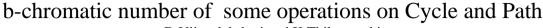
28798

Available online at www.elixirpublishers.com (Elixir International Journal)

Applied Mathematics

Elixir Appl. Math. 77 (2014) 28798-28801



D.Vijayalakshmi and K.Thilagavathi

Department of Mathematics, Kongunadu Arts and Science College, Coimbatore - 641 029.

ARTICLE INFO

Article history: Received: 5 June 2014; Received in revised form: 19 November 2014; Accepted: 29 November 2014;

Keywords

b-chromatic number, b-coloring, Cycle, Path, Addition, Deletion, Union, Complement.

ABSTRACT

A b-vertex coloring of a graph[15] G is a proper vertex coloring of G such that each color class contains a vertex that has at least one vertex in every other color class in its neighborhood. The b-chromatic number of a graph G is the largest integer $\varphi(G)$ for which G has a b-vertex coloring with $\varphi(G)$ colors. This concept was introduced in [2] by Irving and Manlove by a certain partial ordering on all proper colorings in contrast to chromatic number χ (G),namely χ (G) is the minimum of colors used among all minimal elements of this partial ordering, while $\varphi(G)$ is the maximum of colors used among all minimal elements of the same partial ordering. The b-chromatic number has been considered with respect to subgraphs in [10,11], while the b-chromatic number under graph operations was considered in [15] for the Cartesian product and in [8] for the other three standard products. Operations on graphs produce new ones from older ones. Here the paper deals with the b-chromatic number of adding parallel chords in Cycle, Union of Path with Cycle and its complement, deletion and addition of vertices and edges in a Cycle.

© 2014 Elixir All rights reserved.

1.1 Introduction

All graphs considered here are finite and simple. Notations and terminology not defined here will conform to those in [1]. For a graph G, let V(G), E(G), p(G), q(G) and \overline{G} , respectively, be the set of vertices, the set of edges, the order, the size and the complement of G.Let G be a simple graph and suppose that we have a proper coloring of G forwhich there exists a color class c such that every vertex v in c is not adjacentto any vertex in at least one other color class; then we can separately changethe color of each vertex in c to obtain a proper coloring with fewer Colors.Since then the b-chromatic number has drawn quite some attention among the scientific community. AlreadyIrving and Manlove [2] have shown, that computing $\varphi(G)$ is an NPcomplete problem in general.

The b-chromatic number has drawn much attention in scientific area [5,6,7,8,9,10]. We can easily imagine the colour classes as different communities, where every community *i* has a representative that is able to communicate with all the others communities. Even though the b-chromatic number is a simple concept, it is hard to determine the exact values, even for known families of graphs. This lead to studies of lower and upper bounds, [13].

The b-chromatic number has been considered with respect to subgraphs in [11], while the b-chromatic number under graph operations was considered in [15] for the Cartesian product and in [8] for the other three standard products.

Operations on graphs produce new ones from older ones. Unary operations create a new graph from the old one. It creates a new graph from the original one by a simple or a local change, such as addition or deletion of a vertex or an edge, merging and splitting of vertices, edge contraction, etc.

Definition 1.1 .1

A *Chord* of a cycle C is an edge not in C whose end vertices lie in C.

Definition 1.1.2

The Disjoint union of graphs [31, 45,] sometimes referred as simply graph union, which is defined as follows. Given two graphs G_1 and G_2 , their union will be a graph such that $V(G_1$

 $U_{G_2} = V(G_1) \cup V(G_2)$ and $E(G_1 \cup G_2) = E(G_1) \cup E(G_2)$. Definition 1.1.3

The **Complement** G[31, 82] of a graph G is defined as a simple graph with the same vertex set as G and where two vertices u and v are adjacent only when they are not adjacent in G.

Definition 1.1.4

A *closed walk* with at least one edge in which no vertex except the terminal vertices appears more than once is called a *cycle* or *circuit*.

Definition 1.1.5

A cycle that has odd length is an *odd cycle*; otherwise it is an *even cycle*. A graph is *acyclic* if it contains no cycles; unicyclic if it contains exactly one cycle

1.2 b-Chromatic Number of a Graph in Addition of Parallel Chords

1.2.1 Theorem

For any Cycle C_{n} , addition of parallel chords between non adjacent vertices holds the following statements:

• When *n* is odd, there exists a unique 3 cycle and $\begin{bmatrix} n \\ 3 \end{bmatrix}$ times 4 cycle.

• When *n* is even, there exists exactly two 3 cycle and $\begin{bmatrix} n \\ 2 \end{bmatrix}_{-2}^{-2}$ times 4 cycle.

Proof

Let C_n be a Cycle with *n* vertices. Let $v_1, v_2, ..., v_n$ be the vertices and $e_1, e_2, ..., e_k$ be the edges of the Cycle C_n with parallel chords, where *k* is defined as

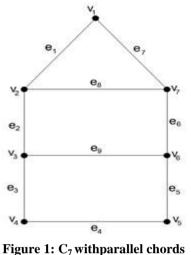
$$k = \begin{pmatrix} \left\lfloor \frac{4n}{3} \right\rfloor & \text{if } n \text{ is odd} \\ \left\lfloor \frac{4n}{3} \right\rfloor + 1 & \text{if } n \text{ is even} \end{cases}$$

Case 1

When *n* is an odd cycle, the mutually adjacent edges $e_1, e_m e_{n+1}$ forms a 3 cycle and the remaining vertices are even,

which forms $a \begin{bmatrix} \frac{n}{3} \\ \frac{1}{3} \end{bmatrix}$ times 4 cycles. Thus, when *n* is odd there $\begin{bmatrix} \frac{n}{3} \end{bmatrix}$

exists a unique 3 cycle and $\begin{bmatrix} 3 \end{bmatrix}$ times 4 cycle. **Example**



Case 2

When *n* is an even cycle, the vertices with minimum degree forms a 3 cycle and vertices with maximum degree forms a 4 cycle. Thus for every even cycle there exist exactly two3 cycle

and $\begin{bmatrix} -2 \\ 2 \end{bmatrix}$ - 2 times 4 cycle.

Example

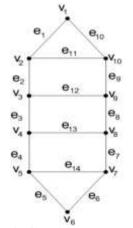


Figure 2: C₁₀ with parallel chords

Theorem

The Cycle C_n with parallel chords has the b-Chromatic number four for every $n \ge 8$.

Example

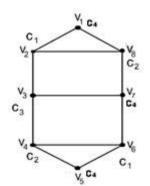


Figure 3: C₈ with parallel chords

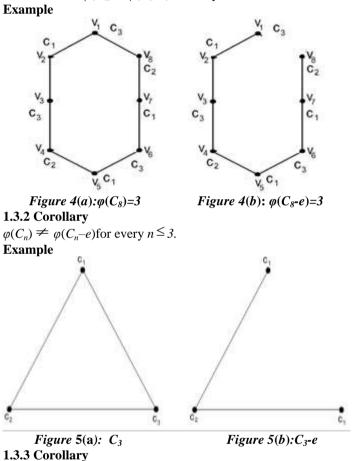
1.3 b-Chromatic Number of a Graph when an Edge is removed

1.3.1 Theorem

For any Cycle $(n \ge 5)$ with an edge $e \in V(C_n)$, $\varphi(C_n) = \varphi(C_n - e)$ **Proof**

Let C_n be the Cycle of length *n*. Let $v_1, v_2, ..., v_n$ be the vertices arranged in anticlockwise direction i.e. $V(C_n) = \{v_1, v_2, ..., v_n\}$ and the edge set be denoted as $E(C_n) = \{e_1, e_2, e_3, ..., e_n\}$. Here the vertex v_i is adjacent with the vertices v_{i-1} and v_{i+1} for i=2,3,..., n-1, v_1 is adjacent with v_2, v_n and the vertex v_n is adjacent with v_{n-1} and v_1 . We know that every Cycle is a connected graph with *n* vertices. It is evident that b-chromatic number of Cycle of length *n* for $n \ge 5$ is 3. Suppose if we delete any edge from the Cycle, we obtain a Path graph of length *n*-*I* with b-chromatic number 3.

Therefore $\varphi(C_n) = \varphi(C_n - e)$ for every $n \ge 5$.



For any Path for $n \ge 5$, $e \in V(P_n)$, $\varphi(P_n) \neq \varphi(P_n-e)$

1.4 b-Colouring of Adding a Pendant Vertex to each Vertex of a Cycle

1.4.1 Theorem

For any $n \ge 6$, $\varphi(C_n \bullet K_l) = \varphi(W_n)$ **Proof**

Let v_i for $1 \le i \le n$ are the vertices taken in the anticlockwise direction in the wheel graph W_n , where v_n is the hub. It is clear that the vertex v_i is adjacent withthe vertices v_{i-1} and v_{i+1} for i=2,3,...n-1, the vertex v_1 is adjacent with v_2 and v_{n-1} , the vertex v_n is adjacent with all the vertices. Here every vertex except the hub is incident with three edges, so we assign four colours, which produces a maximum and b-chromatic colouring by the colouring procedure. Also we know that the b-chromatic number of any Cycle has three coloursfor $n \ge 5$. If we attach a pendant vertex to every vertex of Cycle C_n it is obvious that it has four coloursfor producing a b-chromatic colouring.

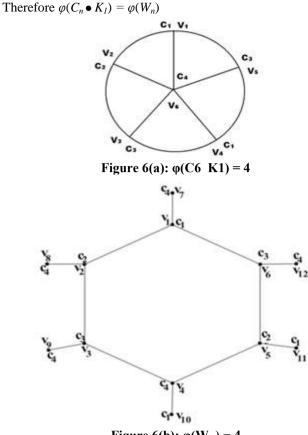


Figure 6(b): $\phi(W_6) = 4$

1.4.2 Results obtained by Removing Edges from the **Complete Graph**

- $\varphi(K_4 e) = \varphi(C_5) = \varphi(K_{1,n,n}), (n \ge 2)$
- $\varphi(K_3 e) = \varphi(C_2) = \varphi(K_{1,n}), (n \ge 2)$
- $\varphi(K_5 2e) = \varphi(W_n), (n \ge 6)$
- $\varphi(K_5 3e) = \varphi(C_n), (n \ge 5)$

1.5 b-Chromatic Number of Union of Path with Cycle 1.5.1 Theorem

For any Path P_n and the Cycle C_n with *n* vertices, the bchromatic number of $\overline{P_n U C_n}$ is given by $\varphi[\overline{P_n U C_n}] = n - 1$ for $n \geq 2$. Proof

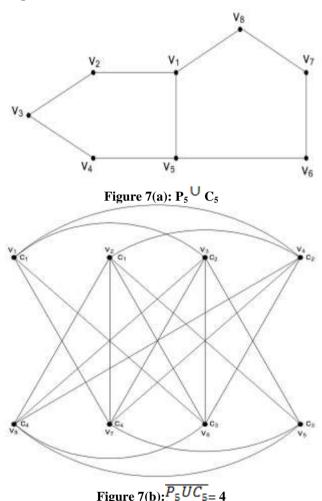
Let $G_1 = P_n$ be a Path graph with *n* vertices and *n*-1 edges and $G_2 = C_n$ be a Cycle with *n* vertices and *n* edges. Let G = $G_1 \cup G_2$ be the graph obtained by the union of subgraph P_n and C_n of a graph has the vertex set $V(P_n) \bigcup V(C_n)$ and edge set $E(P_n) \stackrel{\bigcup}{=} E(C_n).$

Consider $G = P_n^{\bigcup} C_n$ whose vertex set V(G) = $\{v_1, v_2, v_3...v_{2n-2}\}$. Here in $P_n \bigcup C_n$, we see that the vertex v_i is adjacent with the vertices v_{i+1} and v_{i-1} for i=2,3...n-1,n+1,...2n-2, v_1 is adjacent with v_2 , v_{2n-2} and the vertex v_n is adjacent with the vertices v_1, v_{n-1} and v_{n+1} .

Now consider the graph $G = \overline{G_1 U G_2}$. By the definition of Complement, for any graph G, the non-adjacent vertices are adjacent in its complement. Here $\overline{G_1 U G_2}$ contains 2n-2 vertices as in $G_1 U G_2$. Arrange the vertices of $\overline{G_1 U G_2}$ namely $v_1, v_2, v_3..v_m, v_{n+1,...}v_{2n-2}$ in clockwise direction.

Assign a proper colouring to these vertices as follows. Consider the colour class $C = \{c_1, c_2, c_3, .., c_{n-1}\}$. First assign the colour c_i to the vertex v_i for i=1,2...2n-2, it will not produce a b-chromatic colouring, due to the above mentioned non-adjacency condition. Hence to make the colouring as b-chromatic one, assign the

colour $\begin{bmatrix} i+1\\2 \end{bmatrix}$ to the vertices v_i and v_{i+1} for i=1,3,5...2n-3. Now all the vertices v_i for i=1,2...2n-2 realizes its own colour, which produces a b-chromatic colouring. Furthermore it is the maximum colouring possible. Example



1.5.2 Theorem

 $\varphi(P_n \bigcup C_n) = 3$ for every $n \ge 3$ Proof

The result is trivial from the above theorem. 1.5.3 Theorem

For any Path graph P_n and Cycle C_m with n and m vertices $\varphi(P_n^{\bigcup}C_m) = 3 \text{ for } n \ge 2.$ respectively, then

Example

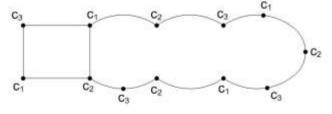
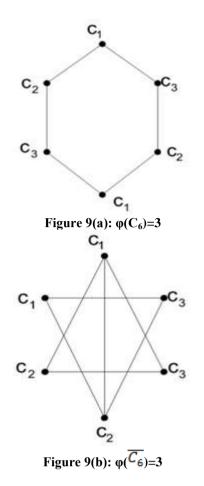


Figure 8:
$$P_4^{\bigcup}C_{10} = 3$$

1.5.4 Result

For any integer n > 2, $\varphi(C_n) = \varphi(C_n)$

Example



References

[1] J.A. Bondy, U.S.R. Murty, Graph Theory with Applications, North-Holland, Amsterdam. [2]R.W. Irving, D.F. Manlove, The b-chromatic number of a graph, Discrete Appl. Math. 91 (1999) 127–141.

[3] M. Jakovac, S. Klavzar, The b-chromatic number of cubic graphs, Graphs Combin. Volume 26 (2010), pp: 107–118.

[4] M. Jakovac, I. Peterin, On the b-chromatic number of some products, Studia Sci. Math. Hungar. 49 (2012) 156–169.

[5] M. Jakovac, S. Klavzar, The b-chromatic number of cubic graphs, Graphs Combin. Volume 26 (2010), pp: 107–118.

[6] M.Kouider and M.Zaker, Bounds for the b-chromatic number of some families of graph, Discrete Mathematics, Volume 306, (2006), pp:617-623.

[7] M. Kouider, M.Maheo, Some bounds for the b-chromatic number of a graph, Discrete Mathematics, Volume 256, (2002), pp: 267–277.

[8] M. Kouider, M. Maheo, The b-chromatic number of the Cartesian product of two graphs, Studia Sci. Math. Hungar, Volume 44, (2007), pp: 49–55.

[9]M. Kouider, El Sahili, A, About b-colouring of regular graphs, Rapport de Recherche, No 1432, CNRS-University Paris Sud-LRI, 02/2006.

[10] M. Kouider, Mario Valencia-Pabon,On lower bounds for the b-chromatic number of connected bipartite graphs, Electronic Notes in Discrete Mathematics, Volume 37, (2011), pp: 399-404.

[11] M. Kouider, b-chromatic number of a graph, subgraphs and degrees, Rapportinterne LRI 1392.

[12] M. Kouider, A. El Sahili, About b-colouring of regular graphs, Rapport de Recherche No 1432, CNRS-Universite Paris Sud–LRI.

[13] M. Kouider, M. Maheo, Some bounds for the b-chromatic number of a graph, Discrete Math. 256 (2002) 267–277.

[14] M. Kouider, M. Maheo, The b-chromatic number of the Cartesian product of two graphs, Studia Sci. Math. Hungar. 44 (2007) 49–55.

[15] Marko Jakovac, IztokPeterin, On the b-chromatic number of Strong, lexicographic and strong product, (2009), University of Maribor.