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Introduction 

 Inflation is marked by an increase in the general level of 

prices or a decrease in the value of money. It is highly affected 

by interrelated economic, social, political and even 

psychological factors. These factors interact with each other in a 

complicated manner. It is generally very difficult to forecast 

movements of inflation, especially when the relationships 

among the variables are not the same in the forecast period as in 

the historical period due to structural change. Structural change 

can be allowed for by ad hoc changes in the estimate of the 

model, or by including an equation in the model that explicitly 

shows the change in the relationship.  

 Inflation rate has enormous consequences on the economy 

and by extension on the investors. Inflationary rates are 

inherently noisy, nonstationary and deterministically chaotic. 

These characteristics suggest that inflation rates are highly 

nonlinear and there is no complete information that could be 

obtained from past behaviours of inflationary rates to fully 

capture the dependency between the future rates and that of the 

past. Recently, there is a growing interest in non-linear models 

combined with greater computational facility for describing data 

where the variance changes through time.  

 A class of nonlinear time series models called state-

dependent models (SDM) was developed by Priestley (1980, 

1982). This broad class includes the linear autoregressive 

moving average (ARMA) models (Box and Jenkins, 1976), 

bilnear models (Granger and Andersen, 1978), exponential 

autoregressive models (Ozaki, 1980; Haggin and Ozaki, 1981; 

Ozaki, 1982), and threshold autoregressive models (Tong and 

Lim, 1980; Ozaki, 1981; Tong, 1982). Cartwright and Newbold 

(1983) have extended the state-dependent models developed by 

Priestley to deal with the problem of outlying observations. In 

Cartwright (1984), the SDM by Priestley was extended by 

permitting the residual variance to vary through time according 

to a moving average scheme. The state-dependent models as 

discussed in Priestley (1980, 1982) and Cartwright and Newbold 

(1993) are structural time series models. 

  A structural time series model, Harvey (1989) sets out to 

capture the salient features of a time series data and can be 

written as state space model. State space models, Durbin and 

Koopman (2000, 2001, and 2002) and Chatfield (2004) are a 

widely used tool in time series analysis to deal with processes 

which gradually change over time. The state space model 

represents a physical system as n first order coupled differential 

equations and is a fundamental concept in modern control 

theory. Kalman (1960) estimated coefficient of a non-linear 

differential equation using an optimal sequential estimation 

techniques often referred to as Kalman filter. 

  Kalman’s derivation took place within the context of state 

space models whose core is the recursive least squares 

estimation. Within the state space notation, the Kalman filter 

derivation rests on the assumption of normality of the initial 

state vector, and as well as the disturbances of the system. The 

state of a system is defined to be a minimum set of information 

from the present and past such that the future behaviour of the 

system can be completely described by the knowledge of the 

present state and the future input. The State space representation 

is based on the Markov property, which implies that given the 

present state, the future of a system is independent of its past.  

  In this article, we introduce a class of structural models in 

order to capture the salient feature of inflation in Nigeria. The 

structural model is reduced as an autoregressive moving average 

(ARMA) process. Akaike (1974) was the first to   demonstrate 

that structural models can be reduced to ARMA (p,q) model. 

The relationship between the structural model and its reduced 

forms gives considerable insight into the potential effectiveness 

of the different ARMA models (Harvey, 1989; Chatfield, 2004). 

ARMA models, typically are parsimonious model (Box and 

Jenkins, 1976, Box et al, 1994) and is based on the premise that 

the autocorrelation function (ACF) and the related statistics can 

be accurately estimated and are stable over time. By adopting 

Box-Jenkins ARMA approach to time series analysis, model 

identification, parameter estimation and diagnostic checks are 

feasible for the analysis of Nigerian inflationary rates.        
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The Data 

 The data are secondary data, on annual inflationary rate 

from 1961 to 2010 published by the Central Bank of Nigeria 

Statistical Bulletin. 

Materials and Methods 

   The Nigerian inflationary rate was examined by using a basic 

structural time series modelling approach. The key to handling 

structural time series models is the state space form with the 

state of the system representing the various unobserved 

components such as trends and seasonal. The prime objective of 

state space model is to estimate the signal in the presence   of 

noise.  The state space approach to time series model focused 

attention on the state vector of a system. The measurement 

vector represents noisy observations that are related to the state 

vector. It is assumed that the noise contaminates the signal in an 

additive manner so that the actual observations are given by the 

following measurement equation 

                                    tttt vFZ         (1)           

),0(~ 2

vt Nv                     

where ).....,.........2,1( NtZ t   is the observed noise 

corrupted time series, tF  is assumed to be an ( )1( n  known 

column vector,  tt   vand     are the time series  representing  

an )1( n  state vector and the observation noise respectively. 

The vector t  may not be directly observable. It is often 

assumed as a vector difference equation or state equation 

represented as 

                                    tttt wH  1                    (2)                   

                               

where the )( nn  matrix tH  is assumed known, and  tw  

denotes an )1( n  vector of deviations such that  

).,.........,( ,,2,1 tntt

T

t wwww  . 

 The pair of equations in (1) and (2) constitute the general 

form of the state space model. The errors in the measurement (or 

observation) equation in (1) and state (or transition) equation in 

(2) are generally assumed to be serially uncorrelated and also to 

be uncorrelated with each other at all time periods. Further, the 

measurement error tv  is assumed as an independent random 

Gaussian process while tw  is a white Gaussian noise with zero 

mean and variance matrix  
2

w  . Additionally tt wv  and  are 

assumed to be orthogonal at all pairs of time.  

Estimation of the Structural Parameters 

 The estimation of the parameters and the state vectors 

efficiently can be calculated by the Kalman filter, which is an 

important general method of handling state-space models. 

Essentially Kalman filtering is a method of signal processing, 

which provides optimal estimates of the current state of a 

dynamic system (Chatfield, 2004). Kalman (1960) defined 

filtering as any mathematical operation which uses past data or 

measurements on a given dynamical system to make more 

accurate statement about present, future or past variables in that 

system. For the linear Gaussian estimation problem, the required 

probability density function (pdf) remains Gaussian at every 

iteration of the filter, and the Kalman filter, propagate and 

update the mean and covariance of the distribution (Chatfield, 

2004). 

The Kalman filter recursively evaluates the estimator of the state 

vector conditional on the past observations up to time )1( t . 

By considering Equation (2), where tw  is still unknown at time 

1t  , the obvious estimator for t  is given as  

                     11/
ˆˆ
  tttt H         (3)                                                                             

with variance covariance matrix 

                    t

T

ttttt WHPHP   11/      (4)                                                              

Equations (3) and (4) are the prediction equations. Equation (4) 

follows from standard results on variance -covariance matrices 

for vector random variables (Chatfield, 2004; Stark and Woods, 

1986). When new observation has been observed, the estimator 

for t  can be modified to take account of this extra information. 

At time )1( t , the best forecast of  tZ  is given as  1/
ˆ

tttF  so 

that the prediction error is given by  

                   1/
ˆ

 ttttt FZ                   (5)                                                                           

t  in (5) is called the prediction error. This quantity can be used 

to update the estimate of  t  and of its variance-covariance 

matrix and the best way to do this is by means of the following 

equation 

                      ttttt K   1/
ˆˆ               (6)                                                                       

and 

                         1/1/   ttttttt PFKPP              (7)                                                              

where 

                      12

1/1/ ][ 

  v

T

tttttttt FPFFPK                      (8)                                               

 tK  in (8) is called the Kalman gain matrix and  is a vector 

of size  )1( m  .   Equation (6) and (7) constitute the second 

updating stage of the Kalman filter and are called the updating 

equations. 

Results 

 The study applied the model to annual inflationary rate from 

1961 to 2010 published by the Central Bank of Nigeria 

Statistical Bulletin. The plot of the annual inflationary rate is as 

in Figure 1 and was achieved through the use of R software. The 

first step in state space modelling is to find an optimal 

autoregressive (AR) model that fits the data. The selection of a 

tentative model is frequently accomplished by matching 

estimated autocorrelations with the theoretical autocorrelation 

and partial autocorrelation functions. Table 1 is the ACF and the 

PACF of the annual inflation rate and the correlogram is as in 

Figures 2 and 3. Based on the ACF and PACF of the annual 

inflation rate in Table 1, one may suggest an AR (1). The R 

package use the Akaike Information Criterion (AIC) to provide 

an optimal or best fit for the autoregressive model. The value of 

the AIC for the annual inflationary rate is as in Table 2. The 

AIC is minimum at p=1. Hence the optimal AR order p is 

chosen to be one. 

 The Gauss Markov signal model generated from the annual 

inflationary data using ARMA models is  

                   0                           55.0 1   twttt   
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with mean equal to zero and 188.02 w  The Kalman gain 

tK  as defined in (8) is .302.0tK  The prediction error 

variance as defined in (5) is 434.0t . The Kalman filter is 

asymptotically given by 

              ttttt Z434.0384.0ˆ
1/1/    

Discussion 

 In this paper, inflationary rate in Nigeria for a period of 50 

years was analysed using the State-Dependent model as 

proposed by Priestley (1980, 1982) and Cartwright and Newbold 

(1983).  The SDM estimated coefficient of a non-linear 

differential equation using an optimal sequential estimation 

technique often referred to as Kalman filter. Kalman filter 

degenerates into simpler algorithm that is identical with the 

conventional time series method of forecasting. The importance 

of the Kalman algorithm is based on the fact that it constitutes 

the main procedure of estimating dynamic systems represented 

in state space form. 
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   Figure 1:  Time Plot of the Inflationary rate 

0 5 10 15

-0
.2

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Lag

A
C

F

Series  InflationRate

 
Figure 2 :  ACF  for the Inflationary Rate 
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Figure 3 : P ACF  for the Inflationary Rate 
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