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Introduction 

Gylden (1884) treated the two-body problem of variable masses. He wrote the differential equations of motion for the problem. 

Few years later the publishing of the pioneering work by Gylden, Mestschersky (1893) obtained the first integrable case to for a 

specific mass variation law. This mass variation law, and its following generalization (1902), are known as Mestschersky laws. After 

Mestschersky’s contribution, the physical meaning of the problem became clear and it is known as Gylden-Mestschersky problem. 

The binary systems enrich the problem via the mass and luminosity relation of the stars. There are brilliant names who contributes 

this problem very early, among them,  Jeans (1924) studied the orbits of binary stars, found a more general mass variation law that 

was based on the relation between mass and luminosity of the stars presented by Eddington in the same year. Mestschersky’s laws are 

special cases of Jeans’ law. Gelfgat (1959) considered a different mass variation law. Berkovic (1981) investigated the problem using 

a differential equation transformation method. Also a number of approximate analytic solution were found, e.g., Prieto, Docobo 

(1997) and Lukyanov (2005) studied the particular problem where the total mass is constant, which can be applied to conservative 

mass transfer in close binary systems Lukyanov (2008).  

The Gylden-Mestschersky problem can also be generalized to include the restricted three-body problem. In this case, it can be 

assumed that the two primaries have their motion determined by the Gylden-Mestschersky equations. Thus, one have to deal only with 

the motion of the third body, which does not affect the main bodies motion. It was shown Gelfgat (1973) that this problem presents 

particular solutions that are analogous to the stationary solutions of the classical problem of constant masses: the three collinear 

solutions 
1L   to 

3L  and the two triangular solutions 
4L  and  

5L . Since then, further characteristics of this problem have been studied, 

for example, Lukyanov (2009), Singh et al. (2010). Besides the Gylden-Mestschersky problem, there are many different cases of two-

body problems with variable mass Razbitnaya (1985). These can be classified according to the presence or not of reactive forces, to 

the variation of the mass of just one or both of the bodies, to whether the bodies move in an inertial frame or not and so on.  

The subject of the perturbed restricted three body problem is drawing scientists' attention since the last decades of the previous 

century. One of those important considered perturbations is the varying mass due to its application in comets dynamics that burn out 

while passing their perihelion points (Comet-Jupiter-Sun system), in addition to mass change problems arise for space vehicles 

(Vehicle-Moon-Earth system). 
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Shrivastava and Ishwar (1983), Singh and Ishwar (1984, 1985), Das et al. (1988) and Singh (2008) formulated the restricted 

problem with variable mass using Jean's law (1924) in which the masses of the primaries are constant and for the third body is a 

function of time. 

Our aim is to concern with the orbit of third body varying mass in the Hamiltonian framework,  using a Lie series  the equations 

of motion of the third body are integrated. 

Problem Formulation 

The classical circular restricted three body problem is defined as two massive primaries 
12m m=  which are restricted to move in 

a circular plane, and an infinitesimal body of mass m  that is affected by the gravitational field of the two primaries. Also m  has no 

effect on 
21,m m .  Consider the third body m  as a variable mass, e.g. a comet and let the primaries are of constant masses in a 

barycentric frame ( OXYZ ) with angular velocity   around Z -axis, then the equations of the third body motion are given by (Singh, 

2008)  
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where 
1 2,m m   and m  are located at  ,0a ,  ,0b  and  ,x y   respectively.  

and 
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are the distances from the masses 
1m  and 

2m  to m  respectively and G  is the gravitational constant. 

Using Jeans' law to describe the mass change, (Jeans, 1924) for the star of the main sequence. 
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    ¡

                                                                              (2) 

Introducing a space-time transformation    , , , ,x y t     scaled by the ratio of the mass of the third body m  at  
1t t  and 

0m  

at 0t  , i.e. 
0/m m  . This transformation preserves the dimensions of the space and time. Considering the values suggested by 

Shrivastava and Ishwar (1983) yields 
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                                                                                      (3) 

using  Jeans' law, we have 

1

0
,n nd

m
dt
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                                                                                                                    (4) 

So the system of equations (1) can be rewritten as 
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where 
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And the primes indicate differentiation with respect to  . 

The system of equations (5) can be rewritten as, (Singh and Ishwar, 1984), 

2 , 2
 

                                                                                                            (6) 
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Choosing the normalizing variables and units as 
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Singh (2008) formulated the lagrangian corresponding to system of equations (6) as  
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                                                                     (7) 

and the corresponding Hamiltonian can be formulated as 
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where ,P P 
 are the conjugate momentum corresponding to ,   respectively. 

Perturbation Approach 

A suitable differential operator D , the Lie operator, was introduced by Delva (1984) and Hanslmeier (1984) produces a 

convergent Lie series like Taylor series. Let the Hamiltonian  , ,qq P tH  be function q  be the coordinates, 
qP  be the momenta, and t  

be the time. The equations of motion can be written as 

,
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The linear Lie operator has the general form 

q
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                                                                                                                                                  (9) 

The solution    , , , , ,q q qq q P t P q P t
rr  can be computed using Lie operator as 
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Where ,j j

qD q D P
rr  are evaluated at initial conditions   

00 0 0, ,qq q P t
r  and  

0 00 0, , .q qP q P t
r  



W. A. Rahoma and F. A. Abd El-Salam/ Elixir Appl. Math. 76 (2014) 28268-28274 
 

28271 

 

The Equations of Motion  

This section is aimed to find the equation of motion of third body of variable mass in the restricted three body problem. The 

analytical solution can be described in term of Lie operator, which utilizing the Hamiltonian for the motion in the neighborhood of a 

fixed points. The Hamiltonian equations can be written as 
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Now  Lie operator is constructed, using perturbation approach section, see equation (9),  by 
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The series for   

The double action of D  on   can be computed as 
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The solution for   can be written as 
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The series for     

The double action of D  on    can be computed as 
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The solution for   can be written as 
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The series for P
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The solution for P  can be written as 
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Rahoma et al. (2009, 2011) calculated    expanding the function  m t  in a Taylor series yields:  
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The solution for P  can be written as 
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(22) 

Coordinates and Momenta Numerical Representation 

The adopted initial conditions are taken as; 
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Conclusion 

The study is concerned with the restricted three body problem with varying mass for the third body. The Hamiltonian of the 

problem and equations of motions are formulated. The equations of motions are integrated using Lie series. The obtained solution is 

given as an explicit solution  of coordinates and conjugate momenta as functions of time. 
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