
29473 Arpit Goel and Anubhooti Papola/ Elixir Comp. Engg. 78 (2015) 29473-29476

Introduction

 The subject of prime numbers has fascinated

mathematicians for centuries. Some of the methods for finding

prime numbers date to antiquity[1]. The properties of primes

have been investigated for thousands of years[1]. The advent of

digital computers and public-key cryptography has brought the

subject of prime numbers into the mainstream and focused

renewed attention on it[1].

 The use of public-key cryptography is pervasive in the

information protection and privacy arenas. Public key crypto

algorithms utilize prime numbers extensively; indeed, prime

numbers are an essential part of the major public key systems

[1].

 For centuries, the problem of validating prime numbers, the

primality test, has posed a great challenge to both computer

scientists and mathematicians[2]. The problem of identifying

Prime and Composite numbers is known as one of the most

important problems in arithmetic. Many security applications

also involve large numbers: while it is easy to multiply prime

numbers to get a product, the reverse process of recovering the

primes is much more difficult[2].

Background Details

Prime Number
 Any natural number n greater than 1 will be prime if it has

no divisor other then 1 and itself. The number 2 is a prime, there

being no candidate divisors between 1 and itself similarly the

numbers 3, 5,7,11,13 and 17 are all prime.

 One more definition of prime number can be given in terms

of relative prime. A prime number M will be prime if it is

relative prime to all other numbers (M-1) relative primes.

Prime Generation Problem

 Today the big problem is big prime numbers is generation.

Difficulty in Finding New Prime

 The difficulty of generating new primes can be explained by

prime density function. The prime density function shows that

how many prime number will exist below number n. Prime

density function (n) can be given by following function

n=log(n). From this function, it can be seen that a very less

comparisons will be required if we want to find all prime

numbers less than a short number such that 500. This happens

because short prime numbers have small gap in between them

but as we approach for a longer number, problem becomes very

difficult. This is due to larger gap for longer prime numbers. So

in order to find a prime we just pick an odd number and apply a

prime testing algorithm on it. This is the only way of generating

new primes. There are various primality tests which are

available to us for checking the primality of a number. Let us

discuss some important tests.

Prime Testing Algorithms

 A primality test is an algorithm that determines whether an

input number is prime or not. The primality tests differ from

regular process of integer factorization. The primality test

doesn’t necessarily give prime factors, while integer

factorization does. As of 2009, factorization is a computationally

difficult problem, where as primality test is compare to

factorization is easy. There are various type of tests that are

available to check the primality of number, most of them are

deterministic.

Basics of Genetic Algorithm

 Traditional random approach for searching optimal solution

in a given solution space was very time consuming and not

suitable for large application. In 1975 Holland proposed a better

solution than traditional random search approach known as

genetic algorithm[3].

 A genetic algorithm (GA) is a search heuristic that mimic

the process of natural evolution. This heuristic is mostly used to

generate useful solution to optimization and search problems.

GA is a part of evolutionary algorithm, which is used for

generating solution for optimization problems using techniques

inspired by natural evolution and have properties like

inheritance, mutation, crossover and selection.

 GA is based on the survival of the fittest i.e. it selects only

best solutions from among all available solutions.

Basic Operations of Genetic Algorithm

GA basically consists of four operations:-

Encoding- Basic of GA structure is the use of encoding for

representation the optimization problem’s variables to form

chromosome which represent a candidate solution for problem.

Prime number generation using genetic algorithm
Arpit Goel

1
 and Anubhooti Papola

2

1
Department of Computer Science & Engineering, Faculty of Technology, University Campus, Dehradun Uttarakhand, India.

2
Department of Computer Science & Engineering, Uttarakhand Technical University, Dehradun Uttarakhand, India.

ABSTRACT

In the modern cryptography, the problem of the generation of large primes is considered

as an important issue to implement public key crypto-scheme such as RSA and so on.

Since a great amount of computational resources is generally required to generate a large

prime number, it takes considerable amount of resource especially in embedded systems.

In general, the prime number generation is started from the random number generation. If

the generated random number is passed a specified probabilistic primality test, the random

number is tentatively considered as a prime number and applied to a public key crypto-

system. In many primality tests, a number of modular exponentiations are usually

required. Hence these algorithms are considerably slow. Here we are introducing a new

prime generation technique using GA which can be used to generate large primes in more

efficient way.

 © 2015 Elixir All rights reserved

ARTICLE INFO

Article history:

Received: 4 August 2014;

Received in revised form:

19 December 2014;

Accepted: 29 December 2014;

Keywords

Prime Number,

Genetic Algorithm,

Primality Test.

.

.

Elixir Comp. Engg. 78 (2015) 29473-29476

Computer Engineering

Available online at www.elixirpublishers.com (Elixir International Journal)

Tele:

E-mail addresses: arpitgoel29@gmail.com

 © 2015 Elixir All rights reserved

29474 Arpit Goel and Anubhooti Papola/ Elixir Comp. Engg. 78 (2015) 29473-29476

 The encoding mechanism mainly depends on the type of

problem variables. For example if the problem is to find the

optimal flow in transportation problem than the variables will be

of real type and when the problem is of travelling salesman than

the variables will be of binary type. So for both problems we

have to use different-different encoding mechanism that will

encode the variable into unique string.

 Traditionally we use the binary bit representation for

encoding the variables. And collection of these binary bits will

become string of bit and represent the solution. But it has some

drawback and not suitable for some particular application, so

some other mechanisms have also been proposed such as Gray

code representation. So we have number of options for choosing

best encoding mechanism that will be best suited our problem.

Fitness Function- We have some objective function depend on

the problem which we need to optimize for particular string

representing the solution. Each objective function has different

values. So to maintain uniformity we use fitness function to

normalize the objective function so it will give the value in the

range of 0 and 1[4]. The normalize value of objective function

represents the fitness of string that will use by selection operator

for evaluating the string of solution.

Selection- Selection is one of the most important operator or

step of GA. It models the survival of fittest process of nature.

Fittest will survive for next generation while weakest will be

lost.

 There are different selection procedures or methods

available. Each has its pros and cons.

 One of the basic selection procedure is proportionate

selection. In the proportionate selection procedure a string with

fitness value fi will be allocated fi/fa offspring, where fa is the

average fitness of population. String with fitness value greater

than average fitness of population will be allocated more than

one offspring, while string with fitness value less than average

fitness of population will be allocated less than one offspring.

This procedure will results in fractional allocation number value.

And finally we will require an integer value, so we have some

method to convert these fractional values into integer value. One

of the methods is Roulette Wheel Selection Scheme.

Crossover- This is also a crucial operation of GA. Pairs are

picked randomly from population to be subjected for crossover

and then crossover will be performed on that pairs and new

children will be generated. There are number of crossover meth-

ods available which use different strategies for performing

crossover like single point crossover, two point crossover etc.,

for example like in single point crossover suppose the length of

string is l, it can randomly choose an crossover point of the

value between 1 to l-1. Now swaps the value of both string

beyond the crossover point and it will result in generation of two

new offspring. But one thing should be noticed here that the

crossover is not always effective. So for this after choosing pair

of string, we only apply crossover if the randomly generated

variable between range 0 and 1 will be greater than pc, where pc

is the crossover rate.

Mutation- After crossover mutation will be performed.

Mutation can be per-formed by flipping the binary bit of string.

Like the crossover probability pc, in the crossover which control

the crossover, here we have probability of mutation (mutation

rate) pt, which gives the probability for change in bit. Mutation

of bits are independent i.e. change in a bit will not affect the

probability of change in another bit.

 One important point is here that GA mostly treats mutation

as secondary operator[3]. Primary operator is crossover.

Mutation is mainly used for regenerating lost string of solution.

For example suppose all available strings into solution

converged to 0 at certain position and optimal solution contain 1

at that position. So only by mutation we can get optimal solution

by flipping that position bit.

Proposed Algorithm

 Although traditional genetic algorithm mimic the process of

natural selection and genetic and are very successful in solving

optimization problems, now there are more questions which are

to be answered. Can we apply genetic algorithms to those

problems like (classification problem) in which we do not have

any mathematical function to guide the search? Till now we

have not designed any genetic algorithm for this type of

problems. To design a genetic algorithm for those problems, let

us review the literature of genetic algorithm with a different

view. Genetic algorithm are used to maximize the value of

certain objective function for any problem, Actually this type of

function measures the features of a problem (by calculating the

objective value at each sample point) and assigns some value to

it. We can assume that with the help of this objective function

we are assigning some membership value to the characteristics

of a problem and genetic algorithm guide the search to find

those solutions which have larger value of it. Selection,

crossover and mutation operator guides the approach to get

appropriate solution. But consider a case where we cannot

assign an objective function (which provides a numerical value

at a certain point) for the measurement of characteristics of a

problem. We can use genetic algorithm for finding different

solutions in a classification problem but in that case we have to

design each operator differently. While solving a classification

problem with genetic algorithm we will use these operators.

Selection

 We will design a test function and always select those

strings that qualify the selection criteria. Since all selected

solutions are equally good so we will not replicate any value

during selection operator. Taken an example in prime generating

problem, prime testing function is the required test function.

According to this function we will select only those values

which are prime.

Crossover Operator

 In normal crossover operator, we do not bother about the

nature of generated child, we simply choose a cross site and

generate two children. In case of classification problems as we

do not have any mathematical function to guide our search so

we will generate only those children which have some

probability to pass the test. To generate child, we will apply

some mathematical function. Here we will select only those

mathematical function which generate child that strengthen our

criteria for selection or in other way we can say that we will

choose a mathematical function only when we can define the

characteristic of generated child and the characteristics of

generated child has some properties that has good probability to

make him qualify for the selection.

 For example, in our problem we need to generate new

numbers that have a good probability of being prime. But how

we judge that the generated child has a good probability of

qualifying the primality test? To generate such type of child we

will use the second definition of prime stated in above

introduction. We will take two numbers that are prime and

generate a child which is relative prime to its parents. In

proposed algorithm, we have designed a function that will

generate only one child, and this child will be relative prime to

the parents involved in the crossover. One more strong argument

that supports our idea comes from the theory of natural genetics.

As we are using prime numbers in crossover so definitely

generated child must inherit have some characteristics of prime

29475 Arpit Goel and Anubhooti Papola/ Elixir Comp. Engg. 78 (2015) 29473-29476

numbers. The function which we used in our algorithm is shown

below.

Proposed Algorithm: Crossover function

 Input: Two prime integers X and Y

 Output: An integer

1 If Y > X

2 Max Y and Min X

3 Else Max X and Min Y

4 End If

5 Convert Max on base Min

6

Reverse the digits of generated number and generate a new

number Z on base min

7 Again convert Z back to decimal to get D

8 return D

Our proposed algorithm does not require mutation operator

because our selection operator is very efficient in maintaining

the diversity among solutions.

Experimental Result And Analysis

 In this section we will discuss the working of our algorithm.

In our experiment we choose first sixty prime numbers as a set

of initial population. We will apply some prime testing

algorithm to generate first sixty primes. For example we can

choose 2,3,5,7,11,13,17,.... up to first 60 prime numbers as

initial population set. We can also increase the size of our initial

population set. Now we can apply crossover operator to generate

new primes. To apply crossover operator (proposed algorithm)

we first choose any two prime numbers (generated randomly)

from the given set. Let these prime numbers are 7 and 11. Then

we will implement our crossover function. Since 7 are less than

11 so we will convert 11 on the base of 7.

Figure 1. Total Prime Generated Vs. Total Crossover

 This will give us (14)7. We will reverse these digits and

generate a new number (41)7. Now we will convert this number

to original base (that is decimal). According o above example

the decimal value of this number will be 29 which is defiantly a

prime number. All new primes are important for us and we need

bigger numbers so we will apply this algorithm as much as we

can. In this case our set size is 60. Using this set at most
60

C2

combination can be produced, so we can apply crossover

function up to 1770 times. We will store all new primes to our

initial set. While storing, we discard all repeated prime numbers.

For the next iteration our population set size will increase and

that will be the input for next generation. We have applied the

algorithm to generate new primes although we were not able to

produce all primes but bigger primes were generated very

efficient time. Also by using proposed algorithm the chances of

generated new primes has also increased.

Various graphs presented below show the strength of our

algorithm.

First graph represent the total number of crossover performed

using proposed algorithm and total number of prime generated.

Second graph shows the relationship between the total number

of primes found and new prime generated.

Figure 2 .Total Prime Generated Vs. New Prime

 Similarly third graph shows the relationship between total

numbers of crossover performed and total new prime generated.

Figure 3. New Prime Generated Vs. Total Crossover

Conclusion & Future Scope

 We have proposed a new algorithm by which we can

generate new primes in very less time. Various graphs drawn

above show the strength of our proposed algorithm. It is well

known that as the size of prime numbers increases, the problem

of generating new prime become more difficult. Using our

proposed algorithm we can generate new bigger primes in

reasonable time. Proposed algorithm can be used with public

key encryption techniques, digital signatures, public key

distribution etc. Our proposed Algorithm can be further studied

to reduce its memory complexity, so as to make it useful for

small portable devices having lesser memory comparatively.

Acknowledgment

 I would like to express my sincere thanks to Asst. Prof. Ms.

Anubhooti Papola for his advice during my work. As my

supervisor, she has constantly encouraged me to remain focused

on achieving my goal. I extend my thanks to Asst. Prof. Mr.

Pawan Mishra for his valuable advices and encouragement. I

must acknowledge the academic resources that I have got from

UTU Dehradun.

29476 Arpit Goel and Anubhooti Papola/ Elixir Comp. Engg. 78 (2015) 29473-29476

References

[1] Jerry Crow, “PRIME NUMBERS IN PUBLIC KEY

CRYPTOGRAPHY AN INTRODUCTION”, SANS Institute

2002.

[2] Ray C.C. Cheung and Ashley Brown, “A SCALABLE

SYSTEM-ON-A-CHIP ARCHITECTURE FOR PRIME

NUMBER VALIDATION”, academia.edu, Nov 2005.

[3] Goldberg, E. David and John H. Holland, “Genetic

algorithms and machine learning”, Machine learning, vol. 3.2,

pp. 95-99, Springer, 1988.

[4] Jin. Yaochu,“A comprehensive survey of fitness

approximation in evolutionary computation”, Soft Computing,

vol. 9, pp. 3-12, 2005.

[5] Randy L. Haupt, “Optimum population size and mutation

rate for a simple real genetic algorithm that optimizes array

factors”, In Antennas and Propagation Society International

Symposium, IEEE, vol. 2, pp. 1034-1037, 2000.

[6] Al-Madi, Nailah and Simone A. Ludwig, “Adaptive genetic

programming applied to classification in data mining”, In Nature

and Biologically Inspired Computing, Fourth World Congress

on IEEEs, pp. 79-85, 2012.

[7] R. L. Rivest, A. shamir and L. Adleman, “A method of

obtaining digital signatures and public key crytosystems”,

CACM, vol. 21, iss. 2, pp. 120-126, 1978.

[8] L. C. Guillou and J. J. Quisquater, “A practicle zero

knowledge protol fitted to security microprocessor minimizing

both transmission and memory”, Advances in cryptology-

EUROCRYPT’88, LCNS, vol. 330, pp. 123-128, Berlin:

Springer–Verlag, 1988.

[9] Domagoj Jakobovi and Marin Golub, “Adaptive genetic

algorithm”, 1999.

[10] M. Joye and P. Paillier, “Fast generation of prime numbers

on portable devices: An update”, CHES 2006, LNCS 4249, pp.

160-173, 2006.

[11] M. Joye, P. Paillier, and S. Vaudenay, “Efficient generation

of prime numbers”, CHES 2000, LNCS 1965, pp. 340-354,

2000.

[12] D. Boneh and M. Franklin, “Efficient generation of shared

RSA keys”, CRYPTO97, LNCS 1294, pp. 425-439, 1997.

[13] J. Brandt and I. Damgaard, “On generation of probable

primes by incremental search”, CRYPTO92, LNCS 740, pp.

358-370, 1993.

[14] W. Bosma and P. P. Van der Hulst, “Faster primality

testing”, EUROCRYPT89, LNCS 435, pp. 652-656, 1990.

