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Introduction 

Definition of Graph: An (undirected) graph G is defined by two finite sets.a non-void set X of elements called vertices, a set E 

(which can be empty) of elements called edges, with for each edge e  two associated vertices,  x  and  y , distinct or not, called the end 

vertices of  e [3]. 

Definition of simple graph: A "simple" graph is a graph with no loops or multiple edges [7]. 

Definition of Spanning subgraph: A subgraph H = (Y, F) of G is called a spanning subgraph if Y = X. It can be specified that it is a 

spanning subgraph induced by F. It isthe graph(X, F) and is denoted by G (F) [5]. 

Definition of Null graph: A graph which consists of a set of vertices and no edges is called a null graph[4]. 

Definition of multigraph: Let V be a finite nonempty set. We say that the pair (V,E) determine multigraph G with vertex set V and 

edge set E if for some  x,y  V , there are two or more edges in E of the form (a) (x,y) (for a directed multigraph),or (b) {x,y} (for an 

undirected multigraph) . In either case ,we write  G = (V, E) to designate the multigraph , just as we did for graphs [8]. 

Definition of Spanning tree :Spanning tree for a graph G is a subgraph of G that contains every vertex of G and is a tree [6]. 

Definition of  link-graph : knot-graph (link-graph) is a graph in which each vertex is a link[1]. 

Definition of  graph with graph vertices: Consider the geometric graph G(V, E) where  
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}. We are called this graph ( graph with complex vertices) [2]. 

Definition of Graph folding: A graph map  f : G1 → G2 , is called a graph folding if and only if  f maps vertices to vertices and edges 

to edges ,i.e., 

(i) For each vertex  v  V( G1) ,  f( v) is a vertex in  V( G2) , 

(ii) For each  e  E( G1) ,  f( e) is an edge in E( G2) [ 3]. 

 

Fig 1 

Main Results: 

Definition : The graph with different vertices : is a graph which each vertex has different chap such as: link vertex , graph vertex , or 

simple vertex , whether this graph is simple or have multiedges (multigraph). 

Types of graph with different vertices: 

This graph may be one of two types , in each type we have two cases ( Simple graph or multigraph).  
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Type 1: Graph which its vertices has all three chaps (simple, knot or graph) : 

In this type the graph may be cycle or path or tree, then we can illustrate the adjacent and incident matrices for each case as 

follows: 

Case 1: For simple graph: 

For path graph with three different vertices: 

For graph shown in Fig.(1) the adjacent and incident matrices are: 

A(G) = ,  I(G)=   

Where 1 represent the simple vertex , 1k represent knot vertex , 1g represent graph vertex. 

For cycle graph with three different vertices: 

For graph shown in Fig.(2) the adjacent and incident matrices are: 

A(G) =  ,   I(G) =  

 

Fig 2 

Case 2 : For multigraph: 

For path graph with three different vertices: 

For multigraph shown in Fig.(3) , we can compute adjacent and incident matrices as follows: 

 

Fig 3 
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A(G) =  , I (G) =  

In the same way we can compute adjacent and incident matrices for graphs with more than 3 vertices and edges.  

For cycle graph with three different vertices: 

Consider a cycle multiple graph as shown in Fig.(5). 

 

Fig 5 

The adjacent and incident matrices are: 

A(G) = , I(G) =  

In the same way we can calculate adjacent and incident matrices for graph of more than 3 vertices in each case. 

Type 2: Graph which its vertices has only two chaps: 

In  this type the graph have two chaps of vertices such as: simple and knot , simple and graph , knot and graph . 

Case 1: For simple graph: 

when its vertices are simple and knot: 

As a simple example for this graph is shown in Fig.(6) , we can illustrate the adjacent and incident matrices as follows: 
 

Fig 6 

A(G) =  , I(G) =   
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when its vertices are simple and graph: 

This type may have two or more vertices .As an example for this type is graph shown in Fig.(7), 
 

Fig 7 

  A(G) =  , I(G) =   

when its vertices are knot and graph:                                                                                                      

This type may have two or more vertices .As an Example of this type is a graph shown in Fig.(8) , 

 

Fig 8 

We can illustrate the adjacent and incident matrices as follows: 

A(G) = , I(G) = .  

Case 2: For multigraph: 

when its vertices are simple and knot: 

For multigraph shown in Fig.(9) , we can compute adjacent and incident matrices as follows: 

 

Fig 9 
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We can illustrate the adjacent and incident matrices as follows: 

A(G) = , I(G) =  

when its vertices are simple and graph: 

For multiple graph shown in Fig.(10), we can compute adjacent and incident matrices as follows: 

 

Fig 10 

A(G) = , I(G) = . 

when its vertices are knot and graph: 

For multiple graph shown in Fig.(11), we can compute adjacent and incident matrices as follows: 

 

Fig 11 

A(G) = , I(G) = . 

In the same way we can calculate  adjacent and incident matrices for graph of more than 3 vertices in each case. 

Loop of  graph with different vertices: 

Since this graph has different vertices then each vertex have special loop. We will illustrate loop of each vertex. 

loop of each vertex: 

For simple vertices: 

The loop may take forms shown in Fig.(12), 
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Fig.(12) 
And so on. 

For knot vertices: 

Since knot vertices have inner and outer vertices , then we have inner and outer loops. We will illustrate these two forms. 

Inner loops may take the form shown in Fig.(13), 

           Or              

Fig 13 

And the outer loops may be: 

 

            

                       or 

Fig 14 

Then we find that loops of outer vertices may be away from one internal vertices or connect between two internal vertices. 

For graph vertices: 

In the same way as knot vertices  i.e , we have two kinds of loops for graph vertices (internal and outer )loops. 

The internal loop for internal vertices may be: 
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Fig 15 

And the outer loop may be: 

 

or or           

       

Fig 16 

 

Folding of this type of graph: 

Since this type of graph consists of different types of vertices and each type can be folded in different method ,  then we first will 

illustrate folding of each type solitary then illustrate folding of two type of vertices together. 

Folding of each type solitary: 

Folding of graph with graph vertices: 

This type has two different types of folding (inner folding and outer folding) the folding of each  type can be shown in Fig.(17) 

for inner folding and Fig.(18) for outer folding [2]. 

 

Fig 17 
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Fig 18 

Folding of graph with knot vertices: 

This type can be folded as shown in Fig.(19) [1]. 
 

Fig 19 

Folding of two types of vertices together: 

Consider geometric graph  G with different vertices, and let  ,  such that :    ƒ( V) <  V , then we can fold vertices 

with low dimension on vertices of high dimension, and  simple vertices can be folded on knot vertex or graph vertex. 

Example 1 : For graph  consists of simple and knot vertices  for which V1 is simple vertex and V2 is knot vertex if: 

and ƒ( V1) <  V1 , ƒ( V2) <  V2 then the result of folding is shown in Fig.(20). 

k 

 

 

 

Fig 20 

Example 2: For graph  consists of simple and graph vertices  for which V1 is simple vertex and V2 is graph vertex if: 

and ƒ( V1) <  V1 , ƒ( V2) <  V2 then the result of folding is shown in Fig.(21). 
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Fig 21 

Applications: 

1. In cars there is a lot of machine things which depend on these graphs. 

2. Electrical transformers are an examples of this type of graph. 

3. In human body the Neuron may be an example for this graph. 
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