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Introduction 

  In multivariate sampling, the major interest is on the problem of estimation of several population characteristics such as age, 

family, expenditure and mean income. These characteristics often make conflicting demands on the sampling procedure (Sukhature, 

1970). A procedure that is likely to decrease the variance of the estimate of one characteristic may very well increase the estimate of 

another. 

 Khan, Ali, Raghav and Bari (2013) submitted that in multivariate stratified sampling where more than one characteristic are to be 

estimated, an allocation which is optimum for one characteristic may not be optimum for other characteristics. In such situations a 

compromise criterion is needed to work out a usable allocation which is optimum for all characteristics in some sense. Such an 

allocation may be called a ‘Compromise Allocation’.  

 Attila, (1997) said the problem of optimum allocation of sample sizes in a sample survey when a single characteristics is being 

studied under a given sampling procedure is that which minimizes the cost of the survey for a desired precision or the variance of the 

sample estimate for a given budget of the survey. 

 In light of this, several optimality criteria have been developed over the years by different authors in a survey where many 

variables are under study. However, the problem is the choice of best allocation. 

 Yates (1953) suggested a criterion in which the sample specifies the variances that he wants for the estimates of each variate. A 

more reasonable criterion suggested by Dalenius (1957) is to minimize the total cost subject to the condition that the variances of the 

estimates for different variables do not exceed certain pre-assigned quantities.  

 However, this study focuses on comparing some techniques to identify which method is superior in producing the best optimal 

allocation for a given desire variance.  

Optimum Allocations Solutions and Techniques 

Optimum Allocations Solutions 

Compromise solution  

 Several optimality criteria are found in the literatures. The first was suggested by Neyman (1953). It was observed in this 

approach that unless the stratum variances are distributed in the same way Neyman allocation is of limited value, because on 

allocation which is optimum for one variable may be quite unstable for another. When this occurred, he suggested that the sample be 
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distributed among different strata in proportion to their sizes.  Cochran, (1963)  and others suggested the criteria of minimizing the 

sum of relative variances namely: 
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subject to the condition that 
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 is the ratio of the number of units in the i th

 stratum to the number of units in the population and i
s

is the ratio of the 

number of units in the 
j th

 stratum to the number of units in the population. 

Loss Function Solution 

 In some survey, the optimum allocations for individual variates differ so much that there is no obvious compromise. Some 

principles are needed to determine the allocation to be used. Two useful ones suggested by Yates (1960) are presented. 

The first applies to surveys with a specialized objectives, in which the loss due to an error of given size in an estimate can be 

measured in terms of money or utility. Let 
 ZL

 denotes the loss that will be incurred in a decision through an error of amount Z  in 

the estimate. Although the actual value of Z  is not predictable in advance, the sampling theory enables us to find the frequency 

distribution
 nZf ,

 of Z  which, for a specified sampling method will depend on the sample size n . Hence the expected loss for a 

given size of sample size n  is: 

       dznzzLnL ,
          (2.2)  

The purpose in taking the sample is to diminish this loss. If 
 nC

 is the cost of a sample of size n , a reasonable procedure is to 

choose n , to minimize 

   nLnC 
           (2.3) 

Since this is the total cost involved in taking the sample and in making decisions from its result. The choice of n  determines both the 

optimum size of sample and the most advantageous degree of precision. 

Iterative Solution 

In this approach, the cost 
 nh

h
CCC

0  is minimized subject to the tolerances 
j

v
 and the conditions Nhnh 0 . The 

problem is one in nonlinear programming.  

According to Chatterjee (1967), the first steps is to work out the optimum allocation for each variate separately and to find the cost 

satisfying its tolerance. Take the variate separately and to find the cost satisfying its tolerance. Take the variate,  say 1
y

 for which the 

cost 1
C

is highest and examine whether the optimum nh  values for 1
y

 satisfy all the other 
 1k

 tolerances. If so, we use this 

allocation and problem is solved; because no other allocation will satisfy the tolerances 1
v

 for y1 at a cost as low as 1
C

. If some of 

the tolerances are not met, the problem is more difficult. 

Techniques of Optimum Sample Allocation 

Yates/Chatterjee procedure:- 

1. Set the desire variances to be used. 
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2. Obtain the resulting variances for a sample of size n  i.e.  
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4. Obtain the value of    
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Variables used 

nh  is the optimum sample size in stratum h  from variable 
j

  

  is the Langrage multiplier 

h
W

 is the stratum weight  

h
S

 is the true variance 

n  is the sample size  

Booth and Sedransk Procedure:- 

1. Set the desire variances to be used  

2. Obtain 21
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Vector maximum criterion (VMC) procedures:- 

1. Obtain the value of the efficient feasible point for a total sample size n ,  
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where i  is the weight for the variate i  such that 
1 ix

 

2. For several values of i   obtain corresponding values of n  
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3. Present the value in a table called efficient point tables  

4. Set the desired variances  

5. Obtain the actual values of 2
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10. Through the value of i  obtain the corresponding values of 1
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 and 2
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    respectively, then substitute into   
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Results and Discussion  

Table 3.1: Set of data used for Analysis 

Stratum Nh  h
W

1 h
S
1 2 h

S
2 3 h

S
h

W
1 4 h

S
h

W
2 5 

1 6 0.094 41.9082 18.9032 3.9394 1.7773 

2 23 0.438 12.5502 17.4111 5.4970 7.6261 

3 10 0.156 26.2175 29.0423 4.0899 4.5306 

4 8 0.125 17.2009 21.2556 2.1501 2.6570 

5 6 0.094 16.5918 26.3106 1.5596 2.4732 

6 6 0.094 12.1168 18.7296 1.1390 1.7606 

 

Table 3.2 below shows the results of the analysis obtained on the distribution of the sample sizes with relative variances based on 

given n   and also the results obtained on the distribution of the sample sizes on setting arbitrary variances. 

Table 3.2: Sample sizes generated for different data classified by techniques and types of relative variance. 

 Based on given n  Based on arbitrary variance 

Techniques 
1

D
 2

D
 3

D
 4

D
 5

D
 A

D
1  B

D
2  C

D
3  D

D
4  E

D
5  

Yates/Chatterjee 10 11 22 12 38 22 16 26 15 62 
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Booth and Sedransk 10 10 18 12 37 22 16 21 15 61 

VMC 10 10 18 12 37 22 15 21 15 61 

 The results and findings of the table 1.2 shows that VMC produced the smallest sample size nh i.e. VMC dominates in 

B
D

2 while none of the techniques dominates in ( 1
D

, 4
D

, A
D

1 and D
D

4 ). However, both VMC and Booth and Sendransk 

dominate in ( 2
D

, 3
D

, 5
D

, C
D

3 ,and E
D

5  respectively). 

Hence the results show that VMC and Booth and Sedransk procedures are superior to that of Yates/Chatterjee in the sense that the 

procedures dominate   Yates/Chatterjee in majority of the results. 

Conclusion  

 In this study, it was discovered that both Booth and Sedransk is less cumbersome to compute, followed by VMC while 

Yates/Chatterjee is most cumbersome to compute. Hence Booth and Sedransk and VMC are superior to Yates/Chatterjee. The result 

clearly brings out the fact that the best allocation is not always obvious and that sufficient care is necessary in the choice of allocation 

of the sample sizes to different strata with several items. 
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