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Introduction 

 Noted that the power system demand grows rapidly and the 

expansions in transmission and generation are restricted with the 

limited availability of the resources and the strict environmental 

constraints. Hence, today’s power systems are much more 

loaded than before. This causes the power systems to operate 

near their stability limits [1]. Conversely, by the development of 

interconnection of large electric power systems, there have been 

spontaneous system oscillations at very low frequencies in order 

of 0.2 to 3.0 Hz. Once started, they would continue for a long 

period of time. In some times, they continue to grow and caused 

that the system was separated if adequate damping is not 

available. Furthermore, low-frequency oscillations presented a 

limitation on the power-transfer capability of the system. To e 

system damping, the generators are equipped with power system 

stabilizers (PSSs) that provide supplementary feedback 

stabilizing signals in the excitation systems to improve the 

system damping and extending power transfer limits, thus 

maintaining reliable operation of the power system [2]. 

 Valuable research contributions from time to time for PSS 

design like the application of adaptive control [3, 4], robust 

control techniques [5-7], neural networks [8, 9] and fuzzy logic 

theory [10-12] have been reported in the the literature. In spite 

of the satisfactory results achieved by adaptive stabilizers, the 

control strategies are required on line system model 

identification and therefore they are complicated. The 

advantages of robust control techniques are including system 

uncertainties and physical understudying of the system in the 

synthesis procedure [5, 7]. However, the importance and 

difficulties in the selection of weighting functions have been 

represented. Moreover, the order of the robust control based 

stabilizer is high which gives rise to complex structure of such 

stabilizers and reduces their applicability. It should be noted 

that, although the performance of the power system is improved 

by the ANN based stabilizer [8, 9], but the main problem of 

these techniques are the long training time and selecting the 

number of layers and number of neurons in each layers. Unlike 

other classical control methods, fuzzy logic based PSSs are 

model-free stabilizers; i.e. they do not require an exact 

mathematical model of the controlled system [10, 12]. On the 

other hand, robustness and speed are the most important 

properties than the other classical methodes. However, it should 

be pointed out that the fuzzy controllers require two or three 

dimensional rule base. This problem makes the design process 

more difficult. 

Tele:   

E-mail addresses:  hshayeghi@gmail.com 

         © 2014 Elixir All rights reserved 

PID type multiple stabilizers design using elitist gravitational search algorithm  
H. Shayeghi 

Technical Engineering Department, University of Mohaghegh Ardabili, Ardabil, Iran. 

 
ABSTRACT  

This paper proposed the Proportional Integral Derivative (PID) type multiple stabilizers to 

damp inter-area and intra-area low frequency oscillations in power system utility. To 

improve power system stability, optimal tuning of the PID type stabilizer gains and non-

smooth nonlinear parameters is importance and a challenging task to accommodate 

variations in the power system dynamics, mainly when multiple PSSs are applied. Because, 

it is a computationally expensive combinational and nonlinear optimization problem. In this 

paper, Elitist Gravitational Search Algorithm (EGSA) is proposed to optimize multiple PID 

type PSSs gains tuning problem, simultaneously in order to reduce stabilizer design effort 

and find the best possible solution. The EGSA is a novel meta-heuristic stochastic 

optimization algorithm and simulates the masses cooperate using a direct form of 

communication through gravitational force to find the best possible solution within a 

reasonable computation time. It provides both global and local search by changing the 

velocities over time to determine distance and direction of agents (masses) for significant 

increasing the probability of finding the optimal solution and efficiently avoiding local 

optimum to a large extent. To optimize of multiple PSSs gains a nonlinear time domain-

based objective function under various operating conditions is considered. It is solved using 

EGSA technique that has strong and robust search capability than the other heuristic 

optimization algorithm, as well as is being easy to implement. The effectiveness of the 

proposed EGSA based stabilizers is investigated on a two-area four machine power system 

through the nonlinear time domain simulation and some performance indices under different 

operation condition and system configurations. The performance of the proposed stabilizer is 

compared with those of standard Particle Swarm Optimization (PSO) and PSO with time 

variant acceleration coefficients based designed PSSs to illustrate its robustness and 

damping quality. The results analysis reveals that the EGSA based tuned PID type PSS is 

effective and achieves good low frequency oscillations damping capability. Moreover, it is 

superior that of the PSO method in terms of accuracy, convergence and computational effort. 
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 The conventional lead-lag compensators have been widely 

used as the power system stabilizers. However, the PSS 

parameter tuning problem is a complex exercise. These 

stabilizers have previously tuned both single and multiple 

operation points of the power system using various methods. 

Many random heuristic methods, such as like, genetic 

algorithms [13], chaotic optimization algorithm [14], rule based 

bacteria foraging [15], honey bee mating optimization [16] and 

particle swarm optimization [17] have been reported for 

achieving high efficiency and search global optimal solution in 

the problem space. However, in these studies non-smooth 

parameters of the stabilizer such as saturation limits has not been 

optimized, Also, it should be noted that the performance of the 

above methods greatly depends on its control parameters 

adjustments, and it often suffers the problem of being trapped in 

the local optima so as to be premature convergence. 

 Despite the potential of the modern control techniques with 

different structure, PID type controller is still widely used for 

industrial applications such as power systems control [18-20]. 

This is because it performs well for a wide class of process. 

Also, they give robust performance for a wide range of operating 

conditions and easy to implement. On the other hand, Shayeghi 

et. al [20] presented a comprehensive analysis of the effects of 

the different PID controller parameters on the overall dynamic 

performance of the PSS problem. It is shown that the appropriate 

selection of PID controller parameters results in satisfactory 

performance during system upsets. Thus, the optimal tuning of a 

PID gains is required to get the desired level of robust 

performance. Since optimal setting of PID controller gains with 

non-smooth saturation limits is a multimodal optimization 

problem (i.e., there exists more than one local optimum) and 

more complex due to nonlinearity, complexity and time-

variability of the real world power systems operation. Hence, 

local optimization techniques, which are well elaborated upon, 

are not suitable for such a problem.  

 Since the gravitational search algorithm have not yet been 

applied to solve the multiple PSS design problem, we present a 

new approach for the optimal tuning of the PSS parameters, 

simultaneously by using the elitist gravitational search algorithm 

in this paper. The Elitist GSA (EGSA) algorithm is a typical 

swarm-based approach to optimization, in which the search 

algorithm is inspired by the law of gravity and mass interactions. 

Unlike the other heuristic techniques such as PSO, it performs 

both global search and local search in each iteration process for 

significant probability increasing of the optimal solution finding 

and efficiently avoiding local optimum to a large extent. In the 

EGSA, the particles, called agents, are a collection of masses 

which interact with each other based on the Newtonian gravity 

and the laws of motion. The agents share information using the 

gravitational force to guide the search toward the best location in 

the search space. In GSA, in moving all agents to a new 

position, the direction and distance of agents are updated by 

their velocities. By changing the velocities over time, the agents 

are likely to move toward the global optima. Thus, GSA 

incorporates a flexible and well-balanced mechanism to adapt to 

the global and local exploration and exploitation abilities within 

a short computation time due to the velocity updating schemes 

used and the global search ability mechanism employed [21]. 

Also, it has fewer control parameters and a higher success rate 

since it does exploration and exploitation processes together 

efficiently. This newly developed optimization algorithm is 

simple, robust and capable to solve multi-variable, multi-modal 

and difficult combinatorial optimization problems. 

 In this study, in order to reduce PSS design problem effort 

and improve computational efficiency, the GSA optimizer is 

proposed for the simultaneous optimal tuning of PID type 

multiple stabilizers to achieve desired level of low frequency 

oscillations damping and improve dynamic stability of the 

multimachine power system. The tuning problem of the 

stabilizer gains and saturation limits are automatically optimized 

according to a time domain based objective function by EGSA 

method. Multiple operation conditions are considered in 

synthesis process to guarantee the relative stability and 

concurrently secure the time domain specifications. The 

efficiency and performance of the proposed stabilizers is tested 

on a multi-machine power system under different operating 

conditions in comparison with the PSO with Time Variant 

Acceleration Coefficients (PSO-TVAC) [22] and standard PSO 

based tuned PID type PSSs through nonlinear time domain 

simulation and some performance indices. The results analysis 

confirms the robust performance of the proposed method for 

damping low frequency oscillations than the PSO and PSO-

TVAC methods. Thus, the proposed EGSA method provides a 

useful promising scheme to choose desirable PID type PSS from 

a set of optimally tuned PSSs for the system operator, PSS 

manufacturer and customers. 

Problem Formulation 

 A two-area four-machine power system, shown in Fig. 1, is 

considered for the multiple PSS design. Each area consists of 

two generator units. The rating of each generator is 900 MVA 

and 20 kV. Each of the units is connected through transformers 

to the 230 kV transmission line. There is a power transfer of 400 

MW from Area 1 to Area 2. The detailed line data, bus data and 

the dynamic characteristics for the machines, exciters, and loads 

are given in [3]. The loads are modeled as constant impedances. 

For the power system stability analysis a sufficient mathematical 

models considering a set of nonlinear differential-algebraic 

equations by assembling the models for each generator, load and 

other devices such as controls in the system is required. The 

two-axis model (fourth order) [2] given in Appendix is used for 

the time domain simulations study for each machine. The loads 

are modeled as constant impedances. A first order model of a 

static type automatic voltage regulator was used.  

A. PSS structure 

 The operating function of a PID type PSS is to produce a 

proper torque on the rotor of the machine involved in such a way 

that the phase lag between the exciter input and the machine 

electrical torque is compensated. The structure of the PID type 

stabilizer to modulate the excitation voltage is shown in Fig. 2. 

The structure consists of a signal washout block, a PID 

controller as opposed to the traditional lead-lag controller and a 

saturation limiter. 

 

Fig. 2. Structure of the PID type stabilizer 

 Δωi is the speed deviation of the ith generator and Vsi is the 

output signal fed as a supplementary input signal to the regulator 

of the excitation system. The washout filter, which really is a 

high pass filter, is regarded as to reset the steady-state offset in 

the output of the stabilizer. The value of the time constant Tw is 

usually not critical and it can range from 1 to 20 s. It should be 

noted that the PSS output must be limited to Vs
max

 and Vs
min

 for 
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avoiding actuator system damaging. All stabilizer parameters 

were regarded as adjustable. Stabilizer performance robustness 

is satisfied by considering several operating conditions and the 

system configurations, simultaneously. Thus, the optimized 

parameters of PID type stabilizer are: 

 KPi, KIi and KDi Gains of PID 

 TWi Time constant of washout filter 

 Vs
max

 and Vs
min

  PSS output saturations 
 

Fig. 1. Two-area multi-machine power system 

Elitist Gravitational Search Algorithm  

 Heuristic algorithms are stochastic global optimization 

methods which mimic biological or physical processes. One of 

the newest heuristic algorithms that have been inspired by the 

physical laws is Gravitational Search Algorithm (GAS) which 

was first introduced by Rashedi et al [21]. It is a new member of 

swarm intelligence based on the metaphor of gravitational 

interaction between masses to solve multi-variable, multi-modal 

and difficult combinatorial optimization problems. This 

algorithm describes the mass interactions behavior, learning and 

information sharing characteristics of masses. It is a very simple, 

robust and population based stochastic optimization algorithm 

[24].  

 This algorithm provides an iterative approach that simulates 

mass interactions, and moves through a multi-dimensional 

search space under the influence of gravitation. In GSA, the 

swarms, called agents, are a collection of masses which interact 

with each other by the Newtonian laws of gravity and the laws 

of motion. The swarms share information using a direct form of 

communication, through gravitational force to guide the search 

toward the best position in the search space process. The high 

performance and the global search ability of GSA in solving 

various nonlinear functions infers from the results of 

experiments undertaken previously [21, 25].  

 In GSA, the effectiveness of the swarms is measured by 

their masses. All the swarms are likely to move toward the 

global optima attract each other by the gravity force, while this 

force causes a global movement of all swarms toward the 

swarms with heavier masses. The heavy masses correspond to 

best solutions of the problem. In other words, each mass place 

represents a solution, and the algorithm is navigated by properly 

adjusting the gravitational and inertia masses. By lapse of time, 

the masses will be attracted by the heaviest mass which it 

represents an optimum solution in the search space. Thus, in 

GSA, all swarms move to a new place by updating their 

direction and distance determined by their velocities. 

Consequently, the swarms are likely to move toward the global 

optima by changing the velocities over the time. This algorithm 

is an iterative process similar to the other swarm intelligence 

based approaches. It starts with N agents (masses) in a d-

dimension space, where N and d denote the size of population 

and the number of optimization parameters, respectively. The ith 

agent is represented by: 
1( ,..., ,..., ) 1,2,...,d n

i i i iX x x x for i N                       (1) 

Where, xi
d
 is the position of agent i in dimension d and n is the 

search space dimension. 

After evaluating the current population cost (fitness), the mass 

of each swarm is determined as follows: 
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Where, fi(k) represent the fitness value of the swarm i at iteration 

k. fbest(k) and fworst(k) is the best and worst fitness of all swarms, 

respectively and defined as follows: 
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[1,..., ]

( ) min ( )

( ) max ( )

best j
j N

worst j
j N

f k f k

f k f k









                                                (3) 

To calculate the acceleration of a swarm, total forces from a set 

of heavier masses applied on it should be regarded as based on a 

combination of the law of gravity as follows: 
( ) ( )

( )

,

( ) ( ) ( ( ) ( ))i j

ij

M k M kd d d

i j j iR k

j Tbest j i

F k r G k x k x k






 

        (4) 

where rj is a random number in the range [0,1], G(k), Mi and Mj 

is the gravitational constant, Mi and Mj are masses of swarms i 

and j at iteration k, respectively; ε is a small value and Rij(k) is 

the Euclidean distance between two swarms i and j and 

calculated as follows: 

2
( ) ( ), ( )ij i jR k X k X k                                              (5) 

Tbest is the set of first T swarms with the best fitness value and 

biggest mass, which is a function of iteration (time), initialized 

to T0 at the beginning and decreased with iteration. It is used to 

improve the performance of GSA by controlling exploration and 

exploitation at search process. This strategy is known as elitist 

selection [26]. Here, T0 is set to N (total number of swarms) and 

is decreased linearly to one. Thus, the algorithm uses the 

exploration at beginning and by lapse of iterations, exploration 

fades out and exploitation fades in. Using the law of motion, the 

acceleration of the ith swarm at iteration k and in direction d is 

given by: 
( )( )
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    (6) 

In the next step, the velocity of a swarm is computed as a 

fraction of its current velocity added to its acceleration as 

follows:  

( 1) ( ) ( )d d d

i i i iv k r v k a k                                        (7) 

Then, swarm position is updated in each search strategy 

according to Eq. (9). 

( 1) ( ) ( 1)d d d

i i ix k x k v k                                        (8) 

Where, xi
d
, vi

d
 and ai

d
 are the position, velocity acceleration of 

swarm i in dimension d, respectively.  ri is a uniform random 

variable in the range [0,1]. This random number is applied to 

give a randomized characteristic to the search process.  

It should be noted that the gravitational constant G(t) is an 

important control parameter in determining the performance of 

GSA and adjusting its accuracy. Thus, it is generally reduced 

with iteration k as follows: 

0 max( ) exp( / )G k G k K                                       (9) 
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Where, G0 is the initial value, α is a constant and Kmax is the 

maximum iteration number. 

 It is obvious that from the above clarification the control 

parameters used in the GSA algorithm are the number of 

population size N, the value of initial gravitational constant G0, α 

and the maximum iteration number (generation). Figure 3 shows 

the implementation flowchart of the summarized GSA method 

steps. 

The main features of the GSA algorithm are physical 

metaphor, robustness, easy implementation and high quality 

solutions. Also, it has fewer control parameters and conducts 

both global search and local search in each iteration process, and 

as a result the probability of finding the optimal parameters is 

significantly increased. Thus, it has a flexible and well-balanced 

mechanism to enhance the global and local exploration abilities 

unlike the other heuristic techniques. 

 

Fig. 3. Flowchart general principal of the GSA 

Multiple PSS Design  

 This section describes how the GSA method is applied to 

optimal tuning of the PSS parameters for the two-area multi-

machine power system as shown in Fig. 1. Now like any other 

optimization problem, a cost or fitness function needs to be 

formulated for the optimal PSS design. To optimize PSS 

parameters, selection of a proper cost function is very important. 

Because, different fitness functions promote different bio-

inspired algorithms behaviors. The goal of optimal stabilizer 

design task is to maximize low frequency oscillation damping; 

i.e.: minimize the settling time and overshoots in system 

dynamics response. A cost function which minimizes the time 

domain based system response characteristics is used in this 

study to achieve the PSS design task. It can be defined as 

follows: 
4

2 2 2 2 2 2 2

1 34 11 12 13 34

2 0
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i j

j
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F J



                                                                      (11) 

Where, λ and γ are considered 0.007 and 0.34, respectively. NP 

is the total number of operating points considered for 

optimization process. The main feature of this cost function is 

that it needs the minimal dynamic plant information. 

 The design problem can be formulated as the following 

constrained optimization problem, where the constraints are the 

PSS parameters bounds: 

min max

min max

min max

min max

min max

min max
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 
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                                                    (12) 

 Typical ranges of the optimized PSS parameters are are 

[0.1-20] for Tw and [0.01-50] for PID controller parameters (KPi, 

KIi and KDi ) and [0.05-0.5] for Vs
max

 and -Vs
min

.to keep the 

system within the stability margin during the online 

optimization. The proposed approach employs bi-inspired 

EGSA, PSO-TVAC (see Ref. [22] for more details) and PSO 

[20] algorithms to solve this optimization problem and search 

for the optimal set of PID type PSSs parameters. To evaluate the 

efficiency and robustness of the proposed optimization 

technique various operating conditions and the system 

configurations, simultaneously are considered. The multiple 

operation conditions are given in Table 1. The proposed EGSA 

based multiple stabilizers design flowchart is depicted in Fig. 4.  

 

Fig. 4. Flowchart of the proposed EGSA based multiple 

stabilizers design 
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 The stabilizer parameters optimization is carried out by 

evaluating the fitness function as given in Eq. (10) for four 

operating conditions as given in Table 1 by applying a 6-cycle 

three-phase fault at the middle of one of the transmission line 

between bus-7 and bus-8. The fault is cleared by permanent 

tripping of the faulted line. In this study, the EGSA module 

works offline. For the each PSS, the optimal setting of six 

parameters is determined by the EGSA, i.e. 24 parameters to be 

optimized, namely KPi, KIi, KDi, Vs
max

 and -Vs
min

 for i= 1-4. 

 In order to make possible comparison with the PSO and 

PSO-TVAC approaches, the design and tuning of the PSS 

parameters for this multi-machine power system, PAO and PSO-

TVAC methods (For more details see the Refs. [20, 22]) were 

applied. In order to acquire better performance, the control 

parameters of the proposed EGSA and PSO algorithms is given 

in Table 2. Optimized PSSs parameter set values corresponding 

to the best fitness achieved by each algorithm after 10 trials 

based on the cost function as given in Eq. (12) are listed in Table 

3.  

Results and Discussion 

To evaluate the effectiveness and robustness of the 

proposed PID type stabilizer, simulation studies are carried out 

for various fault disturbances and fault clearing sequences for 

two scenarios through the nonlinear time simulation and some 

performance indices using the following three designed 

stabilizers:  

i) PSO optimized PID type stabilizer [20] 

ii) PSO-TVAC optimized PSS [22]. 

iii) EGSA optimized PID type stabilizer  

The respective optimized PSS parameters for these methods are 

given in Table 3. 
 

  

Fig. 5. Inter-area and local mode of oscillations in scenario 1 

for case 1; Solid (EGSA), Dashed (PSO-TVAC), Dotted 

(PSO). 

A. Scenario 1 

 In this scenario, the performance of the proposed stabilizer 

under transient conditions is verified by applying a 6-cycle 

three-phase fault at the middle of one of the transmission line 

between bus-7 and bus-8. The fault is cleared by permanent 

tripping of the faulted line. 

 The inter-area and local mode of oscillations is shown in 

Figs. 5-7, respectively. The performance of the EGSA based 

optimized multiple PID type stabilizer is quite prominent in and 

the overshoots and settling time are appreciably enhanced with 

the proposed PSS that of the PSO-TVAC and PSO methods one. 

B. Scenario 2 

 In this scenario, another severe disturbance is considered for 

several loading conditions; that is, a 6-cycle, three-phase fault is 

applied at the same above mentioned location in scenario 1. The 

fault is cleared without line tripping and the original system is 

restored upon the clearance of the fault. The system response is 

shown in Figs. 8-10 for different cases. It can be seen that the 

proposed GSA based stabilizer has good ability for damping low 

frequency oscillations and stabilizes the system quickly. 

 To demonstrate effectiveness of the proposed EGSA based 

stabilizer, some indices based on the system performance 

characteristics are described as: 

4
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2 2 2( 4000) ( 1000) sFD OS US T                            (16) 

Where, OS, US and Ts are mean overshoot, mean undershoot and 

mean settling time of four relative speed deviations of Δω12, 

Δω13, Δω14 and Δω34. It is merit mentioning that the lower the 

value of these indices is, the better the system response in terms 

of the time-domain characteristics. 

 

Fig. 6. Inter-area and local mode of oscillations in scenario 1 

for case 2; Solid (EGSA), Dashed (PSO-TVAC), Dotted 

(PSO). 
 

Fig. 7. Inter-area and local mode of oscillations in scenario 1 

for case 4; Solid (EGSA), Dashed (PSO-TVAC), Dotted 

(PSO) 
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Fig. 8. Inter-area and local mode of oscillations in scenario 2 

for case 2; Solid (EGSA), Dashed (PSO-TVAC), Dotted 

(PSO) 

 Numerical results of performance robustness for all system 

loading cases are shown in Figs. 11 and 14 with three stabilizers 

under scenarios 1 and 2. Evaluation of these figures shows that 

the using the proposed EGSA based PID type stabilizers the 

speed deviations of all machines are quickly damped and has 

small overshoot, undershoot and settling time. Furthermore, it 

achieves good robust performance against system loading 

conditions and configuration changes compared to that of PSO-

TVAC and PSO based designed stabilizers.  

 

Fig. 9. Inter-area and local mode of oscillations in scenario 2 

for case 3; Solid (EGSA), Dashed (PSO-TVAC), Dotted 

(PSO). 

 

Fig. 10. Inter-area and local mode of oscillations in scenario 

2 for case 4; Solid (EGSA), Dashed (PSO-TVAC), Dotted 

(PSO). 
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(b) 

Fig. 11: Values of performance index in scenario 1 a) IAE 

and b) ITAE. 

 

(a) 

 

(b) 

Fig. 12. Values of performance index in scenario 1 a) ISE 

and b) FD. 

 

(a) 
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Table 1. Four operating condition (pu)  

Operating Condition 
G1 G2 G3 G4 

P Q P Q P Q P Q 

Case 1 (Base Case) 0.7778 0.1021 0.7777 0.1308 0.7879 0.0913 0.7778 0.0918 

Case 2 (20% increase for system load in case 1) 1.084 0.3310 0.7778 0.4492 0.7879 0.1561 0.7778 0.2501 

Case 3 (20% decrease for system load in case 1) 0.7778 0.0502 0.2333 0.0371 0.7989 0.0794 0.7778 0.0704 

Case 4 (Loss of a line between bus 7 and bus 8) 0.7778 0.1021 0.7777 0.1308 0.7989 0.0903 0.7778 0.0981 

 

Table 2. EGSA and PSO parameters for optimization 
PSO-TVAC PSO EGSA 

C1f 0.2 C1 2.0 Swarm dimension  24 

C1i 2.5 C2 2.0 Population size 60 

C2f 2.5 w 0.9 G0 20 

C2i 0.2 Population 40 α 100 

φ 4.1 Iteration 100 Iteration 100 

wmin 0.4 -   -   

wmax 0.9 -  -  

Population 40 -  -  

Iteration 100 -  -  

 
Table 3. Optimal PSS parameters 

Method Gen  Tw         KP        KI     KD      Vmax        Vmin 

EGSA 

G1 9.452   37.12   1.15   5.23   0.082    -0.084 

G2 9.767   36.78   2.00   4.12   0.092    -0.072 

G3 8.095   35.99   1.96   3.43   0.087    -0.054 

G4 8.897   33.22   1.95   4.13   0.095    -0.093 

PSO-TVAC 

G1 8.675   16.16   1.45   5.12   0.054    -0.087 

G2 9.321   18.75   1.32   3.42   0.065   -0.052 

G3 8.986   27.49   0.86   4.45   0.086    -0.034 

G4 9.547   19.53   0.09   4.83   0.095    -0.045 

PSO 

G1 8.654   18.42   2.34   3.25   0.056    -0.065 

G2 9.564   25.49   2.03   4.43   0.038    -0.042 

G3 8.817   26.34   1.26   3.21   0.098    -0.046 

G4 9.557   16.32   1.25   4.76   0.065    -0.086 

 

Table 4. PSO, PSO-TVAC and EGSA results for 10 trials 

Trials 

PSO PSO-TVAC EGSA 

Best 

fitness 

Mean 

fitness 

Elapsed time 

(s) 
Iteration 

Best   

fitness 

Mean 

fitness 

Elapsed 

time(s) 
Iteration 

Best   

fitness 

Mean 

fitness 

Elapsed 

time(s) 
Iteration 

1 0.0667 0.318 22412 62 0.0667 0.1021 21321 42 0.0667 0.0988 21092 31 

2 0.0876 0.347 22413 73 0.0668 0.1023 21323 44 0.0671 0.0976 21092 23 

3 0.0698 0.318 22412 52 0.0673 0.1069 21322 43 0.0667 0.0972 21093 34 

4 0.0698 0.317 22412 64 0.0667 0.1028 21321 47 0.0667 0.0984 21091 22 

5 0.0987 0.317 22413 65 0.0672 0.1023 21321 41 0.0667 0.0999 21090 35 

6 0.0767 0.319 22414 65 0.0667 0.1039 21323 32 0.0672 0.0993 21093 29 

7 0.0788 0.317 22412 63 0.0670 0.1021 21325 33 0.0667 0.0981 21094 31 

8 0.0756 0.348 22413 71 0.0667 0.1072 21321 35 0.0667 0.0987 21093 34 

9 0.0981 0.316 22412 85 0.0696 0.1031 21321 35 0.0699 0.0998 21093 23 

10 0.0954 0.319 22414 74 0.0723 0.1022 21320 46 0.0667 0.0956 21093 35 

Average 
SD= 

0.0117 
0.0120 22412.7 68 SD=0.0017 

0.0019 21321.8 
40 SD=0.0001  

0.0012 21092.4 
30 
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(b) 

Fig. 13. Values of performance index in scenario 2 a) IAE 

and b) ITAE. 

 

(a) 

 

(b) 

Fig. 14. Values of performance index in scenario 2 a) ISE 

and b) FD 

Computational effort  

 In order to have a fair comparison in terms of solution 

quality and computation effectiveness among the three methods 

(PSO, PSO-TVAC and EGSA), same number of iterations are 

carried out. To reveal the precisions of these algorithms, a 

maximum number of iteration cycles are considered as a 

stopping condition. Each algorithm is run for 10 trials and the 

best fitness value, Standard Deviation (SD), the least iteration 

and elapsed time satisfied by each method are considered as 

criteria of the strength and computational flow of the approach. 

The results using the PSO, PSO-TVAC and EGSA algorithms 

based on the fitness function as given in Eq. (12) for optimal 

setting of the multiple PID type stabilizer parameters are listed 

in Table 4. Also, the mean fitness functions evaluating process 

among 10 trials is depicted in Fig. 15 which confirms high-

quality convergence procedure for the EGSA algorithm. It is 

clear that the best SD and the best fitness value in 7 times are 

achieved by the EGSA than the other technique. Also, it has 

fewer iterations and less computational time to reach a 

predefined threshold in comparison to PSO and PSO-TVAC. In 

addition, it has less iteration which is about 44% and 75% of 

PSO and PSO-TVAC algorithms, respectively and less 

computational time to reach a predefined threshold in 

comparison to other methods. The best fitness achieved by the 

ABC is 0.0667 which is the lowest among the three algorithms. 

Also, the result shows that, using EGSA for optimal setting of 

PID type stabilizers has faster convergence rate compared to 

PSO one. Thus, it can be concluded that the proposed EGSA 

method has stronger capability for finding the superior quality 

solution and higher computation efficiency than the PSO and 

PSO-TVAC approaches. 

 
Fig. 15: Fitness convergence; Solid (EGSA), Dashed (PSO-

TVAC), Dotted (PSO) 

Conclusions 

In this paper, a novel elitist GSA algorithm has been 

successfully applied to optimal setting of multiple PID 

structured proposed PSSs, simultaneously to improve the 

relative stability and secure operation of the multi machine 

power systems. A time domain-based cost function under 

multiple operation conditions is considered to optimize all 

stabilizer parameters and it is solved by EGSA. This algorithm 

incorporates a flexible and well-balanced mechanism to adapt to 

the global and local exploration and exploitation abilities within 

a short computation time due to the velocity updating schemes 

used and the global search ability mechanism employed. Also, it 

has fewer control parameters and is easy to implement without 

additional computational complexity. Thus, the convergence 

precision and speed are remarkably improved and then the high 

precision and efficacy are confirmed. 

The non-linear time domain simulation results show the 

elitist GSA algorithm provides good potential for efficiently 

damping low frequency oscillations over a wide range of 

operation conditions. Furthermore, the system specification 

analysis using different introduced performance indices 

illustrated that the proposed EGSA algorithm is superior that of 

the PSO-TVAC and PSO in terms of accuracy and 

computational effort. In addition, the comparative performances 

analysis of the EGSA, PSo-TVAC and PSO optimization 

techniques to optimize of multiple PID structured proposed 

stabilizer parameters have been carried out for ten trials run. It is 

evident that the convergence, high computation efficacy and 

solution quality for tuning PSS parameters and stabilizing the 

power system under low frequency oscillations are achieved by 

the EGSA. Thus, this optimization technique could be a useful 

promising tool for multiple stabilizers design in the real world 
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power systems. 

Appendix A: Machine models 
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