Prudhvi Raj Reddy et al./ Elixir Pharmacy 77 (2014) 28912-28924

Awakening to reality Available online at www.elixirpublishers.com (Elixir International Journal)

Pharmacy

Elixir Pharmacy 77 (2014) 28912-28924

Formulation and evaluation of the oral dispersible tablets of anti-malarial drugs

Prudhvi Raj Reddy.G^{1,*}, Debjit Bhowmik¹, Nanda Kishore Agarwal¹ and K.P.Sampath Kumar²

¹Nimra College of Pharmcy, Vijaywada, Andhra Pradesh.

²Department of Pharmaceutical Sciences, Coimbatore Medical College, Coimbatore.

ARTICLE INFO

Article history: Received: 27 June 2014; Received in revised form: 19 November 2014; Accepted: 29 November 2014;

Keywords

Dispersible tablets, Antimalarial drugs, Disintegration time, % drug release.

ABSTRACT

Optimization of formulation. Physical and In-vitro evaluation of optimized formulation for the release characteristics. Increase the chemical properties like dissolution study. Oral dispersible tablets have received ever-increasing demand during the last decade, and the field has become a rapidly growing area in the pharmaceutical industry. Upon introduction into the mouth, these tablets dissolve or disintegrate in the mouth in the presence of additional water for easy administration of active pharmaceutical ingredients. Optimized formula using polymer coating method exhibited 90% drug release at 15 minutes for model drug but dihydroartemisinin the release was found to be 79% at 15 minutes.

© 2014 Elixir All rights reserved.

Introduction

Dispersible tablets are uncoated or film coated tablets intended to be dispersed in water before administration giving a homogeneous dispersion or a stabilized suspension, so, it's preferred in cases where patients cannot swallow a dosage form and the drug substance is unstable if formulated in liquid medication. The faster the drug into solution, the quicker is the absorption and also the onset of action. It is also helpful for patients having prolonged illness who are prone to nauseate sensations if they have to swallow a tablet. The added advantage of this formulation is faster onset of action as compared to standard compressed tablet. The properties of the dispersible tablet, such as porosity, hardness, disintegration time and increase in viscosity after dispersion are necessary to investigate during manufacturing which decides the product performance.

Materials And Methods

Piperaquietetra phosphate, Dihydroartemisinin Procured from Mylan pharmaceutical, hydrabad, Pregelatinized starch 1500 Magnesium Stearate Procured from Loba chem ,Mumbai ,Microcrystalline cellulose Crosscarmellose sodium Crospovidone Eudragit EPO Procured from signet chemicals, Mumbai.

Conventional Methodology:

Piperaquinetetra phosphate

Considering the flow properties was very poor flow of the piperaquine tetraphoaphate, the process of wet granulation was adopted in order to avoid the process problems during manufacturing

Dihydroartemisinin

Considering the low dosage of the drug that the thermal and moisture issue may occur and as per the literature, it was suggested to be added along with the diluents in the extra granular part.

Various steps included in the formulation

- 1. Wet granulation of Piperaquine tetraphosphate
- 2. Dihydroartemisinin was added in extra granular
- 3. Compression of tablets

Tele:

Table 1. Composition of Piperaquinetetraphosphate

Ingredients	mg/tab
Piperaquine tetraphosphate	160.00
Pregelatinizedstarch 1500	40.00
Dextrin	8.00
Crosscarmellose sodium	5.50
HPMC 3 cps	2.55
Total weight(mg)	216.25

Procedure for preparation of piperaquinetetraphosphate granules

1. All the ingredients were dispensed accurately.

2. Piperaquine tetraphosphate, Pregelatinized starch, Ac-di-sol were sifted through 25 mesh and loaded into Rapid mixer granulator.

3. Dry mixing of the above mixture was done with impeller at 150rpm for 10 mins.

4. Binder solution was prepared by dissolving HPMC 3 cps in purified water

5. Step 3 material was granulated with step 4 binder solution.

6. Granules formed were collected from Rapid mixer granulator and loaded into Rapid dryer and dried for 60 mins at 60° C

7. Loss on drying was checked for the granules prepared at 105^{0} C for 5mins.

8. Dried granules were milled through quadro-co-mill-fitted with 40G screen at 10hz speed

9. Milled granules were passed through 30mesh.

Procedure

1. All the ingredients were dispensed accurately.

2. Dihydroartemisinin, diluents, Polyplasdone XL (Crospovidone) wasco-sifted through #30 mesh.

3. Aspartame and cherry flavor were co-sifted through 40 meshand added to step 2and were mixed in polybag properly

4. Piperaquinetetra phosphate granules were added to step 3 and mixed well.

5. Magnesium stearate was sifted through #60 mesh added to the above blend and mixed properly.

6. The blend was then compressed using suitable tooling on rotary compression machine.

E-mail addresses: debjit_cr@yahoo.com

Inference

From the above trials, it was found that trial with Avicel PH 102 exhibited lower disintegration time with polyplasdoneXL (crospovidone) when compared with other diluents.

Procedure

1. All the ingredients were dispensed properly.

2. Dihydroartemisinin, Avicel PH102, Disintegrantwasco-sifted through #30 mesh and added to bin blender.

3. Required amount of Piperaquine tetraphosphate granules were added to step 2 and blended.

4. Magnesium stearate was sifted through #60 mesh and added to step 3 and blended.

5. The blend was collected in a poly bag and compressed using suitable tooling on rotary compression machine. (9 mm)

Inference

From the above formulation trials lower disintegration time was found with .KollidonCL (crospovidone). In compare with other disintegrants Hence Kollidon CL was finalized for the further trials

Procedure

1. All the ingredients were dispensed accurately.

2. Piperaquine tetraphosphate, AvicelPH102, Kollidon CL(crospovidone) were co-sifted through #30 mesh and were mixed in polybag properly.

3. Required quantity of Dihydroartemisinin granules were added to step 2 and mixed well.

4. Magnesium stearate was sifted through #60 mesh added to the above blend and mixed properly.

5. The blend was then compressed usingsuitable tooling on rotary compression machine.

Inference

From the above trials, it was found that trial without disintegrants shown high disintegration time. There is no significant difference in disintegration time of tablets when disintegrants concentration was raised from 2.5 to 7.5%. Hence disintegrants concentration of 5% was finalized for further trials.

Procedure

1. All the ingredients were dispensed accurately.,

2. Dihydroartemisinin, Avicel PH102, and disintegrantswas cosifted through #30 mesh

3. Piperaquine tetraphosphate granules were added step 2 and mixed well.

4. Magnesium stearate was sifted through #60 mesh added to the above blend and mixed well.

5. The blend was then compressedusing suitable tooling onrotary compression machine

Inference

From the above formulation trials it was concluded that trial with kollidon CL exhibited lower disintegration time than the trial with other grades of kollidonCL.Hence Kollidon CL was finalized for the further trials.

Procedure

1. All the ingredients were dispensed accurately.

2. Dihydroartemisinin, Avicel PH102, kollidon CL were cosifted through #30 mesh.

3. Sweetener was sifted through #40 mesh, added to step 2 and mixed well.

4. Piperaquine tetraphosphate granules, were added to step 3 and mixed well.

5. Magnesium stearate was sifted through #60 mesh added to step 4 and mixed well in poly bag.

6. The blend was then compressed using suitable tooling on rotary compression machine.

Inference

From the above trials it was found that trial with Sucralose and aspartame exhibited acceptable taste when compared to other sweeteners. Hence both the sweeteners were evaluated in further trials.

Inference

From the above trials it can be concluded that sucralose is better sweetener than Aspartame.

Trials with sucralose concentration from 20mg-27.5mgwere found to be slightly bitter

Trials with sucralose concentration from 30mg-32.5mg were found to be sweet with no agitation. Hence sucralose concentration of 30mg was selected for further trials.

Procedure

1. All the ingredients were dispensed accurately.

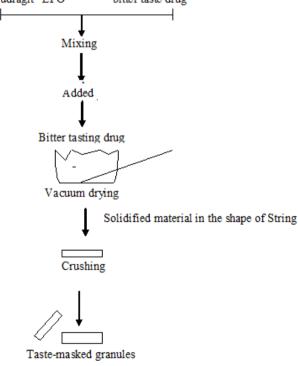
2. Dihydroartemisinin , Avicel PH102, kollidon CL were co-sifted through #30 mesh.

3. sucralose and $\$ flavors were sifted through #40 mesh, and added to step 2

4. Piperaquine tetraphosphate granules, were added to the step 3 and mixed well in a polybag.

5. Magnesium stearate was sifted through #60 mesh added to step 4blend and mixed well.

6. Step 5 blend was then compressed using suitable tooling on rotary compression machine.


Inference

From the above trials it can be concluded that, batch with strawberry flavor was found to be pleasant with satisfactory aroma. Hence strawberry flavor of concentration 10mg was finalized.

Method B

Taste Masking By Polymer Coating:

Formulation development with Eudragit polymers Eudragit EPO bitter taste drug

Fig. Flow chart of formulation of taste masking granules Procedure:

Preparation of taste masked granules of Dihydroartemisinin

Dihydroartemisinin was thoroughly mixed with powdered Eudragit EPO in different ratios. Then 60 % Isopropyl alcohol(IPA)and Dichloromethane 40% was added to this mixture in a glass beaker and mixed well to make a gelatinous mass. The prepared gel was manually kept in vacuum dryer for drying. After extrusion, IPA and DCM was removed by evaporation overnight at room temperature. Subsequently the solidified drug polymer complex (DPC) was crushed into granules using a mortar.

Three batches were prepared containing drug-Eudragit EPO in the ratio of 1:1, 1:2, and 1:3 in IPA and DCM by the above-mentioned method.

Inference

From the above trials it was found that the drug polymer ratio of 1:3 was able to mask the bitterness of the drug completely. Hencedrug polymer ratio of 1:3 was further optimized.

Procedure

1. All the ingredients were dispensed properly.,

2. AvicelPH102 and Disintegrants were co-sifted through #30 mesh and mixed well.

3. Piperaquine tetraphosphategranules and Mode 2 drug granules were added to step 2

4. Magnesium stearate was sifted through #60 mesh and added to step 3 and mixed well.

5. Step 4 blend was compressed using suitable tooling on rotary compression machine using suitable tooling(9 mm)

Inference

From the above trials, it was found that the trial with different disintegrants shown with same concentration there is significant change in disintegration time in compare with other disintegrant .the lower disintegration time was found with kollidonCL (crospovidone).Hence Kollidon CL was optimized for further trials

Procedure

1. All the ingredients were dispensed accurately.

2. Avicel PH102 and kollidon CL were co-sifted through #30 mesh

3. Sweetener was sifted through #40 mesh, and added to step 2 and mixed well.

4. Piperaquine tetraphosphate granules and Dihydroartemisinin granules were added to step 3 and mixed well.

5. Magnesium stearate was sifted through #60 mesh added to step 4 and mixed well.

6. Step 5 blend was then compressed using suitable tooling on rotary compression machine using suitable tooling.

Inference

From the above trials it was found that trial with Sucralose and aspartame exhibited acceptable taste when compared to other sweeteners. Hence both the sweeteners were evaluated in further trials

Inference

From the above trials it can be concluded that sucralose is better sweetener than asparatame.

Trials with sucralose concentration from 5mg-12.5mgwere found to be slightly bitter

Trials with sucralose concentration from 15mg17.5mg were found to be sweet with no agitation .Hence sucralose concentration of 30mg was selected for further trials.

Procedure

1. All the ingredients were dispensed accurately.

2. Avicel PH102 and kollidon CL were co-sifted through #30 mesh .

3. Sweetener Sucralose was sifted through #40 mesh, added to step 2.

4. Piperaquine tetraphosphate granules and Dihydroartemisinin granules were added to step 3 and mixed well.

5. Magnesium stearate was sifted through #60 mesh added to step 4 and mixed well.

6. Step blend was then compressedusing suitable toolingonrotary compression machine

Inference

From the above trials it can be concluded that, batch with strawberry flavor was found to be pleasant with satisfactory aroma. Hence strawberry flavor of concentration 10mg was finalized.

Inference

1. All the physical parameters were found to be satisfactory

2. Sweetener sucralose found to be sweet with no agitation

3. Strawberry flavor was found to be pleasant and satisfactory aroma

Hence conventional method was successfully achieved

Inference

1. All the physical parameter of the formulation were found to be satisfactory

2. Dihydroartemisinin was coated with polymer Eudragit EPO was able to mask the bitter ness completely and found to be satisfactory

3. Sweetenersucralose found to be sweet with no agitation

4. strawberry flavor was found to be pleasant and satisfactory aroma

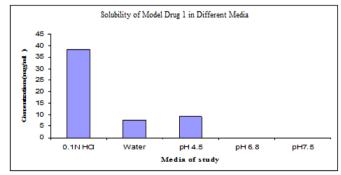
Hence taste masking by polymer coating method was successfully achieved.

Results And Discussion

Physical characterization drugs 1 and 2 Inference

From above studies, it was concluded that both the drugs are having very very poor flow properties.

Inference


From the above studies, it was concluded that blend of optimized formulation A and B exhibited passable flow properties

Sieve analysis

For Piperaquine tetraphosohate

Inference

From the above study it was observed that around 97% of sample retained on 40# mesh which concluded that the average particle size of piperaquine tetra phosohate is more than 420 microns

Fig 1. Solubility profile of piperaquine tetra phosohate in different media

For Dihydroartemisinin Inference

From the above study it was observed that cumulative retained on 60 mesh was around 89%

Inference

From the above study it was observe that the cumulative percentage of sample retained

On 60 mesh was 28% whereas fines through 100 mesh was 24% **Solubility studies**

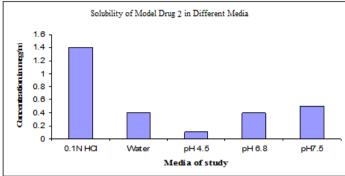


Fig 2. Solubility profile of dihydroartemisinin in different media

Inference

From the above solubility it can be concluded that the piperaquine tetra phosohateand dihydroartemisinin are having highest solubility in 0.1 N HCL. Compared with other medium. **Method development**

Determination of λ_{max}

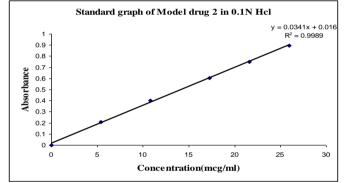
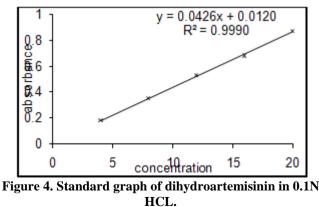



Fig12.1: Standard graph of Piperquinetetraphosphate in 0.1N HCl

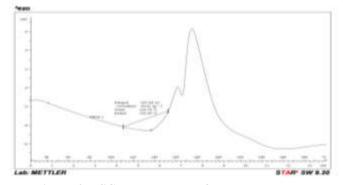
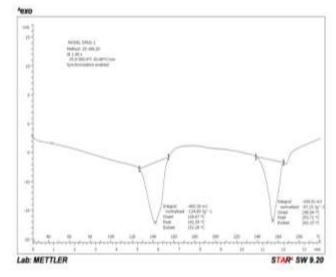
Inference:

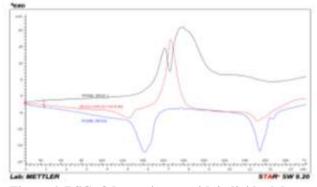
The λ_{max} of model drug was found to be 345nm. The linear equation was y = 0.0339x + 0.0216 (x=concentration µg/ml). Different standard concentration and their absorbance values were shown in the table . Regression value of the calibration curve is 0.9979.

Inference:

The λ_{max} of model drug was found to be 210nm. The linear equation was y = 0.0426x + 0.0120 (x=concentration µg/ml). Different standard concentration and their absorbance values were shown in the table. Regression value of the calibration curve is 0.9990.

Drug Interaction studies: Thermogram Of Piperquinetetraphosphate


Figure 4. DSC thermo gram of the Model drug DSC Thermogram of Dihydroartemisinin

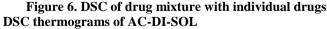


Figure 5. DSC thermo gram of the Dihydroartemisinin Inference

From the above thermo grams, it was found that the melting point of Piperaquine tetra phosohate was 154^oC and that of Dihydroartemisinin was 253^oC.

DSC Thermogram Of Piperquinetetraphosphate, Iimixture

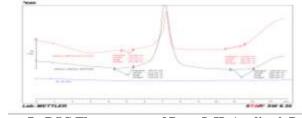


Figure 7 : DSC Thermogram of Drug I, II, Ac-di-sol, Drug I, II and Ac-di-so

Table 2. Composition of Trans with Different Differents									
Ingredients	F1	F2	F3	F4	F5				
Piperaquine tetraphosphate Granules	216.25	216.25	216.25	216.25	216.25				
Extra Granular Portion									
Dihydroartemisinin	20.00	20.00	20.00	20.00	20.00				
Microcrystalline cellulose (Avicel PH102)	38.55	-	-	-	-				
Microcrystalline cellulose (Avicel PH101)	-	38.55	-	-	-				
Mannitol SD100 (pearlitol)	-	-	38.55	-	-				
Mannitol SD200 (pearlitol)	-	-	-	38.55	-				
Pre-gelatinised starch	-	-	-	-	38.55				
PolyplasdoneXL(crospovidone)	15.00	15.00	15.00	15.00	15.00				
Aspartame	5.00	5.00	5.00	5.00	5.00				
Cherry flavor	2.00	2.00	2.00	2.00	2.00				
Magnesium stearate	3.00	3.00	3.00	3.00	3.00				
Total weight (mg)	300	300	300	300	300				

Table 2. Composition of Trails with Different Diluents

Table 3 Physical parameters of Trails on Different Diluents

Parameters	F1	F2	F3	F4	F5
Thickness(mm)	3.53-3.62	3.55-3.65	3.52-3.61	3.55-3.62	3.51-3.60
Hardness(kp)	4.3-5.4	4.5-6.0	4.1-5.8	4.6-5.4	4.8-5.8
Disintegration time(mins sec ["])	1' 5"-1'20"	1'20"-1'55"	1'30"-2'10"	1'30"-2'5"	2'5"-2'18"

Table 4 Composition of Trail with different Disintegrants

Composition	F1	F2	F3	F4	F5
Piperaquine tetraphosphate Granules	216.25	216.25	216.25	216.25	216.25
EG Portion					
Dihydroartemisinin	20	20	20	20	20
Microcrystalline cellulose(AvicelPH102)	38.55	38.55	38.55	38.55	38.55
Low Substituted Hydroxypropyl Cellulose (LHPCLH11)	15.00	-	-	-	-
Crospovidone (Kollidon CLM)	-	15.00		-	-
Low Substitute Hydroxyl Propyl Cellulose (LHPC LH21)	-	-	15.00		-
Low Substituted Hydroxypropyl Cellulose (LHPC LH31)	-	-	-	15.00	
Crosscarmellose Sodium	-	-	-	-	15.00
Aspartame	5.00	5.00	5.00	5.00	5.00
Cherry flavor	2.00	2.00	2.00	2.00	2.00
Magnesium stearate	3.00	3.00	3.00	3.00	3.00
Total weight(mg)	300	300	300	300	300

Table 5. Composition of Trail with different Disintegrants F6-F9

Ingredients	F6	F7	F8	F9				
Piperaquine tetraphosphate Granules	216.25	216.25	216.25	216.25				
Extra granular Portion								
Dihydroartemisinin	20	20	20	20				
Microcrystalline cellulose(AvicelPH102)	38.55	38.55	38.55	38.55				
PolyplasdoneXL(crospovidone)	15.00	-	-	-				
PolyplasdoneXL 10(crospovidone)	-	15.00		-				
Kollidon CL (crospovidone)	-	-	15.00					
Sodium starch glycolate	-	-	-	15.00				
Aspartame	5.00	5.00	5.00	5.00				
Cherry flavor	2.00	2.00	2.00	2.00				
Magnesium stearate	3.00	3.00	3.00	3.00				
Total weight(mg)	300	300	300	300				

Table 6. Physical parameters of Trails on Different Disintegrants F1-F9

Formulations	Thickness(mm)	Hardness(kp)	D.T(mins' sec")
F1	3.53-3.62	4.5-5.7	1' 5"-1'20"
F2	3.55-3.65	4.5-5.6	1' 4"-1'40"
F3	3.51-3.59	4.2-5.5	1' 20"-2'10"
F4	3.53-3.62	4.4-5.6	1'3 5"-2'45"
F5	3.52-3.63	4.2-5.7	1' 5"-1'20"
F6	3.55-3.69	4.3-5.8	1' 5"-1'50"
F7	3.53-3.64	4.2-5.9	1' 20"-1'53"
F8	3.55-3.64	4.3-5.7	1'-1'20"
F9	3.51-3.62	4.4-5.6	1'-1'20"

Ingredients	without	2.5%	5%	7.5%
Piperaquine tetraphosphate Granules	216.25	216.25	216.25	216.25
Extra Granular Portion				
Dihydroartemisinin	20	20	20	20
Microcrystalinecellulose (AvicelPH102)	53.55	46.25	38.55	31.25
Kollidon CL (crospovidone)	-	5.5	15	22.5
Aspartame	5.00	5.00	5.00	5.00
Cherry flavor	2.00	2.00	2.00	2.00
Magnesium stearate	3.00	3.00	3.00	3.00
Total weight (mg)	300	300	300	300

 Table 7. Formulation with different concentrations of Kollidon-CL

Table 8. Evaluation parameters

Parameters	Kollidon CL 0%	Kollidon CL 2.5%	Kollidon CL 5%	Kollidon CL 7.5%
Thickness(mm)	3.55-3.61	3.53-3.63	3.52-3.60	3.55-3.61
Hardness(kp)	4.4-5.6	4.2-5.8	4.4-5.5	4.1-5.8
Disintegration Time (min' -sec")	2' 30"-3'10"	1' 50"-2'30"	1'00"-1'10"	55"-1' 05 "

Table 9. Formulation with different grades of Kollidon(crospovidone)

Ingredients	F1	F2	F3	F4
Piperaquine tetraphosphate Granules	216.25	216.25	216.25	216.25
Extra Granular Portion				
Model drug 2	38.55	38.55	38.55	38.55
Microcrystalline cellulose (AvicelPH102)	38.55	38.55	38.55	38.55
Kollidon CL (crospovidone)	15.00	-	-	-
Kollidon CL-F (crospovidone)	-	15.00	-	-
Kollidon 90F (crospovidone)	-	-	15.00	-
Kollidon CL- M (crospovidone)	-	-	-	15.00
Aspartame	5.00	5.00	5.00	5.00
Cherry flavor	2.00	2.00	2.00	2.00
Magnesium stearate	3.00	3.00	3.00	3.00
Total weight (mg)	300	300	300	300

Table 10. Evaluation parameters

Parameters	Hardness(kp)	Thickness(mm)	Disintegrationtime
			(min' -sec")
Kollidon CL	4.5-5.7	3.55-3.61	58"-1' 05"
Kollidon CL-F	4.3-5.6	3.53-3.62	1'-1' 50"
Kollidon CL-SF	4.1-5.7	3.52-3.60	1'-1'53"
Kollidon CL-M	4.2-5.8	3.55-3.59	1′5″ -1′65″

			Table 11						
Ingredients	Sucralose	Aspartame	Acesulfame potassium	Sodium Saccharin	Sucrose	Pulverized sugar			
Piperaquine tetraphosphate Granules	216.25	216.25	216.25	216.25	216.25	216.25			
Extra Granular Portion									
Model drug2	20	20	20	20	20	20			
Microcrysta-line cellulose (AvicelPH102)	38.55	38.55	38.55	38.55	38.55	38.55			
Kollidon CL crospovidone	15.00	15.00	15.00	15.00	15.00	15.00			
Sucralose	25.00	-	-	-	-	-			
Aspartame	-	25.00	-	-	-	-			
Acesulfame Potassium	-	-	25.00	-	-	-			
Sodium Saccharin	-	-	-	25.00	-	-			
Sucrose	-	-	-	-	25.00	-			
Pulverized sugar	-	-	-	-	-	25.00			
Cherry flavor	2.00	2.00	2.00	2.00	2.00	2.00			
Magnesium stearate	3.00	3.00	3.00	3.00	3.00	3.00			
Total weight (mg)	320	320	320	320	320	320			

Table 11

In andiante	Trial	Trial	Trial	Trial	Trial	Trial
Ingredients	1	2	3	4	5	6
Piperaquine tetraphosphate Granules	216.25	216.25	216.25	216.25	216.25	216.25
Extra Granular Portion						
Dihydroartemisinin	20.00	20.00	20.00	20.00	20.00	20.00
Microcrystalinecellulose						
(Avicel PH102)	43.55	41.25	38.55	36.25	33.55	31.25
kollidon CL(crospovidone)	15.00	15.00	15.00	15.00	15.00	15.00
Aspartame	20.00	22.5	25.00	27.5	30.00	32.5
Cherry flavor	2.00	2.00	2.00	2.00	2.00	2.00
Magnesium stearate	3.00	3.00	3.00	3.00	3.00	3.00
Total weight (mg)	320	320	320	320	320	320

Table 12	Formulation	with	different	levels of	asnartame
1 and 12.	I'vi mulativn	** 1111	unititut		aspartant

Table 13 Formulati	on with	different	levels of	f Sucralo	ose
nts	Trial 1	Trial 2	Trial 3	Trial 4	Trial 5

Table 15 Formulation with unrefent levels of Sucratose								
Ingredients	Trial 1	Trial 2	Trial 3	Trial 4	Trial 5	Trial 6		
Piperaquine tetraphosphate Granules	216.25	216.25	216.25	216.25	216.25	216.25		
Exta Granular Portion								
Dihydroartemisinin	20.00	20.00	20.00	20.00	20.00	20.00		
Microcrystalinecellulose								
(Avicel PH102)	43.55	41.25	38.55	36.25	33.55	31.25		
Kollidon CL								
(cropovidone)	15.00	15.00	15.00	15.00	15.00	15.00		
Sucralose	20	22.5	25	27.5	30	32.5		
Cherry flavor	2.00	2.00	2.00	2.00	2.00	2.00		
Magnesium stearate	3.00	3.00	3.00	3.00	3.00	3.00		
Total weight (mg)	320	320	320	320	320	320		

Table 14. Formulation of with Sucralose and different levels of flavors

Ingredients	F1	F2	F3	F4	F5
Piperaquine tetraphosphate Granules	216.25	216.25	216.25	216.25	216.25
Extra Granular Portion					
Microcrystalinecellulose (AvicelPH102)	33.55	33.55	33.55	33.55	33.55
Dihydroartemisinin	20.00	20.00	20.00	20.00	20.00
KollidonCL (crospovidone)	15.00	15.00	15.00	15.00	15.00
Sucralose	30	30	30	30	30
Orange juice flavor	10.00	-	-	-	-
Orange flavor	-	10.00	-	-	-
Pepper-mint flavor	-	-	10.00	-	-
Cherry flavor	-	-	-	10.00	-
Strawberry flavor	-	-	-	-	10.00
Magnesium stearate	3	3	3	3	3
Total weight (mg)	330	330	330	330	300

Table-15

Ingredients	mg/tab	Ratio 1:1	Ratio 1:2	Ratio 1:3			
Piperaquine tetraphosphate	20	20	20	40			
Eudragit EPO	80	80	160	60			
IPA	40	40	40	40			
DCM	60	60	60	60			

Table 16 Formulation with different Disintegrants

Tuble to t of manufold with and			
Ingredients	F1	F2	F3
Dihydroartemisinin granules	216.20	216.25	216.25
Piperaquine tetraphosphate granules	20	20	20
Extra granula	r		
Microcrystalinecellulose(AvicelPH102)	38.55	38.55	38.55
PolyPlasadoneXL(crospovidone)	15.00	-	-
Kollidon CL(crospovidone)	-	15.00	-
Sodium starch glycolate	-	-	15.00
Aspartame	5.00	5.00	5.00
Cherry flavor	2.00	2.00	2.00
Magnesium stearate	3.00	3.00	3.00
Total weight(mg)	300	300	300

Prudhvi Raj Reddy et al./ Elixir Pharmacy 77 (2014) 28912-28924

Parameters	Hardness(kp)	Thickness(mm)	Disintegration time (min' -sec")
FI	4.5-5.7	3.55-3.61	55"-1' 05"
F2	4.3-5.6	3.53-3.62	1′05″ -1′35″
F3	4.1-5.7	3.52-3.60	1'-1'40"

		I and a second	i unici chi ti fuis with			
Ingredients	Sucralose	Aspartame	Acesulfame potassium	Sodium Saccharin	Sucrose	Pulverized sugar
Piperaquine tetraphosphate Granules	216.25	216.25	216.25	216.25	216.25	216.25
Dihydroartemisinin Granules	20	20	20	20	20	20
Extra Granular Portion						
Microcrysta-line cellulose (AvicelPH102)	38.55	38.55	38.55	38.55	38.55	38.55
Kollidon CL crospovidone	15.00	15.00	15.00	15.00	15.00	15.00
Sucralose	15.00	-	-	-	-	-
Aspartame	-	15.00	-	-	-	-
Acesulfame	_		15.00	_	_	
Potassium	-	-	15.00	-	-	-
Sodium	_	_	_	15.00	_	_
Saccharin	_	_	_	15.00	_	_
Sucrose	-	-	-	-	15.00	-
Pulverized sugar	-	_	-	-	-	15.00
Strawberry flavor	2.00	2.00	2.00	2.00	2.00	2.00
Magnesium stearate	3.00	3.00	3.00	3.00	3.00	3.00
Total weight (mg)	300	300	300	300	300	300

Table 17 Composition of different trials with Sweeteners

Table 18 Composition of Trial with different levels of Aspartame

Ingredients	Trial 1	Trial 2	Trial 3	Trial 4	Trial 5	Trial 6
Piperaquine tetraphosphate Granules	216.25	216.25	216.25	216.25	216.25	216.25
Dihydroartemisinin	20	20	20	20	20	20
Extragranular						
Microcrystaline cellulose (Avicel PH102)	43.55	41.25	38.55	36.25	33.55	31.25
KollidonCL (crospovidone)	15.00	15.00	15.00	15.00	15.00	15.00
Aspartame	5.00	7.50	10.00	12.50	15.00	17.50
Cherry flavor	2.00	2.00	2.00	2.00	2.00	2.00
Magnesium stearate	3.00	3.00	3.00	3.00	3.00	3.00
Total weight (mg)	310	310	310	310	310	310

Table 19. Composition of Trial with different levels of Sucralose

	========					
Ingredients	Trial 1	Trial 2	Trial 3	Trial 4	Trial 5	Trial 6
Piperaquine tetraphosphate Granules	216.25	216.25	216.25	216.25	216.25	216.25
Dihydroartemisinin	20	20	20	20	20	20
Extragranular						
Microcrystaline cellulose (Avicel PH102)	43.55	41.25	38.55	36.25	33.55	31.25
KollidonCL (crospovidone)	15.00	15.00	15.00	15.00	15.00	15.00
Sucralose	5.00	7.50	10.00	12.50	15.00	17.50
Cherry flavor	2.00	2.00	2.00	2.00	2.00	2.00
Magnesium stearate	3.00	3.00	3.00	3.00	3.00	3.00
Total weight (mg)	320	320	320	320	320	320

Table 20. Composition of Trials with different flavors with Sucralose

Table 20. Composition of Trials with different navors with Sucraiose								
Ingredients	Orange juice	Orange	Pepper- mint	Cherry	Strawberry			
Piperaquine tetraphosphate Granules	216.25	216.25	216.25	216.25	216.25			
Dihydroartemisinin granules	20	20	20	20	20			
Extragranular								
Microcrystalinecellulose (Avicel PH102)	33.55	33.55	33.55	33.55	33.55			
Kollidon CL (crospovidone)	15.00	15.00	15.00	15.00	15.00			
Sucralose	30.00	30.00	30.00	30.00	30.00			
Orange juice flavor	10.00	-	-	-	-			
Orange flavor	-	10.00	-	-	-			
Pepper- mint flavor	-	-	10.00	-	-			
Cherry flavor	-	-	-	1000	-			
Strawberry flavor	-	-	-	-	10.00			
Magnesium stearate	3.00	3.00	3.00	3.00	3.00			
Total weight (mg)	330	330	330	330	300			

Table 21. Optimized formula using conventional taste masking methodology

Ingredients	Optimized Trail 1
Dihydroartemisinin granules	216.25
EG Portion	
Dihydroartemisinin	20.00
Microcrystalinecellulose(Avicel PH102)	25.75
Kollidon CL(crospovidone)	15.00
Sucralose	30.00
strawberry flavor	10.00
Magnesium stearate	3.00
Total weight(mg)	320

Table 22 Evaluation parameters

Parameters	Hardness (kp)	Thickness(mm)	Disintegration time (min' – sec")
Optimized batch	4.5-5.8	3.58-3.64	0′.58″-1′ 05″

Table 23. Optimized formula using taste masking by polymer coating

Ingredients	Optimized Trail
Dihydroartemisinin granules	216.25
Piperaquine tetraphosphate granules	20.00
Extragranular	
Microcrystalinecellulose(Avicel PH102)	30.75
Kollidon CL(crospovidone)	15
Sucralose	15
strawberry flavor	10
Magnesium stearate	3
Total weight(mg)	310

Table 24. Evaluation parameter

Parameters	Hardness(kp)	Thickness (mm)	Disintegration time(min' – sec")
Optimized batch	4.5-5.6	3.58-3.64	0′.50″-1′0″

Table 25 Flow properties of both the Model drugs

Parameter	Piperaquine tetra phosohate	Dihydroartemisinin
Tapped density(gm/ml)	0.733	0.333
Bulk density(gm/ml)	0.407	0.155
Carr's Compressibility index(%)	44.44	53.45
Hausner's Ratio	1.80	2.14

Table 26 Flow properties of lubricated blend of the Conventional Methodology

Parameter	Blend
Tapped density(gm/ml)	0.5235
Bulk density(gm/ml)	0.364
Carr's Compressibility index(%)	25.098
Hausner's Ratio	1.644

Table 27 Flow properties of lubricated blend of taste masking of the polymer coating

Parameter	Blend
Tapped density(gm/ml)	0.5029
Bulk density(gm/ml)	0.379
Carr's Compressibility index(%)	25.902
Hausner's Ratio	1.326

Table 28. Particle size determination of piperaquine tetraphosohate

Sieve Mesh	Sieve Size	Mass of Sample Retained	Percentage of Sample Retained	Cumulative Percentage of Sample
Number	Opening(µm)	on each Sieve (g)	on each Sieve (%)	Retained on Each Sieve (%)
40	420	9.92	96.498	96.498
60	250	0.1	0.972	97.47
80	177	0.14	1.361	98.831
100	149	0.06	0.583	99.414
Pan	-	0.06	0.583	99.997

Sieve Mesh	Sieve Size	Mass of Sample Retained	Percentage of Sample Retained	Cumulative Percentage of Sample
Number	Opening(µm)	on Each Sieve(g)	on Each Sieve (%)	Retained on Each Sieve (%)
40	420	10.78	52.94	52.94
60	250	7.34	+36.051	88.991
80	177	1.28	6.286	95.277
100	149	0.61	2.996	98.273
Pan	-	0.35	1.719	99.992

Table 30 Particle size determination of blend

Sieve Mesh	Sieve Size	Mass of Sample Retained	Percentage of Sample Retained	Cumulative Percentage of Sample
Number	Opening(µm)	on Each Sieve(g)	on Each Sieve (%)	Retained on Each Sieve (%)
40	420	1.4	6.89	6.89
60	250	4.32	21.29	28.18
80	177	5.08	25.036	53.216
100	149	4.63	22.819	76.035
Pan	-	4.86	23.952	99.987

Table 31. Solubility study of both the drugs 1 & 2

Media	Solubility (mg/ml)		
	Piperaquine tetra phosohate	Dihydroartemisinin	
0.1N HCl	38.3	1.4	
Water	7.6	0.4	
pH 4.5	9.22	0.1	
рН б.8	0.05	0.4	
pH7.5	0.03	0.5	

Table 32 Determination of λ_{max} for Piperaquine tetra phosohate

Concentration (mcg/ml)	Absorbance
0	0
5.4	0.21
10.8	0.4
17.28	0.603
21.6	0.748
25.92	0.895

Table 33 Determination of λ_{max} for Dihydroartemisinin

Absorbance
0.182
0.353
0.529
0.679
0.870

Table 34. Physical observation of drug and excipient blends

		Description	
Blend	Initial	40°C 75%RH 15 days	30°C 75%RH 15 weeks
drugs + Micro crystalline cellulose	White powder	White powder	White powder
drugs + Ac-di-sol	White to grayish white powder	White to grayish white powder	White to grayish white powder
drugs + kollidon CL	White to creamy white powder	White to creamy white powder	White to creamy white powder
drugs + EPO	White powder	White powder	White powder
drugs + sucrolose	White powder	White powder	White powder
drugs + HPMC3CPS	White to creamy white powder	White to creamy white powder	White to creamy white powder
drugs + Magnesium stearate	Light white powder	Light white powder	Light white powder

Table 36. Dissolution Profile of Piperquinetetraphosphate (Final formulation)

T : (·)	
Time(mins)	% Drug release
5	77
10	85
15	89
30	92
45	95
60	97

DSC Thermograms of HPMC

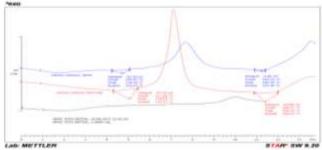


Figure 8. DSC Thermogram of Drug I, II, HPMC, Drug I, II and HPMC

DSC thermograms of micro crystalline Cellulose PH 102 (MCC)

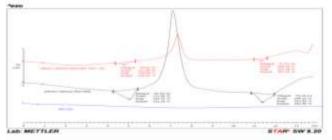


Fig 9. DSC Thermogram of Drug I, II, MCC PH 102, Drug I, II and MCC PH 102

DSC Thermograms Of Magnesium Stearate



Fig 10. DSC Thermogram of Drug I, II, Magnesium stearate, Drug I, II and Magnesium stearate DSC thermograms of dextrin

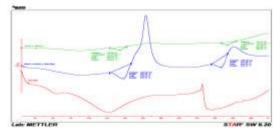


Fig 11. DSC Thermogram of Drug I, II, Dextrin, Drug I, II and Dextrin

DSC Thermograms of EPO

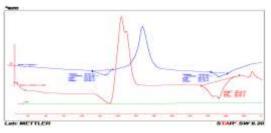


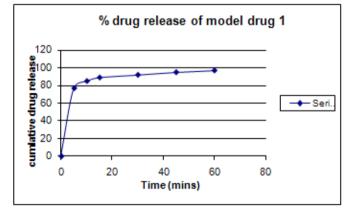
Figure 12 DSC Thermogram of Drug I, II, EPO, Drug I, II and EPO

Physical observation of drug and excipient blends Post Compressional Parameters Fineness of dispersion Inference

From the above study it was known that nothing remains on the mesh when dispersion passed through the mesh.

Discussion

From the above inference it was found that the dispersion formed was passed through the #25 mesh which indicates that the tablets passed the test.


In-vitro Dissolution test

Dissolution is a process by which the disintegrated solid solute enters the solution. The test determines the time required for a definite percentage of the drug in a tablet to dissolve under specified conditions.

Dissolution Parameters

1 al ameter 5		
Dissolution Parameters		
Medium	0.1N HCL	
Apparatus	USP-II apparatus	
Volume	900 ml	
RPM	50	
Temperature	$37 \ {}^{0}C \pm 0.5 \ {}^{0}C$	
Sampling	5, 10, 15, 30, 45, 60 (For	
times	Piperaquine tetra	
	phosohate)	
	5, 10, 15, 30, 45, 60, (for	
	Dihydroartemisinin)	

Dissolution Profile of Piperquinetetraphosphate Fig 12. Dissolution graph of piperquinetetraphosphate.

Dissolution Profile of dihydroartemisinin Calculation and ABSORBANCE, CONC

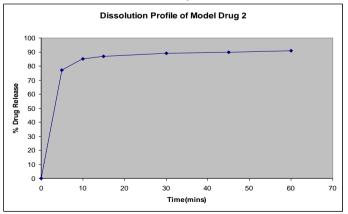


Fig 13. Dissolution graph of Dihydroartemisinin in 0.1N Hcl Dissolution Profile with EPO

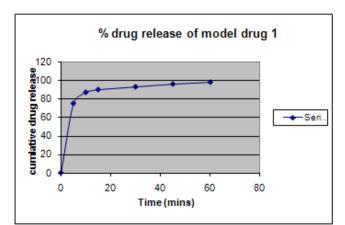


Fig 14. Dissolution graph of Piperquinetetraphosphate with EPO

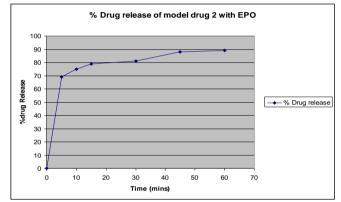


Fig-15 Dissolution graph of Dihydroartemisinin with EPO Table 37

1 abit 57		
Time(mins)	% Drug release	
5	77	
10	85	
15	87	
30	89	
45	90	
60	91	

 Table 28 Dissolution profile of Piperquinetetraphosphate

 with EPO

Time(mins)	% Drug release	
5	75	
10	87	
15	90	
30	93	
45	96	
60	98	

 Table 39. Dissolution profile of dihydroartemisinin with

EPO		
Time(mins)	% Drug release	
5	69	
10	75	
15	79	
30	81	
45	88	
60	89	

Inference

1. It was observed that optimized that optimized formulation with conventional method exhibited

More than 85% drug release.at 15 minutes. For drugs 1 and drugs 2 $\,$

2. Optimized formula using polymer coating method exhibited 90% drug release at 15 minutes for model drug but dihydroartemisinin the release was found to be 79% at 15 minutes

3. The end release from the formulations and for both the drugs are found to be comparable

Summary And Conclusion

1. Preformulation studies:

a) From the Carr's index and Hausner's ratio the flow property of both the Model drugs is Very poor flow as per the recorded values.

b)From the above solubility it can be concluded that the model drug 1 and model drug 2 are having highest solubility in 0.1 N HCL. Compared with other media.

c) Drug-Excipients compatibility studies were performed by physical observation. The physical observations have shown no significant change in the binary mixture of drug and excipients. 2. Formulation development:

a) Formulation development was done using two approaches, taste masking by conventional methodology and taste masking by polymer coating.

b)Eudragit was used as a polymer in taste masking by polymer coating.

c)Different formulations were prepared by using different disintegrants like Sodium starch glycolate , PolyPlasdoneXL, PolyPlasdoneXL10, , Kollidon CL, Ac-di-sol, Pregelatinized starch, Low Hydroxy Propyl Cellulose (LH11), Kollidon CL-M, Low Hydroxy Propyl Cellulose (LH21).

d)Among all the disintegrants used, crospovidone (kollidon CL) exhibited lower disintegration time than that other disintegrants used

e) Among all the sweeteners used , sucralose was found to be sweet with no agitation

f) Among the all flavors ,Strawberry flavor as found to be pleasant with satisfactory aroma

Conclusion

From the above study it is concluded that a stable immediate release dispersible tablets of a drugs could be obtained using 5% Kollidon as disintegrant in extra granular. And aci-di-sol in intra granulation.Taste masking was achieved with two methods ,taste masking by conventional method and taste masking by the polymer coating .the selected sweetening agent is sucralose and the selected flavor strawberry flavor to achieve taste masking with conventional method .To achieve the taste masking with polymer coating Eudragit EPO was selected as polymer ,sucralose as selected as sweeting agent .strawberry flavor selected as flavor

The future course of the work would be to conduct

1. Scalability and optimization of developed formulation

2. Optimization of manufacturing process

3. Long term stability

4. In-vivo evaluation

Reference

1. Sanjai Kumar Et al., 'Antimalarial drugs: current status and new developments a review', Expert Opin. Investig. Drugs (2005) 14(7):871-883.

2. KR Bobe Et al, 'Formulation and evaluation of fast dispersible tablet of Atorvastatin using cyclodextrin complexation', International Journal of Drug Formulation & Research Jan-Feb. 2011, Vol. 2 (1).

3. Rakesh p. patel Et al., 'Formulation development and optimization of Cefditoren pivoxil dispersible tablet'

International Journal of Current Pharmaceutical Research Vol 2, Issue 1, 2010.

4. Ines Stoltenberg Et al., has studied 'Solid oral dosage forms for children- formulations, excipients and acceptance issues', European Industrial Pharmacy, issue 8 February 2011.

5.J. Plaizier-Vercammen Et al., has investigated 'Experimental designed optimization and stability evaluation of dry suspension with artemisinin derivatives for paediatric use', International Journal of Pharmaceutics 283 (2004) 19–34.

6.P. Wilairatana Et al., has studied 'A Comparision of three dihydroartemisinin formulations for the treatment of acute uncomplicated falciparum malaria in Thailand' International Journal for Parasitology 28(1998) 1213-1218.

7. J.Plaizier-Vercammen Et al., has investigated the 'Design of a dissolution system for the evaluation of the release rate

characteristics of Artemether and Dihydroartemisinin from tablets', International Journal of Pharmaceutics 274 (2004) 245–260.

8. Supornchai Kongpatanakul Et al., has studied 'Evaluation of the safety and relative bioavailability of a new dihydroartemisinin tablet formulation in healthy Thai volunteers', Transactions of the Royal Society of Tropical Medicine and Hygiene (2007) 101, 972—979.

9. H.Y. Myint Et al., has studied 'Efficacy and safety of Dihydroartemisinin and Piperaquine', Transactions of the Royal Society of Tropical Medicine and Hygiene (2007) 101, 858–866.