
Prakash Kuppuswamy and Saeed Q Y Al-Khalidi/ Elixir Comp. Sci. & Engg. 79 (2015) 30528-30531

30528

Introduction

 Compression technique used for the purpose of utilization

of storage space is important even with today's huge storage

volumes [8]. Data compression has been adopted in hardware

designs to improve performance and power. Cache compression

increases the cache capacity by compressing block data and

accommodating more blocks in a fixed space [5], [6]. It is the art

of representing the information in a compact form rather than its

original or uncompressed form [9]. In other words, using the

data compression, the size of a particular file can be reduced.

This is very useful when processing, storing or transferring a

huge file, which needs lots of resources. If the algorithms used

to encrypt works properly, there should be a significant

difference between the original file and the compressed file.

When data compression is used in a data transmission

application, speed is the primary goal. Speed of transmission

depends upon the number of bits sent, the time required for the

encoder to generate the coded message and the time required for

the decoder to recover the original collection. In a data storage

application, the degree of compression is the primary concern

[1]. Various lossless data compression algorithms have been

proposed and used. Some of the main techniques in use are the

Huffman Coding, Run Length Encoding, Arithmetic Encoding

and Dictionary Based Encoding [3].

 Symmetric or secret key cryptography, a single key is used

for both encryption and decryption. Sender uses the key using

some set of rules to encrypt the plaintext and sends the

ciphertext to the receiver. The receiver applies the same key or

rule set to decrypt the message and recover the plaintext.

Because a single key is used for both functions, secret key

cryptography is also called symmetric key algorithm. The

biggest difficulty with this approach, of course, is the

distribution of the key [2].

 This algorithm is shown to be the best solution currently

available in all situations, including archivers, distribution, and

on-line compression such as disk compression or network

datagram compression [7].

Related Works

David A. Huffman in the year 1952 proposed an Encoding

Algorithms use the probability distribution of the alphabet of the

source to develop the code words for symbols. The frequency

distribution of all the characters of the source is calculated in

order to calculate the probability distribution. According to the

probabilities, the code words are assigned. Shorter code words

for higher probabilities and longer code words for smaller

probabilities are assigned. For this task a binary tree is created

using the symbols as leaves according to their probabilities and

paths of those are taken as the code words. Two families of

Huffman Encoding have been proposed: Static Huffman

Algorithms and Adaptive Huffman Algorithms. Static Huffman

Algorithms calculate the frequencies first and then generate a

common tree for both the compression and decompression

processes [2]. Details of this tree should be saved or transferred

with the compressed file. The Adaptive Huffman algorithms

develop the tree while calculating the frequencies and there will

be two trees in both the processes. In this approach, a tree is

generated with the flag symbol in the beginning and is updated

as the next symbol is read.

Glen G. Langdon, Jr. in 1984 discussed about An Introduction

to Arithmetic Coding. In this paper presents the key notions of

arithmetic compression coding by means of simple examples

Arithmetic coding is a data compression technique that encodes

data (the data string) by creating a code string which represents

a fractional value on the number line between 0 and 1. The

coding algorithm is symbol wise recursive; i.e., it operates upon

and encodes (decodes) one data symbol per iteration or

recursion. On each recursion, the algorithm successively

partitions an interval of the number line between 0 and I , and

retains one of the partitions as the new interval. Thus, the

algorithm successively deals with smaller intervals, and the code

string, viewed as a magnitude, lies in each of the nested

Implementation of new secured data compression technique using huffman

code and symmetric key algorithm
Prakash Kuppuswamy

1
 and Saeed Q Y Al-Khalidi

2

1
Department of Computer Engineering & Networks, JAZAN University, KSA.

2
Library Affairs, King Khalid University, KSA.

ABSTRACT

Data compression is a common requirement for most of the computerized applications.

There are many number of unsecured data compression algorithms, which are dedicated to

compress different unsecured data formats. Even for a single data type there are number of

different compression algorithms, which use different approaches. In this research, we

propose a simple and efficient data compression algorithm particularly suited to be used on

available commercial basis using secured manner. Our intention is transmitting text data in

secured as well as compressed in the open environment. It is using double compression

technique based on Huffman coding algorithm and simple symmetric key algorithm.

Experiment itself evaluates the performance of new secured data compression algorithm

with other data compression algorithm.

 © 2015 Elixir All rights reserved.

Elixir Comp. Sci. & Engg. 79 (2015) 30528-30531

Computer Science and Engineering

Available online at www.elixirpublishers.com (Elixir International Journal)

ARTICLE INFO

Article history:

Received: 10 September 2013;

Received in revised form:

29 January 2015;

Accepted: 19 February 2015;

Keywords

Data compression,

Encryption,

Decryption,

Symmetric,

Modulation.

Tele:

E-mail addresses: varshiniprakash@rediffmail.com

 © 2015 Elixir All rights reserved

Prakash Kuppuswamy and Saeed Q Y Al-Khalidi/ Elixir Comp. Sci. & Engg. 79 (2015) 30528-30531

30529

intervals. The data string is recovered by using magnitude

comparisons on the code string to recreate how the encoder must

have successively partitioned and retained each nested

subinterval. Arithmetic coding differs considerably from the

more familiar compression coding techniques, such as prefix

(Huffman) codes. Also, it should not be confused with error

control coding, whose object is to detect and correct errors in

computer operations. [2]

S.R. Kodituwakku, U. S.Amarasinghe, An experimental

comparison of a number of different lossless compression

algorithms for text data is carried out. Several existing lossless

compression methods are compared for their effectiveness.

Although they are tested on different type of files, the main

interest is on different test patterns. By considering the

compression times, decompression times and saving percentages

of all the algorithms, the Shannon Fano algorithm can be

considered as the most efficient algorithm among the selected

ones. Those values of this algorithm are in an acceptable range

and it shows better results for the large files [1].

Prakash Kuppuswamy, Dr. Saeed Q Y Al-Khalidi proposed

Implementation of security through simple symmetric key

algorithm based on modulo 37 in October 2012 proposed new

symmetric key algorithm. Encryption and key generation

became a vital tool for preventing the threats to data sharing and

tool to preserve the data integrity so we are focusing on security

enhancing by enhancing the level of encryption in network. This

study‟s main goal is to reflect the importance of security in

network and provide the better encryption technique for

currently implemented encryption techniques in simple and

powerful method. In our research we have proposed a modular

37 and select any number and calculate inverse of the selected

integer using modular 37. The symmetric key distribution

should be done in the secured manner. Also, we examine the

performance of our new SSK algorithm with other existing

symmetric key algorithm.[10]

Proposed Technique

 One of the effective tools for ensuring the safety of

compressed data transactions is the secured encryption

techniques. It combines the Huffman encoding technique and

simple symmetric algorithm. The proposed method of data

compression technique focuses on the data confidentiality issue.

Although security mechanisms, this method is very easy to

adopt the coding of bulk and more compressed secured data.

Also it is very safe enough on the other side. The tools for

designing methods were as follows

a. Huffman Code

 Huffman Code assigns shorter encodings to elements with a

high frequency, F:e. It differs from block encoding in that it is

able to assign codes of different bit lengths to different elements.

Elements with the highest frequency, F:e, get assigned the

shortest bit length code. The key to decompressing huffman

code is a huffman tree.

b.Huffman tree

 A huffman tree is a special binary tree called a trie. A

binary trie is a binary tree in which a 0 represents a left branch

and a 1 represents a right branch. The numbers on the nodes of

the binary trie represent the total frequency, F, of the tree below.

The leaves of the trie represent the elements, e, to be encoded.

The elements are assigned the encoding which corresponds to

their place in the binary trie.

c. Inverse function

 An inverse of a matrix, usually written as f
-1

(x), is a

reflection of the original function, f(x), around the line y =

x. Basically, every x value is changed to a y value and every y

value is change to an x value.

d. Modular Arithmetic

 Modular arithmetic over a number „n‟ involves arithmetic

operations on integers between 0 and n – 1, where n is called

the modulus. If the number happens to be out of this range

in any of the operation the result, r, is wrapped around in

to the range 0 and n – 1 by repeated subtraction of the

modulus n from the result r. This is equivalent in taking the

remainder of division operation r/n.

e. Selecting random positive and negative integer

 The reason for selecting the random positive and negative

integer to send the data compressed and secured. The random

integer should satisfy (1≤ x ≤ 37) because we need inverse of the

selected random integer for the purpose of decryption technique.

Encoding sequence

Step 1: Find out the element frequency from the given message

Step 2: Assign Huffman code

Step 3: Assign decimal value for the Huffman code

Step 4: Assign n=37 (prime number)

Step 5: Take random positive integer which satisfy mod 37;(x*x
-

1
)=1

Step 6: Again take random negative integer for more securing

Step 7: multiply with the decimal value and selected positive,

negative numbers

Step 8: Use mod 37

Step 9: Use again Huffman frequency code

Step 10: Now derived code is secured encoded message

Table 1. Uncompressed data
Data D A D B A D C A B C A F E

Inte
ger

Val

ue

4 1 4 2 1 4 3 1 2 3 1 6 5

Bina
ry

Val
ue

10
0

00
1

10
0

01
0

00
1

10
0

01
1

00
1

01
0

01
1

00
1

11
0

10
1

Observed from the above table binary equivalent value is 39

bits. Now we are applying Huffman compression technic.

Table 2. Huffman compressed data
Text No. of frequency Huffman code Total bits

A 4 10 8 Bits

B 2 000 6 Bits

C 2 001 6 Bits

D 3 01 6 Bits

E 1 111 3 Bits

F 1 110 3 Bits

 32 Bits

Table 3. Secured compressed data technique
Text Huffman

code Binary

Equivalent

Integer

value

Multiplying with

Random positive integer

Assume „3‟and negative

integer -8 using mod 37

Again

using

Huffman

code

D 01 1 13 10

A 10 2 26 01

D 01 1 13 10

B 010 0 0 111

A 10 2 26 01

D 01 1 13 10

C 011 1 13 10

A 10 2 26 01

B 010 0 0 111

C 011 1 13 10

A 10 1 26 01

F 110 6 13 10

E 101 7 26 01

 Total secured data bits 30 Bits

Prakash Kuppuswamy and Saeed Q Y Al-Khalidi/ Elixir Comp. Sci. & Engg. 79 (2015) 30528-30531

30530

Implementation

 In order to provide quick and simple data

compression/decompression, the bits size of the secret key has

to be chosen effectively. For compression small amount of data,

there should not be any overhead to the encrypting system as

well as there should not be any compromise on the security

level. Thus an optimized size of data “DAD BAD CAB CAFE”

is chosen for experiment.

Table 4. Comparison of Un compressed, Huffman code,

Secured compressing technique
Data Equivalent

Integer

value

Binary

digit

No of

Frequency

Occurs

Total

Huffman

Decimal

value

Multiply

with

decimal

value

(3*-

8)%37

Use

Huff

D 4 100 3 Times-
01

6bits 1 13 10

A 1 001 4 Times-

10

8bits 2 26 01

D 4 100 1 13 10

B 2 010 2Times-

000

6bits 0 0 111

A 1 001 2 26 01

D 4 100 1 13 10

C 3 011 2Times-

001

6bits 1 13 10

A 1 001 2 26 01

B 2 010 0 0 111

C 3 011 1 13 10

A 1 001 1 26 01

F 6 110 1Time-

110

3bits 6 4 001

E 5 101 1Time-

111

3bits 7 17 110

 39

Bits

 32 Bits 30

Bits

Result Analysis

 The proposed method of Data compression technique is the

combination of the Huffman coding and symmetric key

algorithm. More number of data transferring daily across the

world. All the data transaction is not secured. Some of the data

transferring method searching for secured transaction using

various cryptography and data security algorithm. The other

methods, looking for the new compression technique for bulk

data transaction. This proposed new method of secured data

compression technique, which will satisfy both the type of user.

 The algorithm executes on PC computer of CPU Intel

Pentium 4, 2.2 MHz Dual Core. The programs implemented

using Microsoft Visual Studio 2008 (C#). It is tested with three

messages and with different in length (1000, 2000, 3000

characters).

Figure 1. Comparison chart

Figure 2. Average performance of data compression

Table 5.Comparison of execution timing
No. of

Bits

Uncompressed

Data

(Un secured)

Huffman

Coding

(Un secured)

Secured data

compressing

 Total execution timings

1000 1mts 11 Sec 1 mts 0 Sec 1mts 20 Sec

2000 2mts 20 Sec 2 mts 0 Sec 2 mts 30Sec

3000 3mts 30 Sec 3 mts 0 Sec 3 mts 50 Sec

Conclusion

 It has been clear that the result of our “new proposed

technique” is better result producing as compared normal

and Huffman coding. It is new technic of compressing data with

secured manner. It is essential to achieve few goals like

confidentiality and integration across the data transaction

between the medium. The proposed compression technique is

very simple in nature and there are two compressing methods

present in this compression algorithm. So, It would make it

more secured. For large amount of data transaction and

commercial communication purpose this algorithm will work

very smoothly. The proposed compression technique wouldn‟t

be cost effective since those are not designed for large amount

of data in minimal cost.

References

[1] S.R. Kodituwakku, U. S.Amarasinghe, “Indian Journal of

Computer Science and Engineering”, Vol.1 No 4 416-425, ISSN

: 0976-5166.

[2] Glen G. Langdon, Jr. “An Introduction to Arithmetic

Coding”, IBM J. RES. DEVELOP, VOL. 28, NO. 2 MARCH

1984.

 [3] Kesheng, W.J. Otoo and S. Arie, “Optimizing bitmap

indices with efficient compression”, ACM Trans. Database

Systems, 31: 1-38.2006.

[4] Blelloch, E., Introduction to Data Compression, Computer

Science Department, Carnegie Mellon University. 2002.

[5] A. R. Alameldeen and D. A. Wood, “Adaptive Cache

Compression for High- Performance Processors” in Proceedings

of ISCA, pp. 212–223, 2004.

[6] E. G. Hallnor and S. K. Reinhardt, “A Unified Compressed

Memory Hierarchy”, in Proceedings of HPCA, pp. 201–212,

2005.

[7] Charles Bloom, “a new data compression algorithm”,

cbloom@mail.utexas.edu.

[8] Peter A. James, “Data Compression for process historians”,

Chevron Research and Technology Company, Richmond, CA

94802-0627, 1995.

[9] Paul, I.M, “Fundamental Data Compression”, 2006 Elsevier,

Britain.

[10] Prakash Kuppuswamy, Dr. Saeed Q Y Al-Khalidi,

“Implementation of security through simple symmetric key

Prakash Kuppuswamy and Saeed Q Y Al-Khalidi/ Elixir Comp. Sci. & Engg. 79 (2015) 30528-30531

30531

algorithm based on modulo 37”, IJOCT, ISSN: 2277-3061,

Volume 3 No. 2, OCT, 2012.

[11]Herbert Edelsbrunner, LZW Data Compression, last

modified: Feb 2004 http://www.cs.duke.edu

[12] Huffman, D.A., A method for the construction of minimum

redundancy codes. Proc. IRE, Vol. 40, pp. 1098-1101, Sept.

1952.

[13] Jaradat, A. R. and Irshid, M. I., A Simple Binary Run -

Length Compression Technique For Non-Binary Source Based

on Source Mapping. Active and Passive Elec. Comp., 2001, Vol.

24, pp. 211 – 221.

[14] Kumar B., Point4: Working with data and Graphical

Algorithms in C, c Reference Point Suite, skillsoft 2002.

[15] Lenat, Doug, Lempel-Ziv compression, 1999

http://foldoc.doc.ic.ac.uk

[16] Mark Nelson, LZW Data Compression, Dr. Dobb's Journal,

October 1989 www.dogma.net

[17]Matt Powell, University of Canterbury, last updated

November 20, 2001 http://corpus.canterbury.ac.nz

Prakash Kuppuswamy Lecturer, Computer

Engineering & Networks Department in Jazan

University, KSA He is research Scholar-Doctorate

Degree yet to be awarded by „Dravidian

University‟. He has published 12 International

Research journals/Technical papers and

participated in many international conferences in

Rep. of Maldives, Libya and Ethiopia. His

research area includes Cryptography, Bio-

informatics and Network algorithms.

Dr. Saeed Q. Y. Al-Khalidi, Dean of Libraries

Affairs at King Khalid University, Abha. KSA. He

published many National & International papers,

Journals. Also, he participated as a Reviewer in

many international conferences worldwide. He

completed Master Degree and Doctor of

Philosophy in University of East Anglia. His

research interests include: Information System

development, approaches to systems analysis and

the early stages of systems development process,

IT/IS evaluation practices, E-readiness

assessment.

