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Introduction 

 Algorithms play a vital and key role to solve the 

computational problems, informally it is a well-defined 

computational procedure which takes input and produces output 

[6].Algorithm is a kind of tool or a sequence of steps so as to 

solve the computational problems. The existence of algorithms 

goes way back as they were in existence even before the 

existence of computers [9]. 

 There are various methodologies and techniques based on 

which kinds of algorithms are designed [11]. Out of all these 

problem solving algorithms, let us talk about the sorting 

algorithms. So far as sorting is concern, it is required to arrange 

a sequence of numbers into a given order, generally non-

decreasing. The sorting problem is countered with quite often in 

practice and it acts as a productive ground for the introduction of 

many standardized design techniques and analysis tools [13]. 

 If the given input sequence is (89, 51, 31, 71, 3, 68), then 

the output sequence returned by a sorting algorithm will be (3, 

31, 51, 68, 71, 89). 

 In order to be a good programmer, an excellent 

programming practice is required to be done & this can only be 

possible if we know about related topic theoretically as well as 

practically [10]. In initial stage when students learn to make 

program with array, they do exercise relevant to selection sort, 

and then with the help of required coding convert into code on 

their own. Many sorting algorithms we did in lab by the help of 

instructor and over their instructor work was always to check 

students who grabbed the code off the web but effective coding 

can be possible only when we do our own. 

 Sorting is a data structure operation, which is helpful for 

making searching and arranging of element or record. Here 

arrangement of sorting involves either into ascending or 

descending order. Everything in this world has some merits and 

demerits, some sorting algorithms are problem specific which 

means that they work well on some specific problem not on all 

the problems. It saves time and help searching data very quickly. 

Sorting algorithm performance varies on which type of data 

being sorted, it is not easier to say that which one algorithm is 

better than another. Here, also performance of different 

algorithm is in accordance to the data being sorted. Examples of 

some common sorting algorithms are the exchange or bubble 

sort, the selection sort, the insertion sort and the quick sort [15]. 

 Bubble sort is a basic sorting algorithm that performs the 

sorting operation by iterative comparing the adjacent pair of the 

given data items and swaps the items if their order is reversed 

[15]. There is a repetition of the passes through the list is sorted 

and no more swaps are then required[15]. It is a simple 

algorithm but it is not much efficient when the given input data 

set is large. 

 But sometimes question arises in front of us, whether there 

any way through this sorting can be more effective and how to 

convert that algorithm into code. Then demonstrate a 

modification of this algorithm, and finally to assign the coding 

modification as a programming. This paper suggests one simple 

modification of sorting algorithm: Double-Ended Bubble Sort. 

One can argue as to whether the use of double sort for these 

small array partitions will provide improvement to this critical 

algorithm. 

 Therefore, to understand important concepts and 

programming practice, a good programming exercise plays a 

crucial role i.e. for using double-ended bubble sort in place of 

normal bubble sorting technique that raises the sorting skills. 

Well, there are two cases that occurred at the time of making 

double sorting code for bubble sort, when the size is odd or 

even. 

 An effort is done in positive direction and realizes coding 

technique for double sorting offer great improvements speed up 

to 25% to 35% over the single bubble sorting [15]. 
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Bubble Sort 

 Bubble sort is a basic sorting algorithm that performs the 

sorting operation by iterative comparing the adjacent pair of the 

given data items and swaps the items if their order is reversed 

[10, 20].There is a repetition of the passes through the list is 

sorted and no more swaps are needed. It is a simple algorithm 

but it lacks in efficiency when the given input data set is large. 

 The worst case as well as average case complexity of 

bubble sort is О(n
2
), where n represents the total number of 

items in the given array to be sorted. When bubble sort is 

compared with other sorting algorithms, the result indicates that 

there are many of such algorithms which perform better in their 

worst case. That’s why, it is not considered as a best sorting 

algorithm. Bubble Sort has the best performance i.e. complexity 

of O(n) in case of an already sorted list.  

 The algorithm for bubble sort having ARRAY as an array 

with N elements is as follows: 

BUBBLE (ARRAY, N) 

for(i=1 to N-1) 

{ 

PTR = 1 

while(PTR<= N-i) 

{ 

if (ARRAY[PTR] >ARRAY[PTR+1]) 

{ 

Temp = ARRAY[PTR] 

ARRAY[PTR]=ARRAY[PTR+1] 

ARRAY[PTR]=Temp 

} 

Set PTR = PTR+1 

} 

} 

Selection Sort 

 The selection sort works by selecting the smallest unsorted 

item remaining in the list, and then swapping it with the item in 

the next position to be filled. The selection sort has a complexity 

of O(n
2
) [14]. 

 The worst case as well as average case complexity of 

Selection sort is О(n
2
), where n represents the total number of 

items in the given array to be sorted.  

 The selection sort is the unwanted stepchild of the n
2
 sorts. 

It yields a 60% performance improvement over the bubble sort, 

but the insertion sort is over twice as fast as the bubble sort and 

is just as easy to implement as the selection sort. In short, there 

is not really any reason to use the selection sort-use the insertion 

sort instead [15].  

The algorithm for selection sort having ARRAY as an array with 

N elements is as follows: 

SELECTION (ARRAY, N) 

for(i=1 to N-1) 

{ 

Min = ARRAY[i] 

for (k = i+1 to N) 

{ 

if (min>ARRAY [k]) 

{ 

 Min = A[k]  

 Loc = k 

} 

} 

Temp = ARRAY [Loc] 

ARRAY [Loc]=ARRAY [i] 

ARRAY [i]=Temp 

} 

Both ended Sorting Algorithm 

Introduction 

 Various authors had made continuous attempts for 

increasing the efficiency and performance of the sorting process. 

The proposed algorithm is based on bubble sort. 

In this paper algorithm works in two phases: 

1. In first phase, one element from the front end and one element 

from the rear end of the array is compared. If the front position 

element is greater than the rear position element, then swap the 

elements. The position of the element from front end and 

element from the rear end of the array are stored invariables 

which are increased (front end) and decreased (rear end) as the 

algorithm progresses. 

2. In the second phase, two consecutive elements from the front 

and rear end of the array are taken and both elements are 

compared. Replacing of elements is done if required according 

to the order. Here four variables are taken which stores the 

position of two rights elements and two left elements which are 

to be sorted. 

Algorithm 

BESA (DATA, n) 

i = 1; 

j = MAX; 

while(i< j) 

{ 

 if(DATA(i) > DATA(j)) 

 { 

  Temp← DATA[i] 

DATA[i]←DATA[j] 

DATA[j]← Temp 

 } 

 i++; 

 j++; 

} 

for (i←1 to n/2 && FLAG) 

{ 

FLAG←0 

for (j←i to n-i) 

{ 

if(DATA[j]>DATA[j+1]) 

{ 

Temp←DATA[j] 

DATA[j]←DATA[j+1] 

DATA[j+1]← Temp 

FLAG←1 

} 

if(DATA[n-j]>DATA[n-j+1]) 

{ 

Temp←DATA[n-j] 

DATA[n-j]←DATA[n-j+1] 

DATA[n-j+1]← Temp 

FLAG←1 

} 

} 

} 

Complexity Analysis 

 The general working of the proposed algorithm is already 

discussed in detail. Now discuss its complexity analysis. 

Line 1-2 execute only one time in a single execution of the 

algorithm. 

Line 3 executes n/2 + 1 times in a single execution of the 

algorithm. 

Line 4 executes n/2 times in a single execution of the algorithm. 

Line 5-7 executes 
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Table I. Complexity Analysis 

Line No. Iteration 

1. i,j,n,Temp 

2. i = 1, j = n 

3. While(i<j) 

4.     If(DATA[i] > DATA[j]) 

5. Temp← DATA[i] 

6.        DATA[i] ← DATA [j] 

7. DATA[j] ←Temp 

8. i++, j-- 

9. FLAG ← 1 

10. for i←1 to n/2 && FLAG 

11. FLAG←0 

12. for j←i to n-i 

13. if( DATA[j]> DATA[j+1]) 

14. Temp← DATA[j] 

15.                   DATA[j]← DATA[j+1] 

16.                   DATA[j+1]← Temp 

17.                   FLAG←1 

18.           if(DATA[n-j]> DATA[n-j+1]) 

19.                   Temp← DATA[n-j] 

20.                   DATA[n-j]← DATA[n-j+1] 

21.                   DATA[n-j+1]←Temp 

22.                   FLAG←1 

n/2 

∑  L 

 K=0 

times in a single execution of the algorithm. 

Note: L=1 when if statement is true, else L=0. 

n/2 

∑  t = this evaluates to a constant value based k=0    on the value 

of t (either 1 or 0). 

Line 8 executes n/2 times in a single execution of the algorithm. 

Line 9-10 execute only one time in a single execution of the 

algorithm. 

Line 11-12 executes n/2 times in a single execution of the 

algorithm. 

Line 13-22 executes 

n/2-1 

∑  (2k+1).L 

K=0 

Note :L=1 when if statement is true, else L=0. 

Suppose for  L=1 we have 

n/2-1             n/2-1     n/2-1 

∑  (2k+1) = 2∑  k  +  ∑  1 

K=0      K=0       K=0 

= 2(((n/2-1)*((n/2-1)+1))/2) + (n/2-1) 

[ By Applying 1+2+3+…n = (n(n+1)/2) ] 

= ((n
2
-2n)/4) + (n/2-1) 

Now calculating total time taking by proposed algorithm, 

T(n) =   1 + n/2 + 1  + n/2  + 1 + n/2 + 1 + n/2 + (n
2
-2n)/4 + 

(n/2-1) 

= n
2
/4 + 4(n/2) + 3 

Now taking only the largest term, i.e. n
2
 so running time of the 

algorithm is, 

T(n) = O(n
2
) 

Working 

Let the given set of elements are 87, 33, 48, 74, 13, 66. 

Bubble Sort 

Table II. Working of Bubble Sort 
Step No. Elements 

1. 87 33 48 74 13 66 

2. 33 87 48 74 13 66 

3. 33 48 87 74 13 66 

4. 33 48 74 87 13 66 

5. 33 48 74 13 87 66 

6. 33 48 74 13 66 87 

7. 33 48 74 13 66 87 

8. 33 48 74 13 66 87 

9. 33 48 13 74 66 87 

10. 33 48 13 66 74 87 

11. 33 48 13 66 74 87 

12. 33 13 48 66 74 87 

13. 33 13 48 66 74 87 

14. 33 13 48 66 74 87 

15. 13 13 48 66 74 87 

16. 13 33 48 66 74 87 

Sorted 13 33 48 66 74 87 

BESA Sort 

Table III. Working of debs sort 

Step No. Pointer Elements 

1. i=1, j=6 87 33 48 74 13 66 

2. i=2, j=5 66 33 48 74 13 87 

3. i=3, j=4 66 13 48 74 33 87 

4. p=1,q=2,r=6,s=5 66 13 48 74 33 87 

5. p=2,q=3,r=5,s=4 13 66 48 74 33 87 

6. p=3,q=4,r=4,s=3 13 48 66 33 74 87 

7. p=4,q=5,r=3,s=2 13 48 33 66 74 87 

8. p=5,q=6,r=2,s=1 13 33 48 66 74 87 

9. p=2,q=3,r=5,s=4 13 33 48 66 74 87 

10 p=3,q=4,r=4,s=3 13 33 48 66 74 87 

11. p=4,q=5,r=3,s=2 13 33 48 66 74 87 

Sorted  13 33 48 66 74 87 

Comparison 

On the Basis of Passes 

1) Worst Case Analysis: In a sorting algorithm, Worst case refers 

to the situation when the given set of numbers is in decreasing 

order while the required set has to be in increasing order. 

Table IV. Worst case analysis 

 N = 10 N = 49 N = 100 N = 499 N = 1000 

Bubble 9 48 99 498 999 

Insertion 9 48 99 498 999 

BESA 1 1 1 1 1 

 
Fig. 1 Worst Case Analysis 

 

2) Average Case Analysis: Average case in a sorting algorithm 

refers to a random manner. 

Table V. Average Case Analysis 
 N = 10 N = 49 N = 100 N = 499 N= 1000 

Bubble 9 48 99 498 999 

Insertion 9 48 99 498 999 

BESA 3 9 19 77 157 
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Fig. 2 Average Case Analysis 

3) Best Case Analysis: Best case in a sorting algorithm refers to 

the situation when the given set of numbers is in already in 

increasing order. 

Table VI. Best Case Analysis 

 N = 10 N = 49 N = 100 N = 499 N= 1000 

Bubble 9 48 99 498 999 

Insertion 9 48 99 498 999 

BESA 1 1 1 1 1 

 

 
Fig. 3 Best Case Analysis 

On the Basis of Complexity 

BESA works exceptionally well in worst case scenarios. The 1
st
 

step of the algorithm places each element as its proper position 

with minimum number of comparisons and swaps. 

Table VII. Analysis on the basis of complexity 
  Worst Case Average Case Best Case 

Bubble O(n2) O(n2) O(n) 

Insertion O(n2) O(n2) O(n2) 

BESA O(n) O(n2) O(n) 

Conclusion & Future Scope 

 In this research paper we have studied about different 

sorting algorithms along with their comparison. Every sorting 

algorithm has advantage and disadvantage. The fundamental 

sorting algorithms are basic sorting algorithm and we have try to 

show this how disadvantage of fundamental sorting algorithm 

have removed in advance sorting algorithm. Various Sorting 

algorithms have been compared on the basis of different factors 

like complexity, number of passes, number of comparison etc. 

After the study of all various sorting algorithms we observed 

that there is no such algorithm, which works in this way that to 

sort the elements on both ends. So we have proposed sorting 

algorithm, which work on the basis of both end comparison 

front as well as rear. For implementation to the proposed 

algorithm we have to use MATLAB. 

My first target is to remove the demerits of various sorting 

algorithms. It is also seen that many algorithms are problem 

oriented so we will try to make it global oriented. Hence we can 

say that there are many future works which are as follows. 

 Remove disadvantage of various fundamental sorting and 

advance sorting. 

 Make problem oriented sorting to global oriented. 

In the end we would like to say that there is huge scope of the 

sorting algorithm in the near future, and to find optimum-sorting 

algorithm, the work on sorting algorithm will go on forever. 
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