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Introduction 

 The subject of prime numbers has fascinated 

mathematicians for centuries. Some of the methods for finding 

prime numbers date to antiquity[1]. The properties of primes 

have been investigated for thousands of years[1]. The advent of 

digital computers and public-key cryptography has brought the 

subject of prime numbers into the mainstream and focused 

renewed attention on it[1]. 

 The use of public-key cryptography is pervasive in the 

information protection and privacy arenas. Public key crypto 

algorithms utilize prime numbers extensively; indeed, prime 

numbers are an essential part of the major public key systems 

[1]. 

 For centuries, the problem of validating prime numbers, the 

primality test, has posed a great challenge to both computer 

scientists and mathematicians[2]. The problem of identifying 

Prime and Composite numbers is known as one of the most 

important problems in arithmetic. Many security applications 

also involve large numbers: while it is easy to multiply prime 

numbers to get a product, the reverse process of recovering the 

primes is much more difficult[2]. 

Background Details 

Prime Number 
 Any natural number n greater than 1 will be prime if it has 

no divisor other then 1 and itself. The number 2 is a prime, there 

being no candidate divisors between 1 and itself similarly the 

numbers 3, 5,7,11,13 and 17 are all prime.  

 One more definition of prime number can be given in terms 

of relative prime. A prime number M will be prime if it is 

relative prime to all other numbers (M-1) relative primes. 

Prime Generation Problem 

 Today the big problem is big prime numbers is generation.  

Difficulty in Finding New Prime 

 The difficulty of generating new primes can be explained by 

prime density function. The prime density function shows that 

how many prime number will exist below number n. Prime 

density function (n) can be given by following function 

n=log(n). From this function, it can be seen that a very less 

comparisons will be required if we want to find all prime 

numbers less than a short number such that 500. This happens 

because short prime numbers have small gap in between them 

but as we approach for a longer number, problem becomes very 

difficult. This is due to larger gap for longer prime numbers. So 

in order to find a prime we just pick an odd number and apply a 

prime testing algorithm on it. This is the only way of generating 

new primes. There are various primality tests which are 

available to us for checking the primality of a number. Let us 

discuss some important tests. 

Prime Testing Algorithms 

 A primality test is an algorithm that determines whether an 

input number is prime or not. The primality tests differ from 

regular process of integer factorization. The primality test 

doesn’t necessarily give prime factors, while integer 

factorization does. As of 2009, factorization is a computationally 

difficult problem, where as primality test is compare to 

factorization is easy. There are various type of tests that are 

available to check the primality of number, most of them are 

deterministic.  

Basics of Genetic Algorithm 

 Traditional random approach for searching optimal solution 

in a given solution space was very time consuming and not 

suitable for large application. In 1975 Holland proposed a better 

solution than traditional random search approach known as 

genetic algorithm[3]. 

 A genetic algorithm (GA) is a search heuristic that mimic 

the process of natural evolution. This heuristic is mostly used to 

generate useful solution to optimization and search problems. 

GA is a part of evolutionary algorithm, which is used for 

generating solution for optimization problems using techniques 

inspired by natural evolution and have properties like 

inheritance, mutation, crossover and selection. 

 GA is based on the survival of the fittest i.e. it selects only 

best solutions from among all available solutions. 

Basic Operations of Genetic Algorithm 

GA basically consists of four operations:- 

Encoding- Basic of GA structure is the use of encoding for 

representation the optimization problem’s variables to form 

chromosome which represent a candidate solution for problem. 
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 The encoding mechanism mainly depends on the type of 

problem variables. For example if the problem is to find the 

optimal flow in transportation problem than the variables will be 

of real type and when the problem is of travelling salesman than 

the variables will be of binary type. So for both problems we 

have to use different-different encoding mechanism that will 

encode the variable into unique string.  

 Traditionally we use the binary bit representation for 

encoding the variables. And collection of these binary bits will 

become string of bit and represent the solution. But it has some 

drawback and not suitable for some particular application, so 

some other mechanisms have also been proposed such as Gray 

code representation. So we have number of options for choosing 

best encoding mechanism that will be best suited our problem. 

Fitness Function- We have some objective function depend on 

the problem which we need to optimize for particular string 

representing the solution. Each objective function has different 

values. So to maintain uniformity we use fitness function to 

normalize the objective function so it will give the value in the 

range of 0 and 1[4]. The normalize value of objective function 

represents the fitness of string that will use by selection operator 

for evaluating the string of solution. 

Selection- Selection is one of the most important operator or 

step of GA. It models the survival of fittest process of nature. 

Fittest will survive for next generation while weakest will be 

lost.  

 There are different selection procedures or methods 

available. Each has its pros and cons.  

 One of the basic selection procedure is proportionate 

selection. In the proportionate selection procedure a string with 

fitness value fi will be allocated fi/fa offspring, where fa is the 

average fitness of population. String with fitness value greater 

than average fitness of population will be allocated more than 

one offspring, while string with fitness value less than average 

fitness of population will be allocated less than one offspring.  

This procedure will results in fractional allocation number value. 

And finally we will require an integer value, so we have some 

method to convert these fractional values into integer value. One 

of the methods is Roulette Wheel Selection Scheme. 

Crossover- This is also a crucial operation of GA. Pairs are 

picked randomly from population to be subjected for crossover 

and then crossover will be performed on that pairs and new 

children will be generated. There are number of crossover meth-

ods available which use different strategies for performing 

crossover like single point crossover, two point crossover etc., 

for example like in single point crossover suppose the length of 

string is l, it can randomly choose an crossover point of the 

value between 1 to l-1. Now swaps the value of both string 

beyond the crossover point and it will result in generation of two 

new offspring. But one thing should be noticed here that the 

crossover is not always effective. So for this after choosing pair 

of string, we only apply crossover if the randomly generated 

variable between range 0 and 1 will be greater than pc, where pc 

is the crossover rate. 

Mutation- After crossover mutation will be performed. 

Mutation can be per-formed by flipping the binary bit of string. 

Like the crossover probability pc, in the crossover which control 

the crossover, here we have probability of mutation (mutation 

rate) pt, which gives the probability for change in bit. Mutation 

of bits are independent i.e. change in a bit will not affect the 

probability of change in another bit. 

 One important point is here that GA mostly treats mutation 

as secondary operator[3]. Primary operator is crossover. 

Mutation is mainly used for regenerating lost string of solution. 

For example suppose all available strings into solution 

converged to 0 at certain position and optimal solution contain 1 

at that position. So only by mutation we can get optimal solution 

by flipping that position bit. 

Proposed Algorithm 

 Although traditional genetic algorithm mimic the process of 

natural selection and genetic and are very successful in solving 

optimization problems, now there are more questions which are 

to be answered. Can we apply genetic algorithms to those 

problems like (classification problem) in which we do not have 

any mathematical function to guide the search? Till now we 

have not designed any genetic algorithm for this type of 

problems. To design a genetic algorithm for those problems, let 

us review the literature of genetic algorithm with a different 

view. Genetic algorithm are used to maximize the value of 

certain objective function for any problem, Actually this type of 

function measures the features of a problem (by calculating the 

objective value at each sample point) and assigns some value to 

it. We can assume that with the help of this objective function 

we are assigning some membership value to the characteristics 

of a problem and genetic algorithm guide the search to find 

those solutions which have larger value of it. Selection, 

crossover and mutation operator guides the approach to get 

appropriate solution. But consider a case where we cannot 

assign an objective function (which provides a numerical value 

at a certain point) for the measurement of characteristics of a 

problem. We can use genetic algorithm for finding different 

solutions in a classification problem but in that case we have to 

design each operator differently. While solving a classification 

problem with genetic algorithm we will use these operators. 

Selection 

 We will design a test function and always select those 

strings that qualify the selection criteria. Since all selected 

solutions are equally good so we will not replicate any value 

during selection operator. Taken an example in prime generating 

problem, prime testing function is the required test function. 

According to this function we will select only those values 

which are prime. 

Crossover Operator 

 In normal crossover operator, we do not bother about the 

nature of generated child, we simply choose a cross site and 

generate two children. In case of classification problems as we 

do not have any mathematical function to guide our search so 

we will generate only those children which have some 

probability to pass the test. To generate child, we will apply 

some mathematical function. Here we will select only those 

mathematical function which generate child that strengthen our 

criteria for selection or in other way we can say that we will 

choose a mathematical function only when we can define the 

characteristic of generated child and the characteristics of 

generated child has some properties that has good probability to 

make him qualify for the selection. 

 For example, in our problem we need to generate new 

numbers that have a good probability of being prime. But how 

we judge that the generated child has a good probability of 

qualifying the primality test? To generate such type of child we 

will use the second definition of prime stated in above 

introduction. We will take two numbers that are prime and 

generate a child which is relative prime to its parents. In 

proposed algorithm, we have designed a function that will 

generate only one child, and this child will be relative prime to 

the parents involved in the crossover. One more strong argument 

that supports our idea comes from the theory of natural genetics. 

As we are using prime numbers in crossover so definitely 

generated child must inherit have some characteristics of prime 



29475                                    Arpit Goel and Anubhooti Papola/ Elixir Comp. Engg. 78 (2015) 29473-29476 

numbers. The function which we used in our algorithm is shown 

below.  

Proposed Algorithm: Crossover function 

 Input: Two prime integers X and Y 

 Output: An integer 

1 If  Y > X 

2 Max   Y and Min X 

3 Else Max X and Min Y 

4 End If 

5 Convert Max on base Min 

6 

Reverse the digits of generated number and generate a new 

number Z on base min 

7 Again convert Z back to decimal to get D  

8 return D 

Our proposed algorithm does not require mutation operator 

because our selection operator is very efficient in maintaining 

the diversity among solutions. 

Experimental Result And Analysis 

 In this section we will discuss the working of our algorithm. 

In our experiment we choose first sixty prime numbers as a set 

of initial population. We will apply some prime testing 

algorithm to generate first sixty primes. For example we can 

choose 2,3,5,7,11,13,17,.... up to first 60 prime numbers as 

initial population set. We can also increase the size of our initial 

population set. Now we can apply crossover operator to generate 

new primes. To apply crossover operator (proposed algorithm) 

we first choose any two prime numbers (generated randomly) 

from the given set. Let these prime numbers are 7 and 11. Then 

we will implement our crossover function. Since 7 are less than 

11 so we will convert 11 on the base of 7.  

 

Figure 1. Total Prime Generated Vs. Total Crossover 

 This will give us (14)7. We will reverse these digits and 

generate a new number (41)7. Now we will convert this number 

to original base (that is decimal). According o above example 

the decimal value of this number will be 29 which is defiantly a 

prime number. All new primes are important for us and we need 

bigger numbers so we will apply this algorithm as much as we 

can. In this case our set size is 60. Using this set at most 
60

C2 

combination can be produced, so we can apply crossover 

function up to 1770 times. We will store all new primes to our 

initial set. While storing, we discard all repeated prime numbers. 

For the next iteration our population set size will increase and 

that will be the input for next generation. We have applied the 

algorithm to generate new primes although we were not able to 

produce all primes but bigger primes were generated very 

efficient time. Also by using proposed algorithm the chances of 

generated new primes has also increased. 

Various graphs presented below show the strength of our 

algorithm. 

First graph represent the total number of crossover performed 

using proposed algorithm and total number of prime generated. 

Second graph shows the relationship between the total number 

of primes found and new prime generated. 

 

Figure 2 .Total Prime Generated Vs. New Prime 

 Similarly third graph shows the relationship between total 

numbers of crossover performed and total new prime generated. 

 

Figure 3. New Prime Generated Vs. Total Crossover 

Conclusion & Future Scope 

 We have proposed a new algorithm by which we can 

generate new primes in very less time. Various graphs drawn 

above show the strength of our proposed algorithm. It is well 

known that as the size of prime numbers increases, the problem 

of generating new prime become more difficult. Using our 

proposed algorithm we can generate new bigger primes in 

reasonable time. Proposed algorithm can be used with public 

key encryption techniques, digital signatures, public key 

distribution etc. Our proposed Algorithm can be further studied 

to reduce its memory complexity, so as to make it useful for 

small portable devices having lesser memory comparatively. 
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