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1.1 Introduction 

 All graphs considered here are finite and simple. Notations 

and terminology not defined here will conform to those in [1]. 

For a graph G, let V (G), E(G), p(G), q(G) and , respectively, 

be the set of vertices, the set of edges, the order, the size and the 

complement of G.Let G be a simple graph and suppose that we 

have a proper coloring of G forwhich there exists a color class c 

such that every vertex v in c is not adjacentto any vertex in at 

least one other color class; then we can separately changethe 

color of each vertex in c to obtain a proper coloring with fewer 

Colors.Since then the b-chromatic number has drawn quite some 

attention among the scientific community. AlreadyIrving and 

Manlove [2] have shown, that computing φ(G) is an NP-

complete problem in general.  

 The b-chromatic number has drawn much attention in 

scientific area [5,6,7,8,9,10]. We can easily imagine the colour 

classes as different communities, where every community i has 

a representative that is able to communicate with all the others 

communities.  Even though the b-chromatic number is a simple 

concept, it is hard to determine the exact values, even for known 

families of graphs. This lead to studies of lower and upper 

bounds, [13]. 

 The b-chromatic number has been considered with respect 

to subgraphs in [11], while the b-chromatic number under graph 

operations was considered in [15] for the Cartesian product and 

in [8] for the other three standard products.  

 Operations on graphs produce new ones from older ones. 

Unary operations create a new graph from the old one. It creates 

a new graph from the original one by a simple or a local change, 

such as addition or deletion of a vertex or an edge, merging and 

splitting of vertices, edge contraction,etc. 

Definition 1.1 .1 

A Chordof a cycle C is an edge not in C whose end vertices lie 

in C. 

 

 

Definition 1.1.2 

 The Disjoint union of graphs [31, 45,] sometimes referred 

as simply graph union, which is defined as follows. Given  two 

graphs G1 and G2, their union will be a graph such that V(G1 

G2)= V(G1)  V(G2)and E(G1 G2)= E(G1)  E(G2). 

Definition 1.1.3 

 The Complement [31, 82] of a graph G is defined as a 

simple graph with the same vertex set as G and where two 

vertices u and v are adjacent only when they are not adjacent in 

G. 

Definition 1.1.4 

 A closed walk with at least one edge in which no vertex 

except the terminal vertices appears more than once is called a 

cycle or circuit.  

Definition 1.1.5  

 A cycle that has odd length is an odd cycle; otherwise it is 

an even cycle. A graph is acyclic if it contains no cycles; 

unicyclic if it contains exactly one cycle 

1.2 b-Chromatic Number of a Graph in Addition of Parallel 

Chords 

1.2.1 Theorem 

For any Cycle Cn, addition of parallel chords between non 

adjacent vertices holds the following statements: 

 When n is odd, there exists a unique 3 cycle and  times 4 

cycle. 

 When n is even, there exists exactly two 3 cycle and - 2 

times 4 cycle. 

Proof 

   Let Cn be a Cycle with n vertices. Let v1,v2,….vn be the vertices 

and e1,e2,…ek  be the edges of the Cycle Cn with parallel chords, 

where k is defined  as  

 =  
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Case 1 

 When n is an odd cycle, the mutually adjacent edges 

e1,en,en+1  forms a 3 cycle and the remainingvertices are even, 

which forms times 4 cycles. Thus, when n is odd there 

exists a unique 3 cycle and  times 4cycle. 

Example 

 
Figure 1: C7 withparallel chords 

Case 2 

 When nis an even cycle, the vertices with minimum degree 

forms a 3 cycle and vertices with maximum degree forms a 4 

cycle. Thus for every even cycle there exist exactly two3 cycle 

and  - 2 times 4 cycle.    

Example              

 
Figure 2: C10 with parallel chords 

Theorem 

The Cycle Cn with parallel chords has the b-Chromatic number 

four for every n≥8. 

Example  

 
Figure 3: C8 with parallel chords 

1.3 b-Chromatic Number of a Graph when an Edge is 

removed 

1.3.1 Theorem 

For any Cycle (n ≥5)with an edge eV(Cn),  φ(Cn) = φ(Cn–e) 

Proof 

 Let Cn be the Cycle of length n. Let v1,v2,...,vn be the 

vertices arranged in anticlockwise direction i.e. 

V(Cn)={v1,v2,....,vn} and the edge set be denoted as  E(Cn)={ 

e1,e2,e3,…en}. Here the vertex vi is adjacent with the vertices vi-1 

and vi+1 for i=2,3,…n-1, v1 is adjacent with v2,vn and the vertex 

vn is adjacent with vn-1 and v1. We know that every Cycle is a 

connected graph with n vertices. It is evident that b-chromatic 

number of Cycle of length n for n≥5 is 3. Suppose if we delete 

any edge from the Cycle, we obtain a Path graph of length n-

1with b-chromatic number 3. 

 Therefore φ(Cn) = φ(Cn–e)for every n ≥5. 

Example 

 
Figure 4(a):φ(C8)=3                 Figure 4(b): φ(C8-e)=3 

1.3.2 Corollary  

φ(Cn) φ(Cn–e)for every n 3. 

Example

 
Figure 5(a):  C3   Figure 5(b):C3-e 

1.3.3 Corollary  

For any Path for n 5, eV(Pn), φ(Pn) ≠ φ(Pn–e) 

1.4 b-Colouring of Adding a Pendant Vertex to each Vertex 

of a Cycle 

1.4.1 Theorem 

For any n 6, φ(CnK1) = φ(Wn) 

Proof 

 Let vifor 1 i n are the vertices taken in the anticlockwise 

direction in the wheel graph Wn, where vn is the hub. It is  clear  

that  the vertex vi is adjacent withthe vertices vi-1 and vi+1 for 

i=2,3,…n-1, the vertex v1 is adjacent with v2 and vn-1, the vertex 

vnis adjacent with all the vertices. Here every vertex except the 

hub is incident with three edges, so we assign four colours, 

which produces a maximum and b-chromatic colouring by the 

colouring procedure. Also we know that the b-chromatic number 

of any Cycle has three coloursfor  n 5. If we attach a pendant 

vertex to every vertex of Cycle Cn, it is obvious that it has four 

coloursfor producing a b-chromatic colouring. 
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Therefore φ(CnK1) = φ(Wn) 

 
Figure 6(a): φ(C6  K1) = 4 

 
Figure 6(b): φ(W6 ) = 4 

 

 

1.4.2 Results obtained by Removing Edges from the 

Complete Graph 

 φ(K4 –e) = φ(C5) = φ(K1,n,n),(n ≥2) 

 φ(K3 –e) = φ(C2)= φ(K1,n) ,(n ≥2) 

 φ(K5 –2e)  = φ(Wn),(n ≥6) 

 φ(K5 –3e) = φ(Cn),(n ≥5) 

1.5  b-Chromatic Number of Union of Path with Cycle 

1.5.1 Theorem 

 For any Path Pn and the Cycle Cn with n vertices, the b-

chromatic number of   is given by φ  = n-1 for 

n ≥2. 

Proof 

 Let G1= Pnbe a Path graph with n vertices and n-1 edges 

and G2 = Cn be a Cycle with n vertices and n edges. Let G = 

G1 G2 be the graph obtained by the  union of subgraphPn and 

Cn of a graph has the vertex set V(Pn) V(Cn) and edge set 

E(Pn) E(Cn).  

 Consider G = Pn Cn whose vertex set V(G) = 

{v1,v2,v3…v2n-2}. Here in Pn Cn, we see that the vertex vi is 

adjacent with the vertices vi+1 and vi-1 for i=2,3…n-1,n+1,…2n-

2, v1 is adjacent with v2, v2n-2 and the vertex vnis adjacent with 

the vertices v1,vn-1 and vn+1. 

 Now consider the graph G=  . By the definition of 

Complement, for any graph G, the non-adjacent vertices are 

adjacent in its complement. Here  contains 2n-2 vertices 

as in G1 G2. Arrange the vertices of namely 

v1,v2,v3..vn,vn+1,…v2n-2 in clockwise direction.  

Assign a proper colouring to these vertices as follows. Consider 

the colour class C={c1,c2,c3..cn-1}. First assign the colourci to the 

vertex vi for i=1,2…2n-2, it will not produce a b-chromatic 

colouring, due to the above mentioned non-adjacency condition.  

Hence to make the colouring as b-chromatic one, assign the 

colour to the vertices vi and vi+1 for i=1,3,5…2n-3. Now all 

the vertices vi for i=1,2…2n-2 realizes its own colour, which 

produces a b-chromatic colouring. Furthermore it is the 

maximum colouring possible.   

Example 

 

Figure 7(a): P5  C5 

 

Figure 7(b): = 4 

1.5.2 Theorem 

φ(Pn Cn)= 3 for every n ≥ 3 

Proof 

The result is trivial from the above theorem. 

1.5.3 Theorem 

 For any Path graph Pn and Cycle Cm with n and m vertices 

respectively, then             φ (Pn Cm) = 3 for n ≥ 2. 

Example 

 

Figure 8: P4 C10 =3 

1.5.4 Result 

 For any integer n>2, φ(Cn) = φ( ) 
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Example 

 
Figure 9(a): φ(C6)=3 

 

Figure 9(b): φ( )=3 
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