
Anuradha Brijwal

et al./ Elixir Comp. Engg. 78 (2015) 29978-29982

29978

Introduction

 Algorithms play a vital and key role to solve the

computational problems, informally it is a well-defined

computational procedure which takes input and produces output

[6].Algorithm is a kind of tool or a sequence of steps so as to

solve the computational problems. The existence of algorithms

goes way back as they were in existence even before the

existence of computers [9].

 There are various methodologies and techniques based on

which kinds of algorithms are designed [11]. Out of all these

problem solving algorithms, let us talk about the sorting

algorithms. So far as sorting is concern, it is required to arrange

a sequence of numbers into a given order, generally non-

decreasing. The sorting problem is countered with quite often in

practice and it acts as a productive ground for the introduction of

many standardized design techniques and analysis tools [13].

 If the given input sequence is (89, 51, 31, 71, 3, 68), then

the output sequence returned by a sorting algorithm will be (3,

31, 51, 68, 71, 89).

 In order to be a good programmer, an excellent

programming practice is required to be done & this can only be

possible if we know about related topic theoretically as well as

practically [10]. In initial stage when students learn to make

program with array, they do exercise relevant to selection sort,

and then with the help of required coding convert into code on

their own. Many sorting algorithms we did in lab by the help of

instructor and over their instructor work was always to check

students who grabbed the code off the web but effective coding

can be possible only when we do our own.

 Sorting is a data structure operation, which is helpful for

making searching and arranging of element or record. Here

arrangement of sorting involves either into ascending or

descending order. Everything in this world has some merits and

demerits, some sorting algorithms are problem specific which

means that they work well on some specific problem not on all

the problems. It saves time and help searching data very quickly.

Sorting algorithm performance varies on which type of data

being sorted, it is not easier to say that which one algorithm is

better than another. Here, also performance of different

algorithm is in accordance to the data being sorted. Examples of

some common sorting algorithms are the exchange or bubble

sort, the selection sort, the insertion sort and the quick sort [15].

 Bubble sort is a basic sorting algorithm that performs the

sorting operation by iterative comparing the adjacent pair of the

given data items and swaps the items if their order is reversed

[15]. There is a repetition of the passes through the list is sorted

and no more swaps are then required[15]. It is a simple

algorithm but it is not much efficient when the given input data

set is large.

 But sometimes question arises in front of us, whether there

any way through this sorting can be more effective and how to

convert that algorithm into code. Then demonstrate a

modification of this algorithm, and finally to assign the coding

modification as a programming. This paper suggests one simple

modification of sorting algorithm: Double-Ended Bubble Sort.

One can argue as to whether the use of double sort for these

small array partitions will provide improvement to this critical

algorithm.

 Therefore, to understand important concepts and

programming practice, a good programming exercise plays a

crucial role i.e. for using double-ended bubble sort in place of

normal bubble sorting technique that raises the sorting skills.

Well, there are two cases that occurred at the time of making

double sorting code for bubble sort, when the size is odd or

even.

 An effort is done in positive direction and realizes coding

technique for double sorting offer great improvements speed up

to 25% to 35% over the single bubble sorting [15].

Both ended sorting algorithm & performance comparison with existing

algorithm
Anuradha Brijwal

1
, Arpit Goel

1
, Anubhooti Papola

2
 and Jitendra Kumar Gupta

3

1
Department of Computer Science & Engineering, Faculty of Technology, University Campus, Dehradun Uttarakhand, India.

2
Department of Computer Science & Engineering, Uttarakhand Technical University, Dehradun Uttarakhand, India,

3
Department of Computer Science & Engineering, GRD Institute of Technology, Dehradun Uttarakhand, India.

ABSTRACT
One of the basic areas of the computer science is Data Structure. Sorting is an important

issue in Data Structure which creates the sequence of the list of items. Although

numbers of sorting algorithms are available, it is all the more necessary to select the best

sorting algorithm. Therefore, sorting problem has attracted a great deal of research as

sorting technique is very often used in a large variety of important applications so as to

arrange the data in ascending or descending order. This paper presents a Both Ended

Sorting Algorithm which is faster or better than the bubble sort& others algorithm. After

having studied various sorting algorithms; I came to the conclusion that there is no such

sorting algorithm which works on the basis of both end comparison right end as well as

left end. The new algorithm so is then analysed, implemented & tested. The test results

obtained are then presented and compared with the traditional Sorting Algorithm. Worst

case complexity is also improved as a compare to bubble sort.

 © 2015 Elixir All rights reserved.

ARTICLE INFO

Article history:

Received: 3 June 2014;

Received in revised form:

19 November 2014;

Accepted: 29 November 2014;

Keywords

Algorithm,

Bubble Sort,

Selection Sort and Both-Ended Sorting,

Comparison.

Elixir Comp. Engg. 78 (2015) 29978-29982

Computer Engineering

Available online at www.elixirpublishers.com (Elixir International Journal)

Tele:

E-mail addresses: meetanubrijwal01@gmail.com

 © 2015 Elixir All rights reserved

Anuradha Brijwal

et al./ Elixir Comp. Engg. 78 (2015) 29978-29982

29979

Bubble Sort

 Bubble sort is a basic sorting algorithm that performs the

sorting operation by iterative comparing the adjacent pair of the

given data items and swaps the items if their order is reversed

[10, 20].There is a repetition of the passes through the list is

sorted and no more swaps are needed. It is a simple algorithm

but it lacks in efficiency when the given input data set is large.

 The worst case as well as average case complexity of

bubble sort is О(n
2
), where n represents the total number of

items in the given array to be sorted. When bubble sort is

compared with other sorting algorithms, the result indicates that

there are many of such algorithms which perform better in their

worst case. That’s why, it is not considered as a best sorting

algorithm. Bubble Sort has the best performance i.e. complexity

of O(n) in case of an already sorted list.

 The algorithm for bubble sort having ARRAY as an array

with N elements is as follows:

BUBBLE (ARRAY, N)

for(i=1 to N-1)

{

PTR = 1

while(PTR<= N-i)

{

if (ARRAY[PTR] >ARRAY[PTR+1])

{

Temp = ARRAY[PTR]

ARRAY[PTR]=ARRAY[PTR+1]

ARRAY[PTR]=Temp

}

Set PTR = PTR+1

}

}

Selection Sort

 The selection sort works by selecting the smallest unsorted

item remaining in the list, and then swapping it with the item in

the next position to be filled. The selection sort has a complexity

of O(n
2
) [14].

 The worst case as well as average case complexity of

Selection sort is О(n
2
), where n represents the total number of

items in the given array to be sorted.

 The selection sort is the unwanted stepchild of the n
2
 sorts.

It yields a 60% performance improvement over the bubble sort,

but the insertion sort is over twice as fast as the bubble sort and

is just as easy to implement as the selection sort. In short, there

is not really any reason to use the selection sort-use the insertion

sort instead [15].

The algorithm for selection sort having ARRAY as an array with

N elements is as follows:

SELECTION (ARRAY, N)

for(i=1 to N-1)

{

Min = ARRAY[i]

for (k = i+1 to N)

{

if (min>ARRAY [k])

{

 Min = A[k]

 Loc = k

}

}

Temp = ARRAY [Loc]

ARRAY [Loc]=ARRAY [i]

ARRAY [i]=Temp

}

Both ended Sorting Algorithm

Introduction

 Various authors had made continuous attempts for

increasing the efficiency and performance of the sorting process.

The proposed algorithm is based on bubble sort.

In this paper algorithm works in two phases:

1. In first phase, one element from the front end and one element

from the rear end of the array is compared. If the front position

element is greater than the rear position element, then swap the

elements. The position of the element from front end and

element from the rear end of the array are stored invariables

which are increased (front end) and decreased (rear end) as the

algorithm progresses.

2. In the second phase, two consecutive elements from the front

and rear end of the array are taken and both elements are

compared. Replacing of elements is done if required according

to the order. Here four variables are taken which stores the

position of two rights elements and two left elements which are

to be sorted.

Algorithm

BESA (DATA, n)

i = 1;

j = MAX;

while(i< j)

{

 if(DATA(i) > DATA(j))

 {

 Temp← DATA[i]

DATA[i]←DATA[j]

DATA[j]← Temp

 }

 i++;

 j++;

}

for (i←1 to n/2 && FLAG)

{

FLAG←0

for (j←i to n-i)

{

if(DATA[j]>DATA[j+1])

{

Temp←DATA[j]

DATA[j]←DATA[j+1]

DATA[j+1]← Temp

FLAG←1

}

if(DATA[n-j]>DATA[n-j+1])

{

Temp←DATA[n-j]

DATA[n-j]←DATA[n-j+1]

DATA[n-j+1]← Temp

FLAG←1

}

}

}

Complexity Analysis

 The general working of the proposed algorithm is already

discussed in detail. Now discuss its complexity analysis.

Line 1-2 execute only one time in a single execution of the

algorithm.

Line 3 executes n/2 + 1 times in a single execution of the

algorithm.

Line 4 executes n/2 times in a single execution of the algorithm.

Line 5-7 executes

Anuradha Brijwal

et al./ Elixir Comp. Engg. 78 (2015) 29978-29982

29980

Table I. Complexity Analysis

Line No. Iteration

1. i,j,n,Temp

2. i = 1, j = n

3. While(i<j)

4. If(DATA[i] > DATA[j])

5. Temp← DATA[i]

6. DATA[i] ← DATA [j]

7. DATA[j] ←Temp

8. i++, j--

9. FLAG ← 1

10. for i←1 to n/2 && FLAG

11. FLAG←0

12. for j←i to n-i

13. if(DATA[j]> DATA[j+1])

14. Temp← DATA[j]

15. DATA[j]← DATA[j+1]

16. DATA[j+1]← Temp

17. FLAG←1

18. if(DATA[n-j]> DATA[n-j+1])

19. Temp← DATA[n-j]

20. DATA[n-j]← DATA[n-j+1]

21. DATA[n-j+1]←Temp

22. FLAG←1

n/2

∑ L

 K=0

times in a single execution of the algorithm.

Note: L=1 when if statement is true, else L=0.

n/2

∑ t = this evaluates to a constant value based k=0 on the value

of t (either 1 or 0).

Line 8 executes n/2 times in a single execution of the algorithm.

Line 9-10 execute only one time in a single execution of the

algorithm.

Line 11-12 executes n/2 times in a single execution of the

algorithm.

Line 13-22 executes

n/2-1

∑ (2k+1).L

K=0

Note :L=1 when if statement is true, else L=0.

Suppose for L=1 we have

n/2-1 n/2-1 n/2-1

∑ (2k+1) = 2∑ k + ∑ 1

K=0 K=0 K=0

= 2(((n/2-1)*((n/2-1)+1))/2) + (n/2-1)

[By Applying 1+2+3+…n = (n(n+1)/2)]

= ((n
2
-2n)/4) + (n/2-1)

Now calculating total time taking by proposed algorithm,

T(n) = 1 + n/2 + 1 + n/2 + 1 + n/2 + 1 + n/2 + (n
2
-2n)/4 +

(n/2-1)

= n
2
/4 + 4(n/2) + 3

Now taking only the largest term, i.e. n
2
 so running time of the

algorithm is,

T(n) = O(n
2
)

Working

Let the given set of elements are 87, 33, 48, 74, 13, 66.

Bubble Sort

Table II. Working of Bubble Sort
Step No. Elements

1. 87 33 48 74 13 66

2. 33 87 48 74 13 66

3. 33 48 87 74 13 66

4. 33 48 74 87 13 66

5. 33 48 74 13 87 66

6. 33 48 74 13 66 87

7. 33 48 74 13 66 87

8. 33 48 74 13 66 87

9. 33 48 13 74 66 87

10. 33 48 13 66 74 87

11. 33 48 13 66 74 87

12. 33 13 48 66 74 87

13. 33 13 48 66 74 87

14. 33 13 48 66 74 87

15. 13 13 48 66 74 87

16. 13 33 48 66 74 87

Sorted 13 33 48 66 74 87

BESA Sort

Table III. Working of debs sort

Step No. Pointer Elements

1. i=1, j=6 87 33 48 74 13 66

2. i=2, j=5 66 33 48 74 13 87

3. i=3, j=4 66 13 48 74 33 87

4. p=1,q=2,r=6,s=5 66 13 48 74 33 87

5. p=2,q=3,r=5,s=4 13 66 48 74 33 87

6. p=3,q=4,r=4,s=3 13 48 66 33 74 87

7. p=4,q=5,r=3,s=2 13 48 33 66 74 87

8. p=5,q=6,r=2,s=1 13 33 48 66 74 87

9. p=2,q=3,r=5,s=4 13 33 48 66 74 87

10 p=3,q=4,r=4,s=3 13 33 48 66 74 87

11. p=4,q=5,r=3,s=2 13 33 48 66 74 87

Sorted 13 33 48 66 74 87

Comparison

On the Basis of Passes

1) Worst Case Analysis: In a sorting algorithm, Worst case refers

to the situation when the given set of numbers is in decreasing

order while the required set has to be in increasing order.

Table IV. Worst case analysis

 N = 10 N = 49 N = 100 N = 499 N = 1000

Bubble 9 48 99 498 999

Insertion 9 48 99 498 999

BESA 1 1 1 1 1

Fig. 1 Worst Case Analysis

2) Average Case Analysis: Average case in a sorting algorithm

refers to a random manner.

Table V. Average Case Analysis
 N = 10 N = 49 N = 100 N = 499 N= 1000

Bubble 9 48 99 498 999

Insertion 9 48 99 498 999

BESA 3 9 19 77 157

Anuradha Brijwal

et al./ Elixir Comp. Engg. 78 (2015) 29978-29982

29981

Fig. 2 Average Case Analysis

3) Best Case Analysis: Best case in a sorting algorithm refers to

the situation when the given set of numbers is in already in

increasing order.

Table VI. Best Case Analysis

 N = 10 N = 49 N = 100 N = 499 N= 1000

Bubble 9 48 99 498 999

Insertion 9 48 99 498 999

BESA 1 1 1 1 1

Fig. 3 Best Case Analysis

On the Basis of Complexity

BESA works exceptionally well in worst case scenarios. The 1
st

step of the algorithm places each element as its proper position

with minimum number of comparisons and swaps.

Table VII. Analysis on the basis of complexity
 Worst Case Average Case Best Case

Bubble O(n2) O(n2) O(n)

Insertion O(n2) O(n2) O(n2)

BESA O(n) O(n2) O(n)

Conclusion & Future Scope

 In this research paper we have studied about different

sorting algorithms along with their comparison. Every sorting

algorithm has advantage and disadvantage. The fundamental

sorting algorithms are basic sorting algorithm and we have try to

show this how disadvantage of fundamental sorting algorithm

have removed in advance sorting algorithm. Various Sorting

algorithms have been compared on the basis of different factors

like complexity, number of passes, number of comparison etc.

After the study of all various sorting algorithms we observed

that there is no such algorithm, which works in this way that to

sort the elements on both ends. So we have proposed sorting

algorithm, which work on the basis of both end comparison

front as well as rear. For implementation to the proposed

algorithm we have to use MATLAB.

My first target is to remove the demerits of various sorting

algorithms. It is also seen that many algorithms are problem

oriented so we will try to make it global oriented. Hence we can

say that there are many future works which are as follows.

 Remove disadvantage of various fundamental sorting and

advance sorting.

 Make problem oriented sorting to global oriented.

In the end we would like to say that there is huge scope of the

sorting algorithm in the near future, and to find optimum-sorting

algorithm, the work on sorting algorithm will go on forever.

Acknowledgment

 I would like to express my sincere thanks to Asst. Prof.

Anubhooti Papola for his advice during my work. As my

supervisor, she has constantly encouraged me to remain focused

on achieving my goal. I extend my thanks to Asst. Prof. Nitin

Arora for his valuable advices and encouragement. I must

acknowledge the academic resources that I have got from UTU

Dehradun.

References

[1] Y.Han “Deterministic sorting in O(nloglogn) time and linear

space”, Proceeding of the thirty-fourth annual ACM symposium

on theory of computing, Monteral Quebec, Canada, (2002),

p.602-608.

[2] Y.Han, M.Thorup, “Integer Sorting in O(nloglogn) time and

linear space” proceesings of the 43
rd

 symposium on foundations

of Computer Science, (2003), p.135-144.

[3] J.L. Bentley and R.Sedgewick. “Fast Algorithms for Sorting

and Searching Strings”, ACM-SIAM SODA ‟(2003), 360–369.

[4] G. Franceschini and V. Geffert, “An In-Place Sorting with

O(n log n) Comparisons and O(n) Moves”, Proceedings of 44th

Annual IEEE Symposium on Foundations of Computer Science,

(2003), pp. 242-250.

[5] M. A. Bender, M. Farach-Colton and M. A. Mosteiro,

“Insertion Sort is O(n log n)”, Proceedings of the Third

International Conference on Fun With Algorithms (FUN),

(2004), pp. 16-23.

[6] A. D. Mishra and D. Garg, “Selection of the best sorting

algorithm”, International Journal of Intelligent Information

Processing, vol. 2, no. 2, (2008) July-December, pp. 363-368.

[7] O. O. Moses, “Improving the performance of bubble sort

using a modified diminishing increment sorting”, Scientific

Research and Essay, vol. 4, no. 8, (2009), pp. 740-744.

[8] J. Alnihoud and R. Mansi, “An Enhancement of Major

Sorting Algorithms”, International Arab Journal of Information

Technology, vol. 7, no. 1, (2010), pp. 55-62.

[9] Sultanullah Ja doon et al., “Design and Analysis of

Optimized Selection Sort Algorithm”, International Journal of

Electric & Computer Sciences IJECS-IJENS, (2011)Vol: 11 No:

01.

[10] Savina & Surmeet Kaur, “Study of Sorting Algorithm to

Optimize Search Results”, International Journal of Emerging

Trends & Technology in Computer Science, (2012) Volume 2,

Issue 1.

[11] Md. Khairullah, “Enhancing Worst Sorting Algorithms”,

International Journal of Advanced Science and Technology,

(2013) Vol. 56.

[12] Ibrahim M. Al Turani, Khalid S. Al-Kharabsheh &

Abdallah M. AlTurani, “Grouping Comparison Sort”, Australian

Journal of Basic and Applied Sciences, (2013), 7(7): 470-475.

[13] Nitin Arora, Anil Kumar & PramodMehra, “Two Way

Counting Position Sort”, International Journal of Computer

Application (2013).

Anuradha Brijwal

et al./ Elixir Comp. Engg. 78 (2015) 29978-29982

29982

[14] Partha Sarathi Dutta, “ Design and Analysis of Hybrid

Selection Sort Algorithm”, International Journal of Applied

Research and Studies (2013).

[15] Surender Lakra & Divya, “Improving the performance of

selection sort using a modified double-ended selection sorting”,

International Journal of Application or Innovation in

Engineering & Management (IJAIEM) (2013).

[16] Pankaj Sareen, “Comparison of Sorting Algorithms”,

International Journal of Advanced Research in Computer

Science and Software Engineering (2013).

[17] R.Srinivas & A.RagaDeepthi, “Novel Sorting Algorithm”,

International Journal on Computer Science and Engineering

(2013).

[18] Partha Sarathi Dutta, “An Approach to Improve the

Performance of Insertion Sort Algorithm”, International Journal

of Computer Science & Engineering Technology (2013).

[19] Khalid Suleiman Al-Kharabsheh et al., “Review on Sorting

Algorithms A Comparative Study”, International Journal of

Computer Science and Security (IJCSS), (2013), Volume (7) :

Issue (3).

[20] Savina & Surmeet Kaur, “Study of Sorting Algorithm to

Optimize Search Results”, International Journal of Emerging

Trends & Technology in Computer Science, (2013) Volume 2,

Issue 1.

