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Introduction 

 It is general idea today that security for network 

applications is their very vital feature and property. Its variety 

includes protection of data, messages, software modules and 

other resources, privacy of users, reliability, availability and 

integrity of resources and other properties. In the last 20 – 25 

years there are very contributions in the scope of computer 

networks security: standards, research projects, conference and 

journal papers and commercial products. Governments, 

companies, banks and other users of network services invest 

huge deal of time, effort and budgets installing and using 

different security products and solutions [10]. 

 Although, in spite of all these activities, on-going efforts 

and current solutions, it is usual belief that security in today 

networks and applications is not adequate. We are daily 

witnessing different problems – infection of computers by 

malware, distribution of E–mail spam, phishing of Web pages, 

penetrations by hackers, software bugs, stolen industrial secrets 

and credit cards, disclosure of sensitive documents, and so on. 

All such interests and current problematic situations justify 

efforts and efforts towards creating effective security solutions 

for network applications and environments. At the moment, 

there are two usual approaches to network applications security 

[7-10]: 

 One  approach is  rely  on  isolation,  that  is  protecting  them  

by  isolating operational environments at their periphery using 

firewalls, port scanners, intrusion–detection tools, spam and 

phishing filters, “demilitarized  zones”, E- mail spam filters, etc. 

and also using virus/malware scanners, virus signatures, 

encrypted disk files, etc. 

 Another approach is named software security which is rely on 

methodology to create secure, robust and protected applications, 

bug–free and not vulnerable to attacks, by using well–

established methodology for design of applications, software 

tools for their development, and testing methodology and 

environments for their debugging and testing [10]. 

 Although both approaches give some degree of security and 

protection, current condition in open networks indicates that in 

basic none of the current approaches is effective and does not 

produce secure, reliable and protected network applications and 

cloud environments. This means that current, basically single 

point–solutions and approaches, reactive to emerging 

difficulties, have limited scope and effectiveness. This means 

that the two  current approaches, one based on solving 

individual problems (“point–solutions”) in a reactive mode and 

the other based on conceptual methodology for design and 

development of secure software, so far have not produced 

effective results and are not capable to create the ultimate 

solution – secure and reliable network environment and its 

applications. So, in the current condition, new approach and new 

thinking towards inventing strongly and guaranteed secure 

network environments and applications are needed [8-10]. 

How cloud computing influences on Microsoft products: 

 Windows Azure platform (Microsoft, 2011c) provides 

friendly interfaces to deal with the heart of PaaS in progressive 

and deploying differently .NET applications start from very 

simple Hello World applications to distributed relational 

databases. One of Windows Azure’s services is SQL Azure, 

which deliver DB services from building the DB to deploy it and 

scale it through Microsoft data centers. SQL Azure consists of 

relational database services, such as reporting, querying, and 

data synchronizing. Windows Azure present several features 

including computing resources, storage, database, Virtual 

Machines (VMs), access control, Content Delivery Network 

(CDN), caching, virtual network, service bus, business 

intelligence, and market place. Windows Azure was built to help 

developers progress in their application, especially for the 

developers who build remote data center applications by 

providing different tools. Windows Azure delivers a platform 

service which includes operating systems, a set of developer 

tools, and different levels on network controls to develop, host, 

scale, and manage developed applications on web and non-web 

environments (Jadhav et al., 2010). So, students will focus on 
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developing the assignment without any pre-configurations for 

specific software or hardware [5-10]. 

 Furthermore, the Windows Azure platform offers prebuilt 

sub-programs which often represent reuse functionalities to save 

the developers' time and let them focus more on their projects. 

By using Windows Azure, the companies and universities do not 

need special instruments or infrastructure; all they need is 

Internet connection. Windows Azure also has more solution 

which provides a database solution with a user friendly 

interface. Building a database by Windows Azure is started with 

invention of a subscription followed by creating the server with 

the access levels and their passwords. So the databases are 

created using a .NET framework after connection of the .NET to 

the created server [1-10]. 

Adaptively Reduced-Order Extended Kalman Filter: 
 The reduced-order extended Kalman (ROEK) filter has 

been introduced by Cane et al. (1996) as a means to decrease the 

cost of the extended Kalman filter [11 - 14]. It essentially 

includes in projecting the dynamic of the model onto a low 

dimensional subspace obtained via an empirical orthogonal 

functions (EOF) analysis. However, the choice of the dimension 

of the reduced state space (or the amount of EOFs to be 

retained) remains a delicate question. In fact, Cane et al. (1996) 

have been enabled to explain the fact that intensifying the 

number of EOFs does not improve, and even sometimes worsen, 

the performance of the ROEK filter [11 - 15]. We guess that it is 

due to the optimal character of the EOF analysis which is 

optimal in a time-mean sense only. In this view, we develop a 

simple effective adaptive scheme to tune, according to the 

model mode, the dimension of the reduced state space, which 

would be therefore variable in time.In the ROEK filter, the 

dimension of the reduced state space (or the amount of retained 

EOFs) was chosen according to the variability (or inertia) 

explained by the first few EOFs and also to keep the cost of the 

filter reasonable [11]. Cane et al. (1996) predicted that the filter 

would perform better as the number of retained EOFs increase, 

since the reduced state space generated by the EOFs represents 

better, in some sense, the variability of the model. However, 

their numerical experiments reveal a surprising feature: 

intensifying the number of EOFs does not improve, and even 

sometimes worsens, the performance of the filter. The same 

event has also been observed in our numerical experiments. A 

plausible explanation is that the optimality characteristic of the 

EOF analysis is true in a time-mean sense only as such an 

analysis is relying on a long historical run [11]. The last 

observation motivates us to progress a simple adaptive plan to 

tune the dimension of the reduced state space. The opinion 

includes simply in fixing a number of EOFs effective to 

represent the variability of the system in the stable periods and 

then add some new EOFs when model instabilities appear in 

order to represent more completely the local structures of the 

model. A similar algorithm has been already successfully 

implemented by Hoteit et al. (2002) to tune the “forgetting 

factor” and the evolution of the correction basis, for the singular 

evaluative extended Kalman (SEEK) filter and its variants [11]. 

The ROEK filter: 
 We shall adopt the symbolization proposed by Ide et al. 

(1995). Consider a physical system introduced by [11]:  
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Where kH
denotes observational operator and k  is the 

observational noise [11 - 15]. The noises k  and k  are 

expected to be independent random vectors with mean zero and 

covariance matrices kQ
and kR

, respectively.In the linear case, 

this problem has been entirely solved via the well-known 

Kalman filter. This filter owns an attractive feature of being 

recursive. Computation is done on-line once new observations 

are available. In the nonlinear state, one often linearizes the 

model around the current estimated state vector, which results to 

the so called extended Kalman EK filter (see for example Ghil 

and Manalotte-Rizzoli (1995) for a review) [11 - 15]. Apart 

from initialization, this filter progressed as succession of 

predicting and correction steps. Assuming that at a time 1kt , 

one already has an estimate of the system state, often denotes to 

as the analysis state vector
)( 1k

a tX
, with some analysis error 

covariance matrix 
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a tP
. The EK filter lets the construction 

of the next 
)(tX a

 by correcting the predict
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 (which is 

the output of the model starting from
)( 1k

a tX
) using the new 

observation [11]. It also delivers the calculation of the new 

analysis error covariance matrix
)( k

a tP
, to reflect the 

propagation of error from the analysis to the forecasting case 

(which is introduced by an error covariance matrix
)( k

f tP
) 

and the reduction of error achieved by the correction step. The 

reader can consult Jazwinski (1970) for more information.For 

simplicity we accept that the reduction operator S  is orthogonal 

so that its pseudo-inverse is equal to
TS . The full case vector 

tX  is then related to the reduced state vector 
t

rX
 by [11]: 
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 If this supposition is used in the EK filter, one obtains the 

equations of the ROEK filter which operates in two stages apart 

from an initialization stage as the EK filter (see Fukumori and 

Malanotte-Rizzoli (1995) for more details) [11 - 15]. 

0- Initialization stage: We option here to an objective analysis, 

based on the first observation
oY0 : we take as the initial analysis 

state vector 
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X is the mean of a sequence of state vectors and 0
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gradient of 0H
 evaluated at X . The original analysis error 

covariance matrix may be taken as [11 - 13]: 
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Note that we have used the first observation for initialization; 

the procedure actually starts with the next observation [11 - 15]. 

 



Masoud Ale Seyyedan/ Elixir Inform. Tech. 77 (2014) 29155-29159 
 

29157 

Forecast stage: One applies the model to calculate the forecast 

state as:  
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And assume the covariance matrix of the forecast error in the 

reduced space 
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f
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(of dimension rr ) to evolve 

according to [11]: 
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Correction stage: The correction of the predict state is done 

according to the formula 
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 is acquired by [11 - 15]: 
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covariance matrix of the analysis error covariance matrix 
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The analysis error covariance matrix is then calculated by [11]:  
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 Here, in formula, the representativeness error which should 

introduce the information that has not been explained by the 

reduced space defined by S  (this error can be conveniently 

“inserted” into the model error (Cane et al. 1996)) has been 

neglected. Although, following Pham et al. (1997), we introduce 

instead the use of a forgetting factor to limit the propagation of 

this error with time. This algorithm has been adopted as a way to 

sidestep the difficulty to correctly specify the representativeness 

error. The formulas for the ROEK filter algorithm with the 

forgetting factor remain unchanged; expect that the update 

equation of the analysis error covariance matrix in the reduced 

space is replaced by [11- 14]:  
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 Studying the cost of this filter, it mostly comes from the 

calculation of the evolution equation of the forecast error in the 

reduced state space. It thus relies on the dimension of the 

reduced space r  because the numerical calculation of 

Stt kk ),( 1
  requires 

)1( r
 integrations of the tangent 

linear model. A reasonably decreased choice of r  is then 

imperative for realistic applications [11 - 12].  

 The performance of the ROEK filter highly relies on the 

representativeness of the reduction operator S . A good choice 

of S  should lead to a large decrease of the dimension of the 

system and a reduced state space which well represents the 

variability of the model. Different cases of the operator S  have 

been introduced in the literature such as the use of a coarse 

resolution (Fukumori 1995), the most dominant singular modes 

of the tangent linear model and the most dominant Eigenmodes 

of the analysis error covariance matrix (Cohn and Tolding 

1996), etc., which are supported by more or less simplifying 

assumptions on the dynamics and the characteristic of the model 

(see De Mey (1997) for a review) [11 - 14]. 

 With the same goal in view, Cane et al. (1996) have adopted 

a different approach: using empirical orthogonal functions 

(EOF) analysis, they decreased the state space for the forecast 

covariance updated to a small set of basic functions, called 

EOFs, which nonetheless represented all the significant 

structures that were predicted by the model. More than the 

implementation cost details, the philosophy of order reduction of 

Cane et al. (1996) relies on the fact that since one cannot 

precisely compute the ``true'' error covariance matrix, it is 

useless to try to specify its full description. In numerical 

applications, this process was shown to lead to a substantial 

saving without any loss of accuracy compared to the full EK 

filter (Cane et al. 1996) [11 - 15].  

EOF analysis:  
 This analysis goals at providing a representation as 

accurately as possible of a sample of state vectors NXX ,,1   in 
n  in a low-dimension (denoted r ) subspace. For a vector X , 

let X
~

introduce its orthogonal projection onto a subspace of 

dimension r  spanned by an M -orthogonal basis 

 
rkkS
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, M  being some metric (to be chosen) in the 

state space, and the constant function [11]: 
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 The EOF analysis then 

includes of minimizing the mean square projection error [11]: 
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 With respect to all choices of the principle. Here the 

introduction of a metric M  is needed in the case where the state 

variables are not homogeneous to describe a distance between 

state vectors independent from unit of measure. 

 The solution to the above minimization problem is 

calculated by the first r  normalized Eigen vectors r ,,1   of 

the sample covariance matrix P of NXX ,,1  , namely [11]:  
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 Relative to the metric M , the eigenvectors being ranked in 

reducing order of their eigenvalues r ,,1 . With respect to 

the choice of r , it has been shown that the fraction of variance 

(or inertia) explained by the first r  EOFs is given by [11]: 
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 And thus can be used as a guide for choosing r  (this 

fraction should be close to 1).  

 In our case, cloud computing platforms, we are interested in 

representing the variability of the state model around its mean. 

For this aim, we consider a long historical sequence of model 

states NXX ,,1   which can be extracted from a model run. 

Thus, the matrix P  contains the bulk of information on the 

system variability when N  is sufficiently large [11 - 15]. 
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Adaptive tuning of the dimension of the reduced space:  

 As introduced in the above section, the dimension r  of the 

reduced state space (or the number of EOFs to be retained) was 

chosen according to the value of the inertia I , providing that the 

cost of this filter remains reasonable since this cost highly 

depends on this number. Cane et al. (1996) have observed in 

their numerical experiments that increasing the number of EOFs 

does not improve, and even sometimes worsen, the performance 

of the filter. The same event has been also observed in our 

experiments. For a reasonable explanation, the optimality 

property of the EOF analysis is only optimal (at best) in a time-

mean sense. In fact, the EOFs analysis is done over a long time 

period composed of periods in which the system evolves stably 

and periods in which it evolves unstably. Local perturbations 

often arise in the concluding period and not in the former, and 

they are represented by the last EOFs corresponding to the last 

Eigen values (Cane et al. 1996; Hoteit et al. 2001). Using more 

EOFs when the system is in a stable state would introduce 

spurious information which can reduce the performance of the 

filter. On the other hand, using only a few EOFs would not be 

sufficient to represent all the local structures of the system 

during unstable periods. The filter will then remove corrections 

in these structures and the error may grow. So to achieve better 

performance of the ROEK filter, our opinion is quite simple and 

consists in fixing a number of EOFs suitable to the stable period 

and then adds some EOFs in the unstable periods to represent 

more completely the model local structures [11]. In other words, 

the dimension r  of the decreased state space will be given one 

of two values 1r  and 2r  ( 21 rr 
) according to the model state 

[11 - 14]. 

 Such an adaptive plan can be easily implemented in the 

ROEK filter. In fact, if one introduced by 1S
 and 2S

 the basis 

containing the first 1r  and 2r  EOFs, respectively, the algorithm 

of the ROEK filter is taken to be the same as described 

previously, using 1S
 as a reduction operator when the model is 

stable and 2S
 when model instabilities appear. Although in the 

transition state: “stable to unstable” and vice-versa, one has to 

change the above equation. Especially, it is replaced by [11]: 
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(i.e. 2S
 is used instead of 1S

), denotes that the reduced forecast 

error 
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decreased analysis error) is projected onto the subspace 

generated by 2S
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When model instabilities vanish ( 1S
 is used instead of 2S

) 

[11]. 

A similar algorithm has been already adopted by Hoteit et al. 

(2002) and  Hoteit et al. (2001) to adapt the forgetting factor and 

the evolution of the correction basis for the SEEK filter and its 

variants. To notice the model unstable periods, they suggest 

tracking the filter's behavior by computing an instantaneous 

average and a long term average of the prediction error variance, 

denoted by ks
 and kl  respectively. So, if kk lcs 

 ( c  is a 

tuning constant), they assumed steady states have been achieved 

and considered that the model is in a stable period. In this step 

we retain 1rr 
EOFs. Otherwise, if kk lcs 

, this is asign that 

the model may be in an unstable period since this would degrade 

the filter short-term performance (the long-term performance is 

weakly affected because it is averaged over a long duration). We 

must then intensify the number of EOFs and thus take 2rr 
 

[11 - 14]. 

Estimates of ks
 and kl are recursively calculated as in Hoteit et 

al. (2002): 
2

1 1 )()( k

f
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Where   and 


 are constants chosen such as 

1
and

 
. 

Hoteit et al. (2002) have used the same algorithm to tune the 

value of the forgetting factor by giving it one of two values 

according to the model mode: 
11 

 when the model is stable 

and 12  
 when model unstable states appear. One can then 

use this adaptive plan together with the one on the number of 

retained EOFs [11 - 15]. 

Conclusion: 

 Contents of this paper can organized in three sections. In the 

first section of this paper, authors mention about all different 

aspects of cloud computing. They tell about applications and 

benefits of such network and explain all different aspects of this 

technology. In the second section, authors discuss about 

Microsoft new products – especially Microsoft Azure Operating 

System – and future decisions of this company based on cloud 

computing. In the third section of this paper, authors reveal new 

novel filter, which named as reduced-order extended Kalman 

filter, the authors claim that, if we use this filter in equipments 

and instruments of cloud service providers we can estimate and 

predict about all involved factors in controlling of such network.  
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