30052

Available online at www.elixirpublishers.com (Elixir International Journal)

Applied Chemistry

Elixir Appl. Chem. 78 (2015) 30052-30056

Thermodynamic of Adsorption: Studying the effect of temperature on adsorption of the metal ions from aqueous Solutions using Non-conventional adsorbents

Okon Okon^{*} and Aniekememe-Abasi Israel Department of Chemistry, University of Uyo PMB 1017, Uyo. Nigeria.

ARTICLE INFO

Article history: Received: 16 May 2013; Received in revised form: 11 January 2015; Accepted: 26 January 2015;

Keywords

Temperature, Adsorption, Coconut Coir Dust, Adsorbent, Enthalpy.

ABSTRACT

Early studies on the adsorption and ion exchange potential of coconut coir dust (*Cocos nucifera L.*) has great proficiency for removal of trace metal ions from waste water and industrial effluents. Several factors influence the process of waste water detoxification by agricultural biomass. In this paper the effect of temperature on the extent of adsorption of this metals by unconventional adsorbent is being monitored for Cu(II), Pb(II), Zn(II) and Ni(II) in aqueous solutions. The results show increase percentage adsorption with increase in temperature for all the metal ions indicating an endothermic reaction. It was also observed that the average enthalpy adsorption ΔH^{0} and K₀ increased with increase in temperature for all the adsorption of metal ions on the adsorbents indicating an endothermic process. The values of ΔH^{0} were greater than +20kj/g/mols for most of the adsorption which supports chemisorption reaction. It was observed that the effect of temperature was more pronounced on the adsorption of the metal ions on the modified coir extract viz; CTR and STR, than the unmodified coir dust. This shows that the CTR, and STR adsorbents were more efficient at higher temperatures than the coir dust.

© 2015 Elixir All rights reserved.

Introduction

. The temperature of an adsorption reaction strongly influence not only the site dissociation of the adsorbent/resin surface but also the solution chemistry of the metal ions. The surface charge of the adsorbent/ion-exchanger and degree of dissociation is determined by the temperature of the system.

Over the years enhanced industrial activities has led to the discharge of unprecedented volumes of waste waters and effluents into the environment. The various activities associated with environmental pollution are mining operations, oreprocessing and smelting, urbanization, metal-plating, tanneries and agriculture-related processes (Okieiman et al, 1991; Raji et al. 1997). These metal contaminants are not biodegrable but accumulate in living organisms becoming a permanent burden on the ecosystem (Balasubramaniam and Ahamen, 1998). Their presence in the environment even at low concentration has therefore the potential of becoming a cause of toxicity to humans and other forms of life (Langmiur, 1918). Industrial effluents and drinking water loaded with metals is thus a serious public health problem (Faisal and Hasmain, 2004). Overabundance of the essential trace elements and particularly their substitution by non-essential ones, such as Cd, Ni, Ag can also cause toxicity symptoms.

From the ecotoxicological point of view, metals such as Cd, Hg and Pb, the so-called family of "big three", are highly toxic and are included in the 'Red List' of priority pollutants published by the Department of the Environment, United Kingdom and in List 1 of European Economic Commission (EEC) Dangerous substances directive (Sekar et al, 2004). The same directive lists Cu, Ni, Sn and Cr in "List II", which contains pollutants of less toxicity. These metals, nevertheless, create environmental pollution problems since, although not necessarily toxic at low concentrations, can accumulate in the food chain and upon entry into human body are not excreted. Hence, from environmental and human safety point of view, it is of the utmost importance that metal contaminants are removed from industrial wastewaters before their release into the environment.

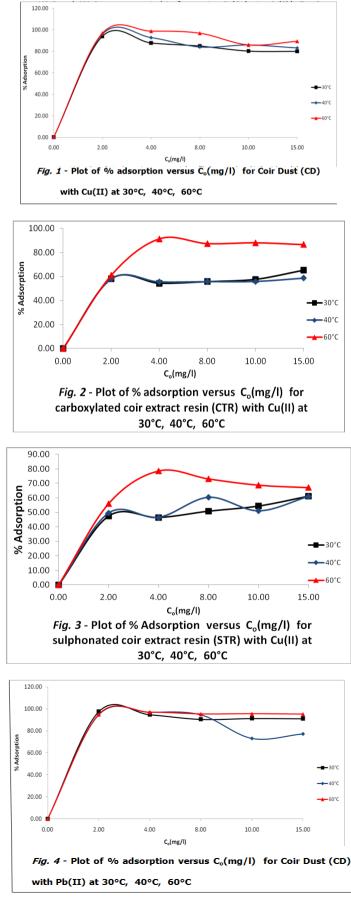
Several efforts targeted at reducing and/or removing these harmful substances demands harnessing the temperature of the system in order to achieve optimum result hence the burden of this research.

Materials and Method

Coir dust (500mg), Csrboxylated Coir extract resin (CTR) and Sulphonated Coir extract resin(II) of different particle sizes 50 - 600(m) were taken separately in conical flasks containing 10mg

50*ml* of *l* of the Cu(II), Pb(II), Ni(II) and Zn(II) solution and were shaken for 3 hours on orbital shaker at agitation speed of **140***rpm* at **30°C**. The process was repeated for 40°C and 60°C respectively. At the end of this period the samples were filtered and adsorbate concentrations were determined using Atomic Absorption Spectrophotometer. **Result and Discussion**

The effect of temperature on the adsorption of the metal ions Cu(II), Pb(II), Zn(II), and Ni(II), are shown in tables 1 - 4 respectively. The results show increase percentage adsorption with increase in temperature for all the metal ions indicating an endothermic reaction. The plots of percentage adsorption versus initial concentration of Cu(II), Pb(II), Zn(II) and Ni(II) on the CD, CTR, STR at temperatures of 30° C,


To further account for the effect of temperature on the equilibrium sorption of metal ions on these adsorbents, the

120.00

100 🖶

thermodynamic equilibrium constant K_o , the average standard enthalpy change, ΔH^{0} , ΔG^{0} , the standard free energy of spontaneity and standard enthropy ΔS^{0} , were determined and presented in Tables 5 - 7.

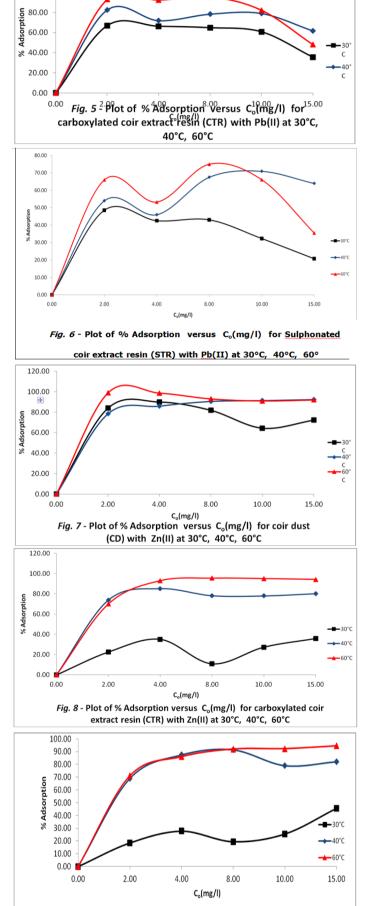
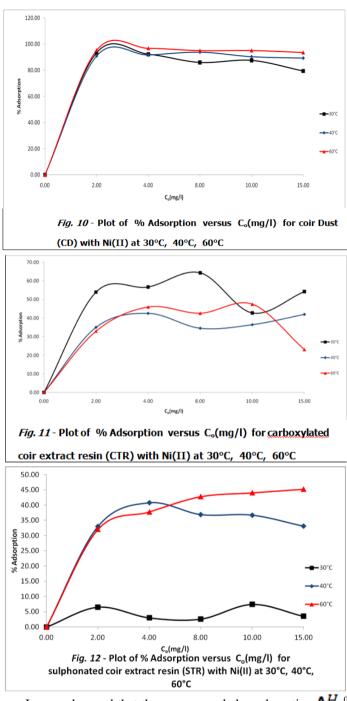



Fig. 9 - Plot of % Adsorption versus C_o(mg/l) for sulphonated coir extract resin (STR) with Zn(II) at 30°C, 40°C, 60°C

Table 1: Pe	rcentage		of Pb(Il) on Ads		at E	Different T	-	ire		
Pb(II)		CD			CTR			STR	~		
Initial	(°K)	(°K)	(°K)	(°K)	(°K)	(°K		(°K)	(°K)		
Conc Co(mg/l)	303	313	333	303	313	33		313	333		
2	97.50	94.50	95.0	67.0	82.50	93.			66.0		
4	94.75	96.80	97.0	66.30	71.80	92.3	30 42.50	46.0	53.30		
8	90.50	94.50	95.40	64.88	78.30	95.	50 43.0	67.50	75.0		
10	91.30	73.10	95.60	60.80	79.0	82.2			66.10		
15	91.07	77.20	95.27	35.53	61.67	48.	.0 20.73	63.93	35.53		
Table 2: Percentage Uptake of Cu(II) on Adsorbents at Different Temperature											
Cu(II)		CD			CTR			STR			
Initial	(°K)	(°K)	(°K)	(°K)	(°K)	(°K	$(^{\circ}K)$	(°K)	(°K)		
Conc Co(mg/l)	303	313	333	303	313	33		313	333		
2	94.0	96.0	97.0	58.0	58.0	61.		49.50	56.0		
4	87.75	92.80	98.90	54.30	55.50	91.			75.50		
8	84.88	84.00	97.0	55.63	55.75	57.3			73.0		
10	80.20	85.90	86.00	57.50	55.90	88.			68.70		
15	79.93	83.13	89.47	65.10	58.67	86.4			67.0		
	rtemage) on Au	CTR	air		ferent Temperature			
Zn(II) Initial	(°K)	CD (°K)	(°K)	(°K)	$(^{\circ}K)$	(°K) (°K)	STR (°K)	(°K)		
Conc Co(mg/l)	(K) 303	(K) 313	(K) 333	(K) 303	(K) 313	333		(K) 313	(K) 333		
	303 84.0		333 98.90	22.50				69.0			
2		78.50			74.0	70.			71.0		
4	90.00	86.0	98.70	35.0	85.30	93.		87.50	86.0		
8	81.88	90.63	93.0	10.88	78.30	95.5		91.50	92.0		
10	64.40	91.40	91.0	27.30	78.10	95.1		79.10	92.30		
15	72.29	92.40	92.0	35.80	80.33	94.2		82.20	94.47		
Table 4: Pe	rcentage		e of Ni(H) on Ads		at D	ifferent T		ire		
Ni(II)		CD	-		CTR			STR			
Initial	(°K)	(°K)	(°K)	(°K)	(°K)	(°K		(°K)	(°K)		
Conc Co(mg/l)	303	313	333	303	313	33	3 303	313	333		
2	93.50	91.0	95.35	54.0	35.0	33.	.0 6.50	33.0	32.0		
4	92.30	91.75	96.80	56.75	43.50	46	.0 3.0	40.75	37.75		
8	86.00	93.88	95.0	64.38	34.50	42.0	63 2.60	36.88	42.75		
10	87.60	90.40	95.10	42.80	36.40	47.	50 7.40	36.70	44.0		
15											
15 79.47 89.55 95.00 54.27 41.95 25.15 55.15 55.07 45.20 Table 5: Thermodynamic Parameter for Adsorption of Metal Ions on Coir Dust											
-	79.47 ermodyn	89.33 amic Pa	93.60 arameter	54.27 for Ads	41.93	23. of M			45.20 ust		
-			arameter	for Ads	41.93 orption	of M	etal Ions				
-	ermodyn	amic Pa	arameter	r for Ads ΔG°	41.93 corption ΔH	of M Iº					
-	ermodyn	amic Pa Temp	K ₀	for Ads ∆G° KJ/mo	41.93 corption ΔH	of M I° nol	etal Ions ΔS° KJ/mol				
-	ermodyn Metal	amic Pa Temp (°K)	arameter	r for Ads ΔG°	41.93 corption ΔH I KJ/r	of M I° nol					
-	ermodyn Metal	amic Pa Temp (°K) 303 333	Ko 2.84 3.29	for Ads Δ G ^o KJ/mo -2.63 -3.29	41.93 corption ΔH I KJ/r +4.1	of M I° nol .95	Letal Ions ΔS ^o KJ/mol +2.166 +2.38				
-	ermodyn Metal Cu	amic Pa Temp (°K) 303 333 303	Ko 2.84 3.29 3.66	for Ads ΔG° KJ/mo -2.63 -3.29 -3.27	41.93 corption ΔH I KJ/r	of M I° nol .95	Letal Ions ΔS° KJ/mol +2.166 +2.38 -5.65				
-	ermodyn Metal	amic Pa Temp (°K) 303 333 303 333	Image: constraint of the second sec	for Ads Δ G ^o KJ/mo -2.63 -3.29 -3.27 -5.03	41.93 corption ΔH I KJ/r +4.1	of M I° nol .95	etal Ions ΔS° KJ/mol +2.166 +2.38 -5.65 +6.20				
-	ermodyn Metal Cu Pb	amic Pa Temp (°K) 303 333 303 303 303 303	Image: constraint of the system Image: consthe system <th constraint="" of="" system<="" td="" the=""><td>for Ads ΔG° KJ/mo -2.63 -3.29 -3.27 -5.03 -2.98</td><td>41.93 corption ΔH I KJ/r +4.1</td><td>of M I° nol .95</td><td>tetal Ions ΔS° KJ/mol +2.166 +2.38 -5.65 +6.20 -1.84</td><td></td><td></td></th>	<td>for Ads ΔG° KJ/mo -2.63 -3.29 -3.27 -5.03 -2.98</td> <td>41.93 corption ΔH I KJ/r +4.1</td> <td>of M I° nol .95</td> <td>tetal Ions ΔS° KJ/mol +2.166 +2.38 -5.65 +6.20 -1.84</td> <td></td> <td></td>	for Ads ΔG° KJ/mo -2.63 -3.29 -3.27 -5.03 -2.98	41.93 corption ΔH I KJ/r +4.1	of M I° nol .95	tetal Ions ΔS° KJ/mol +2.166 +2.38 -5.65 +6.20 -1.84			
-	ermodyn Metal Cu	amic Pa Temp (°K) 303 333 303 333 303 303 333	Image: constraint of the second sec	for Ads ΔG° KJ/mo -2.63 -3.29 -3.27 -5.03 -2.98 -0.60	41.93 sorption AH I KJ/r +4.1 +14.	of M I° nol .95	itetal Ions ΔS° KJ/mol +2.166 +2.38 -5.65 +6.20 -1.84 -5.60				
-	ermodyn Metal Cu Pb Zn	amic Pa Temp (°K) 303 333 303 333 303 333 333 333	Image: constraint of the system Image: consthe system <th constraint="" of="" system<="" td="" the=""><td>for Ads ΔG° KJ/mo -2.63 -3.29 -3.27 -5.03 -2.98 -0.60 -2.400</td><td>41.93 sorption AH I KJ/r +4.1 +14.</td><td>of M I° nol .95</td><td>tetal Ions ΔS° KJ/mol +2.166 +2.38 -5.65 +6.20 -1.84</td><td></td><td></td></th>	<td>for Ads ΔG° KJ/mo -2.63 -3.29 -3.27 -5.03 -2.98 -0.60 -2.400</td> <td>41.93 sorption AH I KJ/r +4.1 +14.</td> <td>of M I° nol .95</td> <td>tetal Ions ΔS° KJ/mol +2.166 +2.38 -5.65 +6.20 -1.84</td> <td></td> <td></td>	for Ads ΔG° KJ/mo -2.63 -3.29 -3.27 -5.03 -2.98 -0.60 -2.400	41.93 sorption AH I KJ/r +4.1 +14.	of M I° nol .95	tetal Ions ΔS° KJ/mol +2.166 +2.38 -5.65 +6.20 -1.84			
-	ermodyn Metal Cu Pb	amic Pa Temp (°K) 303 333 303 333 303 303 333	Image: constraint of the system Image: consthe system <th constraint="" of="" system<="" td="" the=""><td>for Ads ΔG° KJ/mo -2.63 -3.29 -3.27 -5.03 -2.98 -0.60</td><td>41.93 orption AE I KJ/r +4.1 +14.</td><td>of M I° 95 .51</td><td>tetal Ions ΔS° KJ/mol +2.166 +2.38 -5.65 +6.20 -1.84 -5.60 -5.10</td><td></td><td></td></th>	<td>for Ads ΔG° KJ/mo -2.63 -3.29 -3.27 -5.03 -2.98 -0.60</td> <td>41.93 orption AE I KJ/r +4.1 +14.</td> <td>of M I° 95 .51</td> <td>tetal Ions ΔS° KJ/mol +2.166 +2.38 -5.65 +6.20 -1.84 -5.60 -5.10</td> <td></td> <td></td>	for Ads ΔG° KJ/mo -2.63 -3.29 -3.27 -5.03 -2.98 -0.60	41.93 orption AE I KJ/r +4.1 +14.	of M I° 95 .51	tetal Ions ΔS° KJ/mol +2.166 +2.38 -5.65 +6.20 -1.84 -5.60 -5.10			
-	ermodyn Metal Cu Pb Zn	amic Pa Temp (°K) 303 333 303 333 303 333 333 333 303	Image: constraint of the state of	for Ads ΔG° KJ/mo -2.63 -3.29 -3.27 -5.03 -2.98 -0.60 -2.400 +3.91	41.93 sorption AH I KJ/r +4.1 +14.	of M I° 95 .51	fetal Ions ΔS° KJ/mol +2.166 +2.38 -5.65 +6.20 -1.84 -5.60 -5.10 -1.24				
Table 5: Th	ermodyn Metal Cu Pb Zn Ni	amic Pa Temp (°K) 303 333 303 333 303 333 333 303 333 303 333	Image: constraint of the state of	 for Ads △G° KJ/mo -2.63 -3.29 -3.27 -5.03 -2.98 -0.60 -2.400 +3.91 +0.95 	41.93 orption AF I KJ/r +4.1 +14. +14. +33.	of M I° nol 95 .51 .80	fetal Ions ΔS° KJ/mol +2.166 +2.38 -5.65 +6.20 -1.84 -5.60 -5.10 -1.24 -1.13	on Coir D	ust		
-	ermodyn Metal Cu Pb Zn Ni odynamio	amic Pa Temp (°K) 303 333 303 333 303 333 303 333 303 333 303 333 203 20	Image: constraint of the state of	 for Ads △G° KJ/mo -2.63 -3.29 -3.27 -5.03 -2.98 -0.60 -2.400 +3.91 +0.95 Adsrptic 	41.93 orption AF 1 KJ/r +4.1 +14. +14. 	of M P nol 95 .51 .51 .80 .80 etal I	Ase μ +2.166 +2.38 -5.65 +6.20 -1.84 -5.60 -5.10 -1.24 -1.13 ons on Ca	on Coir D	ust		
Table 5: Th	ermodyn Metal Cu Pb Zn Ni	amic Pa Temp (°K) 303 333 303 333 303 333 303 333 303 333 303 333 203 20	Image: constraint of the second sec	for Ads ΔG° KJ/mo -2.63 -3.29 -3.27 -5.03 -2.98 -0.60 -2.400 +3.91 +0.95 Adsrptic ΔG°	41.93 orption ΔH +4.1 +14.1 +14.1 +14.1 	of M P nol 95 .51 .51 .80 .80 .80	iteral Ions ΔS° KJ/mol +2.166 +2.38 -5.65 +6.20 -1.84 -5.60 -5.10 -1.24 -1.13 ons on Ca ΔS°	on Coir D	ust		
Table 5: Th	ermodyn Metal Cu Pb Zn Ni Odynamie Meta	amic Pa Temp (°K) 303 333 303 333 303 333 303 333 303 333 303 333 303 333 203 333 303 303 10 10 10 10 10 10 10 10 10 10	Image: constraint of the system Image: consthe system <th constraint="" of="" system<="" td="" the=""><td>for Ads ΔG° KJ/mo -2.63 -3.29 -3.27 -5.03 -2.98 -0.60 -2.400 +3.91 +0.95 Adsrptic ΔG° KJ/mol</td><td>41.93 orption ΔH +4.1 +14.1 +14.1 </td><td>of M I^o nol 95 51 80 80 etal I 00</td><td>etal Ions ΔS° KJ/mol +2.166 +2.38 -5.65 +6.20 -1.84 -5.60 -5.10 -1.24 -1.13 ons on Ca ΔS° KJ/mol</td><td>on Coir D</td><td>ust</td></th>	<td>for Ads ΔG° KJ/mo -2.63 -3.29 -3.27 -5.03 -2.98 -0.60 -2.400 +3.91 +0.95 Adsrptic ΔG° KJ/mol</td> <td>41.93 orption ΔH +4.1 +14.1 +14.1 </td> <td>of M I^o nol 95 51 80 80 etal I 00</td> <td>etal Ions ΔS° KJ/mol +2.166 +2.38 -5.65 +6.20 -1.84 -5.60 -5.10 -1.24 -1.13 ons on Ca ΔS° KJ/mol</td> <td>on Coir D</td> <td>ust</td>	for Ads ΔG° KJ/mo -2.63 -3.29 -3.27 -5.03 -2.98 -0.60 -2.400 +3.91 +0.95 Adsrptic ΔG° KJ/mol	41.93 orption ΔH +4.1 +14.1 +14.1 	of M I ^o nol 95 51 80 80 etal I 00	etal Ions ΔS° KJ/mol +2.166 +2.38 -5.65 +6.20 -1.84 -5.60 -5.10 -1.24 -1.13 ons on Ca ΔS° KJ/mol	on Coir D	ust	
Table 5: Th	ermodyn Metal Cu Pb Zn Ni odynamio	amic Pa Temp (°K) 303 333 303 203 2	Image: constraint of the system Image: consthe system <th constraint="" of="" system<="" td="" the=""><td>for Ads ΔG° KJ/mo -2.63 -3.29 -3.27 -5.03 -2.98 -0.60 -2.400 +3.91 +0.95 Adsrptic ΔG° KJ/mol -3.02</td><td>41.93 orption ΔH +4.1 +14.1 +14.1 +14.1 </td><td>of M I^o nol 95 51 80 80 60 1 36</td><td>iteral Ions ΔS° KJ/mol +2.166 +2.38 -5.65 +6.20 -1.84 -5.60 -5.10 -1.24 -1.13 ons on Ca ΔS° KJ/mol +2.7.58</td><td>on Coir D</td><td>ust</td></th>	<td>for Ads ΔG° KJ/mo -2.63 -3.29 -3.27 -5.03 -2.98 -0.60 -2.400 +3.91 +0.95 Adsrptic ΔG° KJ/mol -3.02</td> <td>41.93 orption ΔH +4.1 +14.1 +14.1 +14.1 </td> <td>of M I^o nol 95 51 80 80 60 1 36</td> <td>iteral Ions ΔS° KJ/mol +2.166 +2.38 -5.65 +6.20 -1.84 -5.60 -5.10 -1.24 -1.13 ons on Ca ΔS° KJ/mol +2.7.58</td> <td>on Coir D</td> <td>ust</td>	for Ads ΔG° KJ/mo -2.63 -3.29 -3.27 -5.03 -2.98 -0.60 -2.400 +3.91 +0.95 Adsrptic ΔG° KJ/mol -3.02	41.93 orption ΔH +4.1 +14.1 +14.1 +14.1 	of M I ^o nol 95 51 80 80 60 1 36	iteral Ions ΔS° KJ/mol +2.166 +2.38 -5.65 +6.20 -1.84 -5.60 -5.10 -1.24 -1.13 ons on Ca ΔS° KJ/mol +2.7.58	on Coir D	ust	
Table 5: Th	ermodyn Metal Cu Pb Zn Ni odynamie Meta	amic Pa Temp (°K) 303 333 333	Image: constraint of the system Image: constraint of the system 2.84 3.29 3.66 6.13 2.93 1.27 1.27 1.27 0.21 0.21 0.71 1.27 0.21 0.71 1.65 1.27	for Ads ΔG° KJ/mo -2.63 -3.29 -3.27 -5.03 -2.98 -0.60 -2.400 +3.91 +0.95 Adsrptic ΔG° KJ/mol -3.02 -4.99	41.93 orption ΔΕ I KJ/r +4.1 +14. +14. 	of M I ^o nol 95 51 551 80 80 etal Io 20 136 80	etal Ions ΔS° KJ/mol +2.166 +2.38 -5.65 +6.20 -1.84 -5.60 -5.10 -1.24 -1.13 ons on Ca ΔS° KJ/mol +2.7.58 +2.21	on Coir D	ust		
Table 5: Th	ermodyn Metal Cu Pb Zn Ni Odynamic Meta	amic Pa Temp (°K) 303 333 303 333 303 333 303 333 303 333 303 C Param (°K) 303 333 303 303 333 303 303 30	Image: constraint of the system Image: constraint of the system 2.84 3.29 3.66 6.13 2.93 1.27 1.27 1.27 0.21 0.21 0.71 1.27 0.21 0.71 1.27 1.27 0.21 0.31 1.65 1.22	for Ads ΔG° KJ/mo -2.63 -3.29 -3.27 -5.03 -2.98 -0.60 -2.400 +3.91 +0.95 Adsrptic ΔG° KJ/mol -3.02 -4.99 -0.501	41.93 orption ΔH +4.1 +14.1 +14.1 	of M I ^o nol 95 51 80 etal I col 36 50	iteral Ions AS° KJ/mol +2.166 +2.38 -5.65 +6.20 -1.84 -5.60 -5.10 -1.24 -1.13 ons on Ca AS° KJ/mol +27.58 +28.21 +7.94	on Coir D	ust		
Table 5: Th	ermodyn Metal Cu Pb Zn Ni Meta Cu Pb	amic Pa Temp (°K) 303 333 303 30 30	Image: constraint of the system Image: constraint of the system 2.84 3.29 3.66 6.13 2.93 1.27 1.27 1.27 0.21 0.21 0.21 1.27 0.21 0.71 1.27 1.27 0.21 0.31 1.65 1.22 2.93 2.93 1.25 1.22	for Ads ΔG° KJ/mo -2.63 -3.29 -3.27 -5.03 -2.98 -0.60 -2.400 +3.91 +0.95 Adsrptic ΔG° KJ/mol -3.02 -4.99 -0.501 -2.98	41.93 orption AF KJ/r +4.1 +14. +14. 	of M I ^o nol 95 51 80 etal I 36 50	etal Ions ΔS° KJ/mol +2.166 +2.38 -5.65 +6.20 -1.84 -5.60 -5.10 -1.24 -1.13 ons on Ca ΔS° KJ/mol +27.58 +28.21 +7.94 -18.72	on Coir D	ust		
Table 5: Th	ermodyn Metal Cu Pb Zn Ni odynamie Meta	amic Pa Temp (°K) 303 333 303 333 303 333 303 333 303 333 303 C Param (°K) 303 333 303 303 303 303 303 30	Image: constraint of the system Image: constraint of the system 2.84 3.29 3.66 6.13 2.93 1.27 0.21 0.21 0.21 0.71 0.21 0.71 0.21 0.71 0.21 0.71 0.21 0.71 0.21 0.71 0.21 0.71 0.21 0.71	 for Ads AG° KJ/mo -2.63 -3.29 -3.27 -5.03 -2.98 -0.60 -2.400 +3.91 +0.95 Adsrptid AG° KJ/mol -3.02 -4.99 -0.501 -2.98 -0.60 	41.93 orption ΔΕ I KJ/r +4.1 +14. +14. 	of M I ^o nol 95 51 80 etal I 36 50	Ase ΔS° KJ/mol +2.166 +2.38 -5.65 +6.20 -1.84 -5.60 -5.10 -1.24 -1.13 ons on Ca AS° KJ/mol +2.758 +28.21 +7.94 -18.72 +5.77	on Coir D	ust		
Table 5: Th	ermodyn Metal Cu Pb Zn Ni Meta Cu Pb	amic Pa Temp (°K) 303 333 303 333 303 333 303 333 303 333 303 2 Param (°K) 303 333 303 303 333 303 303 333 303 333 303 333 303 333 303 333 303 333 303 333 303 333 303 333 303 333 303 333 303 333 303 333 303 335 333 333 333 333 333 333 333 333 333 333	Image: constraint of the system Image: constraint of the system 2.84 3.29 3.66 6.13 2.93 1.27 1.27 1.27 0.21 0.21 0.21 1.27 0.21 0.71 1.27 1.27 0.21 0.31 1.65 1.22 2.93 2.93 1.25 1.22	 for Ads △G° KJ/mo -2.63 -3.29 -3.27 -5.03 -2.98 -0.60 -2.400 +3.91 +0.95 Adsrptia △G° KJ/mol -3.02 -4.99 -0.501 -2.98 -0.60 -2.40 	41.93 orption AF KJ/r +4.1 +14. +14. 	of M I ^o nol 95 51 .51 .51 .51 .51 .51 .51 .51	Image: constraint of the system AS° KJ/mol +2.166 +2.38 -5.65 +6.20 -1.84 -5.60 -5.10 -1.24 -1.13 ons on Ca AS° KJ/mol +27.58 +28.21 +7.94 -18.72 +5.77 +5.70	on Coir D	ust		
Table 5: Th	ermodyn Metal Cu Pb Zn Ni Meta Cu Pb Zn	amic Pa Temp (°K) 303 333 303 333 303 333 303 333 303 333 303 C Param (°K) 303 333 303 303 303 303 303 30	Image: constraint of the system Image: constraint of the system 2.84 3.29 3.66 6.13 2.93 1.27 0.21 0.21 0.21 0.71 0.21 0.71 0.21 0.71 0.21 0.71 0.21 0.71 0.21 0.71 0.21 0.71 0.21 0.71 0.21 0.71 0.21 0.71 0.21 0.71 0.21 0.71 0.23 0.21 0.71 0.71	 for Ads AG° KJ/mo -2.63 -3.29 -3.27 -5.03 -2.98 -0.60 -2.400 +3.91 +0.95 Adsrptid AG° KJ/mol -3.02 -4.99 -0.501 -2.98 -0.60 	41.93 orption AF KJ/r +4.1 +14. +14. 	of M I ^o nol 95 51 .51 .51 .51 .51 .51 .51 .51	Ase ΔS° KJ/mol +2.166 +2.38 -5.65 +6.20 -1.84 -5.60 -5.10 -1.24 -1.13 ons on Ca AS° KJ/mol +2.758 +28.21 +7.94 -18.72 +5.77	on Coir D	ust		
Table 5: Th	ermodyn Metal Cu Pb Zn Ni odynamid Meta Cu Pb Zn Ni	amic Pa Temp (°K) 303 333 303 333 303 333 303 333 303 333 303 2 Param (°K) 303 333 333 333 333 333 333 333 33 3	Ko 2.84 3.29 3.66 6.13 2.93 1.27 0.21 0.21 0.71 eter for p 3.31 1.65 1.22 2.93 1.27	 for Ads AG^e KJ/mo -2.63 -3.29 -3.27 -5.03 -2.98 -0.60 -2.400 +3.91 +0.95 Adsrptic AG^e KJ/mol -3.02 -4.99 -0.501 -2.98 -0.60 -2.40 +3.93 +0.95 	41.93 orption AF KJ/r +4.1 +14. +14. -1 -1 -1 -1 -19.1	of M P nol 95 51 51 80 80 11 36 50 12 66 6 6	etal Ions ∆S° KJ/mol +2.166 +2.38 -5.65 +6.20 -1.84 -5.60 -5.10 -1.24 -1.13 ons on Ca ∆S° KJ/mol +2.758 +28.21 +7.94 -18.72 +5.70 -7.33 -6.38	n Coir D	d Resin		
Table 5: Th	ermodyn Metal Cu Pb Zn Ni Meta Cu Pb Zn Ni Ni	amic Pa Temp (°K) 303 333 303 333 303 333 303 333 303 333 303 333 203 20	Ko 2.84 3.29 3.66 6.13 2.93 1.27 0.21 0.21 0.71 eter for 9 3.31 1.65 1.22 2.93 1.27 2.38 0.21 0.71 teter for 0.23 1.27 2.38 0.21	for Ads ΔG° KJ/mo -2.63 -3.29 -3.27 -5.03 -2.98 -0.60 -2.400 +3.91 +0.95 Adsrptid ΔG° KJ/mol -3.02 -4.99 -0.501 -2.98 -0.60 -3.02 -4.99 -0.501 -2.98 -0.60 -2.98 -0.60 -2.98 -0.501 -2.98 -0.60 -2.409 -0.501 -2.98 -0.60 -2.40 +3.93 +0.95 Adsorptid	41.93 orption AF KJ/r +4.1 +14. +14. -14. -14. -14. -15. -19.1 -19.1 -19.1 -19.1	of M I ^o nol 95 51 551 80 80 10 80 10 86 60 66 6 10 10 10 10 10 10 10 10 10 10	etal Ions ΔS° KJ/mol +2.166 +2.38 -5.65 +6.20 -1.84 -5.60 -5.10 -1.24 -1.13 ons on Ca ΔS° KJ/mol +2.758 +28.21 +7.94 -18.72 +5.77 +5.70 -7.33 -6.38 I Ions on	n Coir D	d Resin		
Table 5: Th	ermodyn Metal Cu Pb Zn Ni odynamid Meta Cu Pb Zn Ni	Temp (°K) 303 333 303 333 303 333 303 333 303 333 303 333 303 333 303 333 303 333 303 </td <td>Ko 2.84 3.29 3.66 6.13 2.93 1.27 0.21 0.21 0.71 eter for 9 3.31 1.65 1.22 2.93 1.27 2.38 0.21 0.71 teter for 0.23 1.27 2.38 0.21</td> <td>for Ads ΔG° KJ/mo -2.63 -3.29 -3.27 -5.03 -2.98 -0.60 -2.400 +3.91 +0.95 Adsrptic ΔG° KJ/mol -3.02 -4.99 -0.501 -2.98 -0.600 -2.98 -0.501 -2.98 -0.600 -2.98 -0.600 -2.98 -0.501 -2.98 -0.600 -2.400 +3.93 +0.95 Adsorpti ΔG°</td> <td>41.93 orption ΔE I KJ/r +4.1 +14. </td> <td>of M I^o nol 95 51 51 80 6 6 6 Meta</td> <td>etal Ions ΔS° KJ/mol +2.166 +2.38 -5.65 +6.20 -1.84 -5.60 -5.10 -1.24 -1.13 ons on Ca ΔS° KJ/mol +27.58 +28.21 +7.94 -18.72 +5.77 +5.70 -7.33 -6.38 Il Ions on</td> <td>n Coir D</td> <td>d Resin</td>	Ko 2.84 3.29 3.66 6.13 2.93 1.27 0.21 0.21 0.71 eter for 9 3.31 1.65 1.22 2.93 1.27 2.38 0.21 0.71 teter for 0.23 1.27 2.38 0.21	for Ads ΔG° KJ/mo -2.63 -3.29 -3.27 -5.03 -2.98 -0.60 -2.400 +3.91 +0.95 Adsrptic ΔG° KJ/mol -3.02 -4.99 -0.501 -2.98 -0.600 -2.98 -0.501 -2.98 -0.600 -2.98 -0.600 -2.98 -0.501 -2.98 -0.600 -2.400 +3.93 +0.95 Adsorpti ΔG°	41.93 orption ΔE I KJ/r +4.1 +14. 	of M I ^o nol 95 51 51 80 6 6 6 Meta	etal Ions ΔS° KJ/mol +2.166 +2.38 -5.65 +6.20 -1.84 -5.60 -5.10 -1.24 -1.13 ons on Ca ΔS° KJ/mol +27.58 +28.21 +7.94 -18.72 +5.77 +5.70 -7.33 -6.38 Il Ions on	n Coir D	d Resin		
Table 5: Th	ermodyn Metal Cu Pb Zn Ni Meta Cu Pb Zn Ni Ni	amic Pa Temp (°K) 303 333 303 333 303 333 303 333 303 333 303 333 203 20	Image: constraint of the system Ko 2.84 3.29 3.66 6.13 2.93 1.27 0.21 0.21 0.21 0.71 eter for 0.21 1.65 1.22 2.93 1.27 1.22 2.93 1.27 2.38 0.21 0.71 ter for 0.20 0.71 1.27 1.27 2.38 0.21 0.71 ter for 0.71	for Ads ΔG° KJ/mo -2.63 -3.29 -3.27 -5.03 -2.98 -0.60 -2.400 +3.91 +0.95 Adsrptid ΔG° KJ/mol -3.02 -4.99 -0.501 -2.98 -0.60 -3.02 -4.99 -0.501 -2.98 -0.60 -2.98 -0.60 -2.98 -0.501 -2.98 -0.60 -2.98 -0.60 -2.98 -0.60 -2.409 +3.93 +0.95 Adsorpti	41.93 orption ΔE I KJ/r +4.1 +14. 	of M I ^o nol 95 51 551 80 80 6 6 6 6 Meta Meta	etal Ions ΔS° KJ/mol +2.166 +2.38 -5.65 +6.20 -1.84 -5.60 -5.10 -1.24 -1.13 ons on Ca ΔS° KJ/mol +2.758 +28.21 +7.94 -18.72 +5.77 +5.70 -7.33 -6.38 I Ions on	n Coir D	d Resin		

	(°K)		KJ/mol	KJ/mol	KJ/mol
Cu	303	3.31	-3.02	+83.86	+27.58
	333	0.17	+4.99		+28.20
Pb	303	0.36	+2.57	+58.63	-19.43
	333	2.93	-2.98		-19.56
Zn	333	1.27	-0.60	+17.57	+5.77
	303	2.38	-2.40		+6.34
Ni	303	0.21	+3.91	+33.80	+11.97
	333	0.71	+0.93		+11.03

It was observed that the average enthalpy adsorption ΔH^{0} and K₀ increased with increase in temperature for all the adsorption of metal ions on the adsorbents indicating an endothermic process. The negative values of ΔG^{0} indicates the spontaneous nature of adsorption of metal ions by the adsorbent. Most of the values of ΔG^{-0} were negative while some were positive, the more negative $\triangle G^{0}$ means that reaction reaches the equilibrium with more products and less reactants but with more positive ΔG^{0} , the reverse is the case. (Eligwe, et. al, 1999). The values of ΔH^{0} were greater than +20kj/g/mols for most of the adsorption which supports chemisorption reaction. It was observed that the effect of temperature was more pronounced on the adsorption of the metal ions on the modified coir extract viz; CTR and STR, than the unmodified coir dust. (Figures 2, 3, 5, 6, 8, 9, 11, 12). This shows that the CTR, and STR adsorbents were more efficient at higher temperatures than the coir dust. This is an advantage using these resins to remove

metal pollutants from industrial effluents which usually are discharged at high temperatures . Many other researchers have reported endothermic reactions for the adsorption of Cu(II) on adsorbents (Stylianou et al., 2007 and Israel et al., 2010). Endothermic adsorption of Pb(II) on adsorbents have also been reported (Sekar et al., 2004, Adebowale et al., 2008, Hashem, 2008). Sharma and Singh, 2008, and Ma et. al., 2011 also reported endothermic adsorption of Zinc on rice husk and chitosan – aluminium oxide composite material. Endothermic process for the adsorption of Ni(II), by orange peel and hazel nuts activated carbon have been reported (Ajmal et al., 2000).

Conclusion

The effect of temperature change on adsorption of Pb(II), Zn(II), Cu(II) and Ni(II) was investigated using CD, CTR and STR as unconventional adsorbents. The adsorption was found to be more effective at higher temperature confprming the reaction as endothermic process

The values of $\triangle H^{0}$ were greater than +20kj/g/mols for most of the adsorption which supports chemisorption reaction. It was observed that the effect of temperature was more pronounced on the adsorption of the metal ions on the modified coir extract viz; CTR and STR, than the unmodified coir dust. This shows that the CTR, and STR adsorbents were more efficient at higher temperatures than the coir dust.

It can be shown that Coconut Coir dust and its modified resins can be effective in adsorption of metal ions from aqueous solution and can be enhance at elevated temperature.

References

Adebowale, K. O. Unabonah, E. I. Olu-Owolabi, B. I. (2008). Kinetic and Thermodynamic Aspects of the Adsorption of Pb(II) and Cu(II) Ions on Tripolyphosphate-Modified Kaolinite Clay. Chemical Eng. J. C., 136: 99-107.

Ajmal, M. R. A. K, Amed, R. and Ahmad, J. (2000). Adsorption Studies on Citrus Reticulatal Fruit Peel Orange): Removal and recovery of Ni(II) from Electroplating Waste Water. Journal of Hazardous Materials. B79: 131.

Balasubramaniam, N. and Ahamen, A. J. (1998). Pollutant Resources. *Journal of environmental Science* 174 (1): 341.

Demibras, E., Kobya, M. Oncel, S. and Sencan, S. (2000). Removal of Ni(II) from Aqueous Solution by Adsorption onto Hazel Nut Shell Activated Carbon: Equilibrium Studies. Biores. Technol., 84: 291-293.

Eligwe, C. A. Nwoko, C. I. A. and Egereonu, U. U. (1999). Adsorption Properties of Detrin onto Modified Hematite Surfaces. J. Chem. Soc. Nigeria, 24:70-76.

Faisal, M. and Hasmain, S. (2004). Microbial Conversion of Cr (IV) into Cr (III) in industrial effluent. African Journal of Biotechnology. 3 (II): 610-617.

Hashem, M. A. (2000). Adsorption of Lead Ions by Okra Wastes. J. Physical Sciences., 2(7):178-184.

Israel, A. U., Ogali, R. and Akaranta, O. (2010). Removal of Cu(II) from Aqueous Solution using Coconut (*Cocos nucifera L.*) Coir Dust. Pharma Chemica, 2(5):60-75.

Langmiur, I. (1918). The Adsorption of gases on Plane Surface of Glass, Mica and Platinum. *Journal of American Chemical Society*, 40:1361-1403.

Ma, Z., Di, Ni, Zhang, F. Gu, P., Liu, S. and Liu, P. (2011). Kinetic and Thermodynamic Studies on the Adsorption of Zn(II) onto Chitosan-Aluminium Oxide Composite Material. Int. Journal of Chemistry, 3(1): 18 - 21.

Okieiman, E. F., Okondia, U. E. and Ogbeifun, E. D. (1991). Kinetics and Equilibrium Adsorption Study of Lead (II) from aqueous solution *Journal of Chemical Technology and Biotechnology*. 51(1): 97-101.

Raji, C. Shubha, K. P. and Aniurudhan, T. S. (1997). Adsorption of Lead (II) onto modified sawdust from aqueous solution. *Indian Journal of Environmental Health*. 39 (3): 230.

Sekar, M., Sakhti, V. and Rengaraj, S. (2004). Kinetic and Equilibrium Adsorption Study of Pb(II) onto Activated Carbon Prepared from Coconut Shell J. Colloid and Interface Sci., 279: 307-313.

Sharma, N. and Singh, J. (2008). Removal of Zn(II) ions from Solution using Rice (Oryza Sativa) Husk in a Sequential Bed Adsorption Column. Proceedings of TAAL 2007. The 12th World Lake Conference: pp.944-951.

Stylianou, M. A. Inglizakin, V. J., Moustakas, K. G. Malamis, S. P. and Loizidou, M. D. (2007). Removal of Cu(II) in Fixed Beds and Batch rectors using natural zeolite and exfoliated vermiculite as Adsorbents. Desalination, 214: 133-142.