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Introduction 

  Everyone irrespective of their stage of development and their social and economical conditions, has the right to have access to an 

adequate supply of safe drinking water. One of the major function of WHO is to achieve such goals is the responsibility to propose 

regulations to make recommendations with respect to international health matters. One of the most popular disinfectant is chlorine 

which is used to kill pathogenic bacteria during to treatment of drinking water process all over the world. Chlorine also plays an 

important role in the maintenance of water quality in the distribution system through a residual. The distribution system consists a 

most important component that is pipeline network. The problem of finding a point of booster chlorination in drinking water pipe line 

network is of great importance. Clark et al. (1994) showed how chlorine residuals can vary throughout the day at different locations in 

the distributive systems. Clark et al. (1995) used first order kinetics and rate of chlorine decay in their model. They showed that the 

fluid velocity and pipe radius affect the propagation of chlorine residual levels, disinfection efficiency and the formation of 

disinfection by-products. Hoefel et al (2005) in micro trial resistant to chlorination has observed both of these in lab studies and in full 

scale chlorine disinfection Practice for water and Waste-water treatment. Biswass et  al. (1993) considered a steady-state  model for 

chlorine concentration decay in pipes. They determine the cup-mixing average chlorine concentration at any location decay in pipes. 

The transport of chlorine from the bulk flow to the pipe wall (due to concentration decay at wall) was not considered in their model. 

Wojcicka et al (2007) in previous studies have found that indigenous bacteria are related from different environment. Huang et al 

(2011) studied that the influence of chlorination on end toxin activities of secondary sewage effluent and Pure Cultured Gram-

negative bacteria was instigated. David and Bryan (1996) developed an adjective transport model by neglecting the contribution of 

radials as well as axial diffusion terms. Munavali and Mohan (2005) presented a simulation-optimization model for water quality 

parameter estimation in the distribution system under dynamic state. Osman, and Metin (1999) solved two dimensional convection 

dispersive equation numerically for various boundary and initial conditions, considering the decay of chlorine in the bulk flow, but 

they did not consider the transfer of chlorine from bulk flow to the pipe wall. Jaipal and Bhadula (2012) presented two dimensional 

steady state mathematical model and unsteady state model (2013) that accounts for transport in the axial direction of diffusion and that 

incorporates chlorine decay within the bulk flow and transport of the chlorine from bulk flow to the pipe wall to predict the chlorine 

concentration in a drinking water distribution system. Eran et al (2011) studied the chlorination and ultraviolet (UV) irradiation of 
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rotating biological contractor in treating the light-grey water. They examined the ability of chlorine and UV to inactive indicator 

bacteria and specific Pathogens. Cherchi and Gu (2011) investigated the impact of the cell growth stage on chlorine disinfection 

efficiency and the impact of the growth stage on chlorination resistance by comparing the inactivation efficiencies of two indicator 

bacterial strains obtained from various growth phases.  

Mathematical Modelling 

 The unsteady state mass conservation equation for dispersion of chlorine in drinking water in a pipe for axisymmetric flow 

considering transport of chlorine from bulk flow to the wall can be written as 
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Where D   is diffusion coefficient, U  is initial velocity component along  x axes, bk
 and fk

 are the chlorine decay rate constant for 

bulk flow(
1s ) and mass transfer coefficient (m/s) respectively wc

 is the chlorine concentration at wall (
3/kg m

) and hr  is the 

hydraulic radius of the pipe wall. 

Assuming that the reaction of chlorine at the pipe wall is of first order with respect to the wall concentration   and that it proceeds at 

the same rate as chlorine is transported to the wall gives the following mass balance equation for the chlorine at the wall.
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  Substituting the value of  from equation (2) into equation (1).We get 
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The initial and boundary conditions are 

( , , 0) 0c x r t  
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 is initial concentration 
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and wall condition is 
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Introducing the following non dimensional quantities are defined by  
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Where 0r  is the pipe radius (m)              
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The initial and boundary condition become 

( , , ) 0, 0c x r t t 
      (7.i) 

( , , ) 1, 0c x r t x 
      (7.ii) 
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Applying finite Hankel transformation (Sneddon,1972) on equation (6) and equation (7.i) to (7.iv),weget                                                                                                                                                     
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Where 
2

0 1nB B 
, n is finite Hankel transformation parameter as determined by the transcendental equation 
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 is the zero order Bessel function of the first kind, 

( , , )H nc x t
is the second kind finite Hankel transformation of 

( , , )c x r t
 as 

defined by the following conjugate equation 
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The initial and boundary conditions become 
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Again introducing following transformation 
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Equation (9) reduced into 
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The initial and boundary condition (11.i) to (11.iii) become 
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 , 0, 0, 0P x t x t  
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Solving equation (12) together with initial boundary conditions (13.i) to (13.iii) by Laplace transformations technique and then putting 

the value of 
( , )P x t

 in equation (11), we get 
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Finally putting equations (15) in equation (10.ii), we get 

2

0 1

2
0 0

2

0 1

2
0 0

4 4 ( ) ( )
( , , ) exp

2 2 ( )

4 4 ( ) ( )
exp

2 2 ( )

e e e e e n n

n nn

e e e e e n n

n nn

p p p p x p t J r J
c x r t x erfc

t J

p p p p x p t J r J
x erfc

t J

   



   











       
    

      

       
    

      




       (16)                                                                                                                                                                        

When 
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Results And Discussion 

To observe the effect of diffusivity, fluid velocity and chlorine consumption rate on the chlorine concentration in the water fig.1 to 

fig.5 are plotted for various value of parameters. 
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Fig.1 Variation of chlorine concentration with axial distance x and radial distance r ( D =0.1, U =0.5, 1B
= 1.0, t =0.1, L =1.0) 

 It is clear from fig.1 that chlorine concentration decreases very fast along the axial distance while slowly along radial distance. 

Chlorine concentration decreases rapidly from 0x   to 0.6x  and after that it becomes constant. It appears that   after 0.6x   

concentration is zero. In fact it is not zero and 0.6x  , 0.007125c  while at 0.8x  , 0.000267c  ,and 
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1.0x  , 0.00000391c  (at 0r  ) which are very near to zero. To maintain the safe limit for chlorine concentration we have to 

inject chlorine again after 0.4x   and before 0.6x  .The variation of chlorine concentration along radial direction is very small 

and is difficult to observe from the figure. But we can see the change from the numerical value as at 0.1x  , 0r  , 0.643566c   

while at  0.1x  , 1r  (i.e at the wall of pipe) 0.469745c  . 
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Fig.2 Variation of chlorine concentration with axial distance x and radial distance r ( D = 0.1, U = 0.5, 1B
= 10.0, t = 0.1, L = 

1.0) 

The effect of chlorine consumption rate 1B
 (which  depends upon transport of chlorine from bulk flow to the wall, chlorine decay rate 

constant and mass transfer coefficient) can be observed by comparing fig.1 (for 1B
=1) and fig.2 (for 1B

=10). As the chlorine 

consumption rate 1B
increases from 1B

=1 to 1B
=10 the more chlorine is transported towards the pipe wall and less chlorine remains 

in the bulk flow. For 1B
=1 (fig.1) the chlorine concentration approaches to zero after 0.6x  while for K =10 (fig.2) chlorine 

concentration approaches to zero before  0.6x   . 
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Fig.3 Variation of chlorine concentration with axial distance x and radial distance r ( D =0.1, U =1.0, 1B
=1.0, t = 0.1, L = 1.0) 
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Fig.4 Variation of chlorine concentration with axial distance x and radial distance r ( D =0.2, U = 1.0, 1B
= 1.0, t =0.1, L = 

1.0) 

 The effect of diffusivity on chlorine concentration can be observed by comparing fig.3 ( D =0.1) And fig.4 ( D =0.2). The nature 

of chlorine concentration decay profile is very much similar in both the figures. But the difference is clear from the numerical values 

as 0.003011c   for D =0.1 and 0.002566c   for D =0.2 (at r=0 and x=0.5).Thus as diffusivity increases in r  direction then 

chlorine concentration decreases at the same point in x  direction. This is due to fact that when diffusivity increases then more mixing 

takes place and so chlorine concentration becomes constant at some earlier axial distance. 

  

 

 

 

 

 

 

 

 

 

 

Fig.5 Variation of chlorine concentration with axial distance x and radial distance r ( D = 0.1 , , U =  0.5,  1B
= 1.0, t = 0.8, 

L =1.0) 

 As this model is time dependent so to see the dependence of chlorine concentration on time we compare fig.1 and fig.5 At 

0.1t  , 0.00000391c  (numerical value taken from fig.1 at 
1.0 0x and r 

) while at 0.8t  , 0.0857123c   (numerical 

value taken from fig.5 at 
1.0 0x and r 

) which is true fact since initially the chlorine injected at 
0 0x and r 

 and it takes 

some time to reach at 1.0x   ( i.e end of the pipe). 

Conclusion 

 The unsteady state mathematical model for axisymetric flow in a pipe for low peclet number ,diffusion and transport of chlorine 

from the bulk flow to the pipe wall presented in the paper can be use effectively to locate the position for booster chlorination to 

maintain the safe limit of the drinking water. Our model can be used to locate booster chlorination in the system to optimize 

disinfection in the drinking water. 
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