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Introduction 

Definition of Graph: An (undirected) graph G is defined by 

two finite sets. a non-void set X of elements called vertices, a set 

E (which can be empty) of elements called edges, with for each 

edge e  two associated vertices,  x  and  y , distinct or not, called 

the end vertices of  e [4]. 

Definition of Algorithm: In mathematics and computer science, 

an algorithm is an effective method expressed as a finite list of 

well-defined instructions for calculating a function .In simple 

words an algorithm is a step-by-step procedure for calculations. 

Definition of Spanning tree :Spanning tree for a graph G is a 

subgraph of G that contains every vertex of G and is a tree [5]. 

Definition of link-graph : knot-graph (link-graph) is a graph in 

which each vertex is a link[1]. 

Definition of simple graph: A "simple" graph is a graph with 

no loops or multiple edges [6]. 

Definition of graph with graph vertices: Consider the 

geometric graph G(V, E) where  
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are called this graph ( graph with complex vertices)[2]. 

Definition of graph with different vertices : The graph with 

different vertices  is a graph which each vertex has different 

chap such as: link vertex , graph vertex , or simple vertex , 

whether this graph is simple or have multiedges (multigraph) 

[3]. 

1. Algorithm for Graph which its vertices has all three chaps 

(simple, knot or graph) : 

Input: 

Connected graph with different vertices Vn , Vnmsuch that  0 ≤ n 

≤ k , 0 ≤ m ≤ k   ,  k integer ≥ 1. 

Algorithm body: 

Crete a subgraph that visit  Vn  , Vnm proceeding from vertex to 

vertex along internal spanning tree T (Vnm not simple vertices) 

then along outer spanning tree T
\
 . 

1. Initialized  T , T
\
 to have all vertices and no edge. 

2. Visit Vn,  0 ≤ n ≤ k    , k integer ≥ 1. 

If Vn simple then, 

2a. Attach the edges {en} 

Return to step 2. 

Output  T . 

Else 

3. Visit  Vn , Vnm  , 0 ≤n,m≤ k. 

If Vn  knot vertices then , 

3a. Visit outer vertices Vn then internal vertices Vnm . 

3b. Attach the internal edges {enm}. 

3c. Attach the outer edges { e
\
nm }. 

Return to step 3. 

Output T
\
 , T

\\
 . 

Else 

4. Visit V
n
 , V

nm
 . 

If  V
n
  is graph then , 

4a. Visit outer vertices Vn then internal verticesV
n
 ,V

nm
 . 

4b. Attach the internal edges { V
n1m1

, V
nimi

 } to T
\\\

 and visit 

V
n1mk

. 

4c. Assign V
n1m1 

to V
nimk

. 

Return to step 4. 

Output  T
\\\

 . 

End  

Output T , T
\
 , T

\\ 
, T

\\\
. 

End algorithm. 

Example 1: For a graph shown in Fig.(1) , which has different 

vertices ( simple, knot ,graph) we can compute the algorithm to 

find the spanning tree  as follows: 

 
Fig 1. 

Input: 
Connected graph with different vertices Vn , Vnm such that  0 ≤ n 

≤ k , 0 ≤ m ≤ k ,  k integer ≥ 1. 

Algorithm for graph with different vertices 
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Algorithm body: 

Crete a subgraph that visit  Vn  , Vnm proceeding from vertex to 

vertex along internal spanning tree T (Vnm not simple vertices) 

then along outer spanning tree T
\
 . 

1. Initialized  T , T
\
 to have all vertices and no edge. 

2. Visit V4    then 

2a. Attach e1 to T. 

Return to step 2. 

Output  T . 

Else 

3. Visit V3  then internal vertices V31 , v33 . 

3a. Attach the internal edges {e31 , e32e33 }. 

3b. Attach the outer edges { e
\
31 , e

\
32 , e

\
33 }. 

Return to step 3. 

Output T
\
 , T

\\
 . 

Else 

4. Visit V1 then   V
0 
 , then  
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01 

to  V
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. 
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4c. Attach the outer edge e
1
 to T

\\\\
 and visit V

1
. 

Return to step 4. 

Output  T
\\\

 , T
\\\\

 . 

End  

Output T , T
\
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\\ 
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\\\
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\\\\
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End algorithm. 

Then the tree will be: 

 
Fig 2 

Algorithm for Graph which its vertices has only two chaps: 

The algorithm when its vertices are simple and knot: 

For a graph shown in Fig.(3) which its vertices are simple and 

knot the algorithm will be: 

 
Fig 3 

Input: 
Connected graph with different vertices Vn , Vnmsuch that  0 ≤ n 

≤ k , 0 ≤ m ≤ k   ,  k integer ≥ 1. 

Algorithm body: 

Crete a subgraph that visit  Vn  , Vnm proceeding from vertex to 

vertex along internal spanning tree T (Vnm not simple vertices) 

then along outer spanning tree T
\
 . 

1. Initialized  T , T
\
 to have all vertices and no edge. 

2. Visit V1   then 

2a. Attach e1 to T. 

Return to step 2. 

Output  T . 

Else 

3. Visit  V3  then  

3a. Attach the internal edges {e31 , e32e33 }. 

3b. Attach the outer edges { e
\
31 , e

\
32 , e

\
33 }. 

Return to step 3. 

Output T
\
 . 

End  

Output T , T
\
. 

End algorithm. 

Then the final spanning tree will be: 

 
Fig 4 

The algorithm when its vertices are simple and graph: 

 For a graph shown in Fig.(5) which its vertices are simple 

and graph the algorithm will be: 

 
Fig 5 

Input: 
Connected graph with different vertices Vn , Vnmsuch that  0 ≤ n 

≤ k , 0 ≤ m ≤ k   ,  k integer ≥ 1. 

Algorithm body: 

Crete a subgraph that visit  Vn  , Vnm proceeding from vertex to 

vertex along internal spanning tree T (Vnm not simple vertices) 

then along outer spanning tree T
\
 . 

1. Initialized  T , T
\
 to have all vertices and no edge. 

2. Visit V4  then 

2a. Attach e4 to T. 

Return to step 2. 

Output  T. 

Else
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3. Visit  V1 then   V
0 
, then  

4a. Visit internal vertices V
01 

to  V
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. 
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\\
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1
. 

Return to step 4. 

Output  T
\
,T

\\
. 

End  

Output T , T
\
 , T

\\
.  

End algorithm 

The spanning tree will be: 

 
Fig 6 

The algorithm when its vertices are knot and graph: 

For a graph shown in Fig.(7) which its vertices are knot and 

graph the algorithm will be: 

 
Fig 7 

Input: 
Connected graph with different vertices Vn , Vnmsuch that  0 ≤ n 

≤ k , 0 ≤ m ≤ k   ,  k integer ≥ 1. 

Algorithm body: 

Crete a subgraph that visit  Vn  , Vnm proceeding from vertex to 

vertex along internal spanning tree T (Vnm not simple vertices) 

then along outer spanning tree T
\
 . 

1. Visit  V1 then  V
0
 , then  

4a. Visit internal vertices V
01 

to  V
03

. 

4b. Attach the internal edges { V
o1

, V
04

 }, {V
o0

, V
04 

} ,{V
o2

, 

V
04
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, V
04

 }to T. 

4c. Attach the outer edge e
1
 to T

\
 and visit V

1
. 

Return to step 4. 

OutOutput  T,T
\
.  

Else 

1. Visit  V3  then  

3a. Attach the internal edges {e31 , e32e33 }. 

3b. Attach the outer edges { e
\
31 , e

\
32 , e

\
33 }. 

Return to step 3. 

Output T
\\
 , T

\\\
. 

End  

OutputT,T
\
, T

\\
 ,T

\\\
.  

End algorithm. 

Then the spanning tree will be: 

 
Fig 8 
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