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Introduction 

The diseases which are most often modelled are the so-called infectious diseases; that is, diseases that are contagious and can be 

transferred from one individual to another through contact or other means [1]. Examples of such diseases among the infants include 

measles, rubella, chicken pox, mumps, polio, and so on. The prevalence and effects of many diseases in less developed countries are 

probably less well-known but may be of even more importance. Every year millions of people especially infants die of measles, 

respiratory infections, diarrhea, and other diseases that are easily treated and not considered dangerous in the Western World. Diseases 

such as malaria, typhus, cholera, schistosomiasis, meningitis, and sleeping sickness are endemic in many parts of the World. The 

effects of high disease mortality on mean life span and of disease debilitation and mortality on the economy in afflicted countries are 

considerable [9].     

When infections are present in a population, a disease outbreak may progress in qualitatively different ways: the disease may die 

out or it may reach an endemic stage in which the disease is always present in the population. The latter will be the case if the number 

of secondary infections from each infected individual exceeds one [11]. This concept, formalized by the basic reproductive number 

R0, is the key concept in the literature behind modelling threshold conditions. Since the value of R0 for a given model is a function of 

the parameters, R0 provides a threshold condition for the parameters [6, 13]. As some parameters can be changed by vaccination or 

behavior, knowledge of threshold conditions can be very important for public health policy makers [2]. 

Table 1: The interpretation of the parameters and variables used 
Parameters Definitions 

Λ Birth rate of the infants into the susceptible class 

a Fraction of infants with the infectious diseases 

P Fraction of the recruited infants who are vaccinated 

μ Mortality rate of the infants  

τ Rate at which infected infants are treated with vaccines 

β Transmission coefficient 

ω Rate at which the vaccine wanes 

σ Rate at which the exposed infants become infectious 

α Past information about the fraction of infected infants 

δ Rate at which re-infection occurs among the infants 

η Rate at which the susceptible infants are exposed to the infectious diseases 

ρ Fraction of the parents for which their infants are susceptible 

S Number of the susceptible infant population 

E Number of the exposed infant population 

I Number of the infected infant population  

V Number of the vaccinated infant population 

R Number of the temporary recovered infant population 

A deterministic model which consists of a set of differential equations has a long tradition in the study of infectious diseases. In 

2003, Moghadas et al, considered a deterministic model and made a mathematical study for childhood diseases with non-permanent 

immunity [12]. In 2011, Dan Long et al, constructed a mathematical model for the transmission dynamics of infectious diseases [4].
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In this paper, transmission dynamics of infectious diseases among infants through a mathematical model is considered. Dan Long 

et al established and analyzed a deterministic mathematical model in their paper [4]. However, the temporary recovered infant class 

was not incorporated into their mathematical model. In this study, the temporary recovered infant class is incorporated into this model 

and the stability analyses of both the disease free and the endemic states were determined including the basic reproductive number of 

the new proposed mathematical model. The basic reproductive number R0 is a threshold quantity that determines when an infection 

invades a population or not. This number is obtained using the next generation approach as described by Diekmann and Heesterbeek 

[5, 6]. 

Mathematical Model 

The mathematical model is formulated by considering the dynamical equations for the infant population. The infants are 

classified into five groups as Susceptibles (S), Infectives (I), Exposed (E), Vaccinated (V) and Recovered (R). for the dynamical 

equations, the definition of variables and parameters used in the model are given as follows using the Table 1 below; 

The transmission diagram for the infant population is represented in the Figure I below. 

 

 

Figure 1: Diagrammatic representation of an SEIVR mathematical model. 

 

The dynamical equations for the infant population are given as follows; 
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Such that S = S(t), E = E(t), I = I(t), V = V(t) and R = R(t) represent the infant population of susceptible infant class, exposed 

infant class but not yet infected, the infected infant class, the vaccinated infant class and the temporary recovered infant class 

respectively. The parameters in the model are assumed positive and the Table 1 provides the definitions for the model parameters. The 

model assumes a varying population of N(t) such that N(t) = K + Ce
-μt

 for K =    
 

 in which Λ ≠ μ. So, the dynamical change of each 

class equals to zero. Normalizing the dynamical equations (1) to (5) by setting,  

s = S/N, e = E/N, i = I/N, v = V/N and r = R/N, then the reduced equation becomes 
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1. ANALYSIS OF THE MODEL 

To find the equilibrium states, the right hand side of equations (6) to (10) are set equal to zero [8]. So, the equilibrium states are 

obtained as;  

(i) Disease free state: H0 = (s*, e*, i*, v*, r*) = (1, 0, 0, 0, 0)      (11) 

(ii) Endemic state: H1 = (s*, e*, i*, v*, r*) where  

    
(   )(      )  

 (  (  )       )

,    (
      

 
)  ,     

       

   

 and     
 (      )

(   )(   )

   (12) 

wherei* is the positive root of the equation  (  )   (  )          for  

a = αβρμσ(μ+δ)(μ+ω) + σδωταβ – αβ(μ+δ)(μ+ω)(μ+σ)(ρμ+μ+τ).     (13) 

b=αβσ(Λ+(1-P)a)(μ+δ)(μ+ω)+αβσδωPa+ρβμσ(μ+δ)(μ+ω)+σδωτβ – β(μ+δ)(μ+ω)(μ+σ)(ρμ+μ+τ).   

             (14) 

c=σβ(Λ+(1-P)a)(μ+δ)(μ+ω)+ σβδωPa + ηρμσ(μ+δ)(μ+ω) + σδωτη - (μ+δ)(μ+ω)(μ
2
+μσ)(ρμ+μ+τ) – η(μ+δ)(μ+ω)(μ+σ)(ρμ+μ+τ) 

             (15) 

and 

d = σδωηPa + ση(Λ+(1-P)a)(μ+δ)(μ+ω).        (16) 

with these values for s*, e*, i*, v* and r*, the positivity and uniqueness of H1 are guaranteed if and only if R0> 1 where R0 is the 

basic reproductive number given in the form  

    
  

(      )(   )
            (17) 

In the endemic disease state, the number of infected infants is strictly positive and constant. So, if some of the solutions of the 

system of equations i(t) approach as time goes to infinity, the number of infectives will remain strictly positive for a long time and 

approximately equal to i(t). Thus, the disease remains in the population and becomes endemic except adequate measures are done to 

control or prevent the rapid spread of the disease among the infant population [10]. 

The locally asymptotical stability of each equilibrium state is determined by the sign of eigenvalues for each equilibrium state. If 

all eigenvalues have negative real parts, then that equilibrium state is local stability [14]. 

The eigenvalues are obtained by solving the following characteristic equation of the form; 

   (       )   
          (18) 

where I5 is the identity matrix dimension 5 x 5 and J is the Jacobian matrix of the steady state Hi, (i = 0, 1). For the disease free 

state H0 = (1,0, 0, 0, 0), the Jacobian matrix is given by 
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The characteristic equation is obtained from the Jacobian matrix with the eigenvalues λi (i = 1, 2, 3, 4, 5). The eigenvalues are; 

        (   )       (   )      (   )       (   )          (   ) (20) 

Since all the model parameter values are assumed positive, it follows that the eigenvalues are all negative. Obviously, if R0< 1, 

then H0 is locally asymptotically stable but if R0> 1, then, H1 is unstable [7]. Therefore, in the event of an epidemic, the theoretical 

determination of condition that can make R0 less than unity is of great public health interest such that the disease can be greatly 

reduced or eventually eradicated among the infant population [2]. 

In the same manner, for the endemic disease state, H1 = (s*, e*, i*, v*, r*), the Jacobian matrix is given by; 
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The eigenvalues for the matrix (21) are given as follows; 

        (   )        
   (  )    (   )         

              ( 
 )               (   )

             (22) 

The above eigen values have negative real parts for R0> 1. Therefore, the disease free state is locally asymptotically stable for R0< 

1 and the endemic disease state is locally asymptotically stable for R0> 1. The basic reproductive number (R0) of the disease is 

evaluated from the averaging of the number of secondary case that one case can produce if a single infant is introduced into a 

susceptible infant population [3]. 

Conclusion 

In this study, the stability analyses of the deterministic mathematical model have been analyzed using the linearization technique 

via the Jacobian matrix approach. The basic reproductive number of the model was obtained to be the alternative way for identifying 

how the spread or the outbreak of the infectious diseases among the infants can be greatly reduced. It was observed that the 

mathematical model produced an asymptotically stable population such that the infectious diseases among the infants die out from the 

infant population as time increases when adequate measures are used such as administering vaccines to the infants. 
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