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Introduction 

 The Seemingly Unrelated Regressions (SUR) model explains the variation of a set of m dependent variables, e.g. the monthly 

consumption expenditures of m consumers or the annual voting behaviour of m voters, in terms of the variation of general and specific 

input or independent variables and error terms specific to each individual problems that are frequently encountered in many sciences. 

Indeed, Geweke (2003, p. 162) has written, “The Seemingly Unrelated Regressions (SUR) model developed in Zellner (1962) is 

perhaps the most widely used econometric model after linear regressions. The reason is that it provides a simple and useful 

representation of systems of demand equations that arise in neoclassical static theories of producer and consumer behaviour.” 

It is the case that a SUR model is a collection of two or more regression relations that can be analyzed with data on the dependent 

and independent variables. For many years, the individual regression relations were fitted one by one, usually using least squares 

techniques and justified by an appeal to single equation estimation optimality properties, e.g. the least squares estimators are best 

linear unbiased estimators according to the well known Gauss Markov theorem and maximum likelihood estimators when single 

equation normal likelihood functions are employed. What was overlooked in the pre-1962 literature is the fact that when the error 

terms in the different regression equations are correlated the regression equations are related and that the sample information in other 

regressions can be employed to improve the precision of estimation of parameters in any given regression equation under a wide range 

of conditions. That is, new, operational SUR best linear unbiased estimators for the parameters of a set of say m regression equations 

were put forward (Zellner 1962) that uniformly dominate the single equation least squares estimators under a broad range of 

conditions. It was shown that these SUR or Generalized Least Squares (GLS) estimators are best linear unbiased, maximum likelihood 

and Bayesian estimators under frequently encountered conditions. And in addition, by joint analysis of the set of regression equations 

rather than equation by equation analysis, more precise estimates and predictions are obtained that lead to better solutions to many 

applied problems, e.g. portfolio formation procedures in study by Quintana, et al (2003) in which dynamic regression equations with 

time varying parameters and various input variables were employed to explain the variation of monthly stock prices. By taking 

account of the fact that the regression equations were related and not unrelated, SUR estimation, prediction and portfolio formation 

procedures were utilized to yield improved analyses of the variation of stock prices and to form optimal portfolios with very good 

rates of return. For textbook and other analyses of the SUR model and applications of it, see. e.g., Geweke (2003), Greene (2003), 

Judge et al. (1985), Meng and Rubin (1996), Percy (1992, 1996), Rossi, Allenby and McCulloch (2005), Quintana, Putnam and 

Wilford (1998), Srivastava and Giles (1987), Theil (1971), Zellner (1962,1963), and Zellner and Huang (1962). Also, in Zellner and 

Theil (1962) similar techniques were applied to simultaneous equations models to yield a new joint estimator, the three stage least 

squares estimator that dominates single equation estimators by taking account of the correlation of error terms in equations of the 

system by use of joint estimation of coefficients in equations of structural models. 

Adebayo (2003) also investigated how large the contemporaneous correlations among disturbances should be in order for SUR to 

be more efficient than OLS using the Bayesian approach. He asserted that definite gains are obtained when ρ >0.333 which compares 

well with Dielman (1989) who used a frequentist approach. He further asserted that there is no clear-cut distinction between SUR and 

univariate models (GLS and OLS are identical) when the same set or subset(and values) of covariates, which may not likely lead to 

more efficient estimates in SUR than running the model separately, that is, the covariates  =  are used. On the other side, if the 

equations are actually uncorrelated or if the design matrices are identical in all equations, SUR (GLS) and Ordinary Least Squares 

(OLS) regressions give the same results. (See Revankar, 1974). 
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 In all the estimation techniques developed for different SUR situations as reported above, Zellner’s basic recommendation for 

high contemporaneous correlation between the error vectors with uncorrelated explanatory variables within each response equations 

was also maintained. More recently, Olamide et al. (2013) reaffirmed the gain in efficiency of the SUR estimator over the Ordinary 

Least Squares (OLS) and the Iterative Ordinary Least Squares (IOLS) estimators when the errors are both contemporaneously and 

serially correlated. In this paper, we aim at examining the performances of the GLS and OLS estimators for both normal and lagged 

models using a true covariance matrix for correlated errors.  

In Section 2, materials and methods were presented and the structural parametric framework of SUR system is discussed while 

the simulation studies carried out in the work is discussed in Section 3. Detail discussion of our results is presented in Section 4 and 

finally Section 5 provides some concluding remarks. 

Materials And Methods 

Parametric SUR Framework 

Consider a complete system of regression equations with m response variables each containing n observations denoted by the 

vector    = (          ) with associated distinct vector of explanatory variables           respectively. Each of the equations 

in this system of regression equations is assumed to satisfy the Gauss-Markov properties of homoscedasticity and no serial 

correlations of the error terms. That is, for each of the response equations the popular distributional assumptions on the error term of 

   ~ N (0,   
 )          (2.1) 

fori = 1,2,   m and 

Cov (  ,  
 ) = 0          (2.2) 

are maintained for   ,  
  = 1, 2,   n. 

The system can therefore be represented by  
            

             

 
            

}          (2.3) 

where ; i = 1, 2,  , m,   is an n   1 vector of observations on the     response variable   is an n     matrix of explanatory 

variables,    is a    1 vector of regression parameters and   is the corresponding n   1 vector of disturbances. 

Thus, each set of the    regression equations has   parameters. This system of equations in (2.3) can further be presented in a 

more compact form as 
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mn 1mn ∑   ∑     1             mn 1 

and when stacked together the whole system becomes 

y = X β + ɛ           (2.5) 

The regression equations in (2.3) or (2.4) above appear independent (seemingly unrelated) with each other because they do not 

have common variables or parameters. However, Zellner (1962) was of the opinion that each pair of the system of regression 

equations above are actually (contemporaneously) correlated through their error terms. Hence, the name Seemingly Unrelated 

Regression (SUR) given to such a system of regression equations as depicted by (2.3) or (2.4). 

Estimating each of the equation separately by Ordinary Least Squares (OLS) may yield consistent but inefficient estimates of the 

parameters. Therefore, in SUR estimation techniques the correlations among the errors in different equations are put into 

consideration and are used to improve the regression estimates. 

The OLS estimation method is given by 

 ̂     = (       X Y          (2.6) 

and this can only provide a set of consistent but less efficient estimates of the regression equations. 

For the SUR estimation procedure, we make use of the assumption placed on the variance-covariance matrix of the disturbance in 

equation (2.5) that  

E( ,   ) = Ω =  ⊗            (2.7) 

Where   is an m m matrix of the form 

   =  

[
 
 
 
 
 
 
          

          

    

          ]
 
 
 
 
 
 

         (2.8) 

  is an n n identity matrix and ⊗ is the Kronecker product which multiplies each element in   by   . 

From (2.7), if all values of the elements of Ω are known, then the SUR estimation of the regression models yields more efficient 

regression parameter estimates via the Generalized Least Squares estimation technique given by 

 ̂     =                  y          (2.9) 
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i.e., 

 ̂      =                               
However, if the values of the elements of Ω are unknown, they are estimated and the resulting estimation procedure known as 

Feasible Generalized Least Squares (FGLS) or Estimated Generalized Least Squares (EGLS) is given by 

 ̂      =         ̂                   ̂         Y. 

Simulation Studies 

The simulation work considers a system of SUR equations containing two distinct linear regression equations each with normal 

and lagged independent variables. 

Thus, with m = 2, we have 
            

             
}          (3.1) 

The structural form of the SUR equations for our simulation is 
                          

                          
}        (3.2) 

and for the lagged version, we have 
                                  

                                  
}       (3.3) 

The true variance-covariance   used in  for this simulation is  

 ̂ =[
    

    
]          (3.4) 

The variance-covariance matrix (3.4) is a positive definite non-singular symmetric matrix whose Cholesky decomposition is 

computed as 

K =  [
  

      
]          (3.5) 

Therefore, in establishing a contemporaneous relationship among the error terms in the set of regression equations we now use    

=    
    

    in place of   =           whose values are determined by the product 

   = K    = [
  

            

]        (3.6) 

Simulations were performed with n = 50, 100, 1000. The regression equations were case bootstrapped using 5000 replicates in 

each case. 

Discussion of Results 
Relevant discussions of the simulation results obtained in this work are presented in this section. The results of the simulation 

studies (some of which are presented in Appendix A & B) generally showed that both SUR and OLS estimators were increasingly 

more efficient as the sample size increased. This is evident from the decreasing trend of the standard errors of the parameter estimates 

using the lagged and unlagged (normal) variables as the sample size increased in the two regression equations considered. Table 1 

presents results for model with unlagged variables and Table 2 gives results for model with lagged variables. Despite the gain in 

efficiency by using OLS estimators, SUR estimators were still consistently more efficient than OLS in all cases considered. 

It was observed that the estimates of the intercepts tend to approach the true parameter value most at sample size of 100. The 

slopes in all cases approached true parameter values as sample size increased. The OLS estimators for the models with lagged 

variables tend to be more efficient at sample size of 100 than that of the unlagged. 

The efficiencies of the estimates for both models (lagged and unlagged) converged at large sample size of 1000. 

All estimates were consistently efficient in both models as sample size increased. 

Appendix B showed the bootstrapped results for the unlagged model and it revealed that the results were consistently efficient as 

sample size increased. 

Conclusion 
In this work, we reaffirm that SUR estimator is consistently better than the OLS equation-by-equation method of estimation in a 

regression equations that are related by their disturbance terms. Though, both OLS and SUR estimators increased in their efficiencies 

as sample size increased in the two models (lagged and unlagged) considered, SUR supremacy over OLS is maintained in both cases. 

Finally, there was no loss of information in the lagged model especially for large sample size (1000) as the estimators converged 

in efficiencies to that of the unlagged model. 

Appendix A: Tables of Results 

Table 1:  Results for Models with Unlagged Variables 

 n = 50 n = 100 n = 1000 

 OLS Estimations SUR Estimations OLS Estimations SUR Estimations OLS Estimations SUR Estimations 

True 

Coefficients 

Estimate Std 

Error 

Estimate Std 

Error 

Estimate Std 

Error 

Estimate Std 

Error 

Estimate Std 

Error 

Estimate Std 

Error 

Regression 1             

    = 0.8 

    = 0.2 

    = 0.6 

0.8440 

0.3078 

0.3759 

0.1617 

0.1945 

0.1817 

0.8502 

0.2825 

0.4333 

0.1605 

0.1029 

0.0956 

0.7936 

-0.0030 

0.4028 

0.1154 

0.1282 

0.1345 

0.7801 

0.1182 

0.4292 

0.1148 

0.0653 

0.0680 

0.8626 

0.2456 

0.5879 

0.0321 

0.0311 

0.0322 

0.8622 

0.2188 

0.5975 

0.0321 

0.0190 

0.0197 
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Regression 2             

    = 0.5 

    = -0.1 

    = 0.7 

0.5606 

0.0617 

0.6499 

0.1787 

0.1951 

0.1706 

0.5902 

-0.0693 

0.6641 

0.1746 

0.1032 

0.0897 

0.4752 

0.1013 

0.7225 

0.1164 

0.1288 

0.1139 

0.4906 

-0.0603 

0.7014 

0.1150 

0.0655 

0.0576 

0.5597 

-0.1057 

0.6948 

0.0315 

0.0325 

0.0312 

0.5595 

-0.1254 

0.7114 

0.0315 

0.0199 

0.0191 

 

Table 2:  Results for Models with Lagged Variables 

 n = 50 n = 100 n = 1000 

 OLS Estimations SUR Estimations OLS Estimations SUR Estimations OLS Estimations SUR Estimations 

True 

Coefficients 

Estimate Std 

Error 

Estimate Std 

Error 

Estimate Std 

Error 

Estimate Std 

Error 

Estimate Std 

Error 

Estimate Std 

Error 

Regression 1             

    = 0.8 

    = 0.2 

    = 0.6 

0.8937 

0.1871 

0.6810 

0.1661 

0.2003 

0.1871 

0.8956 

0.0936 

0.5528 

0.1653 

0.1053 

0.0981 

0.7709 

0.2424 

0.7715 

0.1181 

0.1307 

0.1368 

0.7845 

0.1403 

0.6271 

0.1174 

0.0700 

0.0728 

0.8628 

0.1834 

0.5901 

0.0321 

0.0311 

0.0322 

0.8625 

0.1722 

0.6236 

0.0321 

0.0190 

0.0197 

Regression 2             

    = 0.5 

    = -0.1 

    = 0.7 

0.6129 

-0.0634 

0.6775 

0.1843 

0.2078 

0.1722 

0.5889 

0.0758 

0.5070 

0.1781 

0.1092 

0.0903 

0.5234 

-0.2658 

0.5316 

0.1158 

0.1275 

0.1132 

0.5118 

-0.1506 

0.6416 

0.1152 

0.0683 

0.0603 

0.5610 

-0.1056 

0.6937 

0.0315 

0.0325 

0.0312 

0.5617 

-0.0954 

0.7088 

0.0315 

0.0199 

0.0191 

 

Appendix B 

Bootstrapped Results (Normal Variables) 

For n = 50 

    R     original          bootBias bootSE bootMed   

(Intercept)  5000    0.84399         -0.0080361     0.15817        0.83508 

x11  5000     0.30777         0.0188731     0.20147        0.32691 

x12  5000     0.37588         0.0197646     0.18714        0.38162 

R    original          bootBias bootSE bootMed 

(Intercept)  5000  0.560635   -0.01367154       0.19253      0.546653 

x21  5000    0.061739   -0.00193235      0.21320      0.066393 

x22  5000        0.649905       -0.00082948         0.15287      0.655620 

For n = 100 

R    original    bootBias bootSE bootMed 

(Intercept)  5000   0.7935848  3.3808e-06  0.11813   0.79407348 

x11  5000  -0.0030215  4.4851e-03  0.13777   -0.00081494 

x12  5000   0.4027738  7.8722e-03  0.13380   0.40739315 

 

  R  original    bootBias bootSE  bootMed 

(Intercept)  5000   0.47522   -0.0053925  0.11782   0.46905 

x21  5000   0.10128   0.0023311  0.13429   0.10662 

x22  5000   0.72254   -0.0024399  0.10093   0.72257 

 

For n =1000 

R  original     bootBias bootSE  bootMed 

(Intercept)  5000   0.86261   -0.00017081  0.032253  0.86227 

x11 5000   0.24560   0.00020955  0.031222  0.24643 

x12 5000   0.58785   0.00032211  0.031723  0.58729 

 

  R  original     bootBias bootSE  bootMed 

(Intercept)  5000   0.55971   -0.00037671  0.031376   0.55907 

x21 5000  -0.10568   -0.00093528  0.033601  -0.10662 

x22 5000   0.69477   -0.00083633  0.029478   0.69399 
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Appendix C 

Some List of Figures 

For n =1000 

 

a. Plot of histogram and Standard Normal Quantiles in reg.1    b. Plot of Standard Normal Density of the coefficients in reg. 1 

 

c. Histogram and Standard Normal Quantiles for reg.2. d.    Standard Normal Density of the Coefficients in reg.2 
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