based on thermal property and 
is the viscosity at T=T∞. 

Using equation (6), it can be easily verified that the continuity equation is satisfied automatically and using equation (6) - (9) in 

the equations (2),(3) and (4) become, 
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                        (12)  

The corresponding boundary conditions are 

0(0)f f , (0) 0f   , 1
(0) , (0) 1

2
g f   

           (13) 

( ) 1f   , ( ) 0g    as    

Results and discussion: 

The equations (10)-(12) together with the boundary conditions (13) are solved for various values of the parameters involved in the 

equations using algorithms based on the shooting method. Results are presented for velocity distribution, microrotation distribution 

and temperature distribution with the variation of different parameters.  

Initially solution was taken for constant values of taking Pr=0.70, G=0.51,K=2.00, Өv =-10.00, Өc =-10.00 with the viscosity 

parameter Vr ranging from -10 to -1 at the certain values of Өc=-10.00 Similarly the solutions have been found with varying the 

thermal conductivity parameter Өc  ranging from -10 to -1 at the certain values of Өv=-10 keeping other values remaining same. We 

have considered in some detail the influence of physical parameters on velocity distribution, micrototation distribution and 

temperature distribution which is shown in figures 1-5. The figures 1 and 2 show the variations in velocity and microrotation 

distribution with the variation of viscosity parameter Өv. From the figures it is clear that the velocity decreases as Өv increases. 

Figures 3 and 4 show the variations in temperature and velocity distribution with the variation of thermal conductivity parameter Өc. 

From the figures it is seen that both temperature and velocity decreases as Өc increases. From figure 5, it is clear that the velocity 

increases with the increasing value of B.  
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Fig.1. Velocity distribution profile (f′) with the variation of Өv 
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Fig.2. Microrotation distribution profile (g) with the variation of Өv 
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Fig 3. Temperature distribution profile (Ө) with the variation of Өc 
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Fig.4. Velocity distribution profile (f′) with the variation of Өc 
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Fig 5. Velocity distribution profile (f′) with the variation of buoyancy parameter B 

Conclusion 

In this study, the stagnation flow of a micropolar fluid towards a vertical permeable surface is investigated when the viscosity and 

thermal conductivity are assumed to vary with temperature. The results presented demonstrate clearly that the viscosity parameter has 

a substantial effect on velocity and microrotation distribution, while the effect on temperature distribution is very pronounced due to 

the variation of thermal conductivity parameter. In addition, buoyancy parameter B takes a major role in the variation of  velocity 

distribution. Thus the assumption of constant properties may lead severe errors in the design of fluid machinery and in various flow 

problems. 
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