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Introduction 

 The mass transfer problems have great importance in 

extending the theory of separation processes and chemical 

kinetics. Processes involving the effects of mass transfer have 

attracted the attention of researchers due to its applications in 

many engineering applications, such as chemical processing 

equipments. The driving force for mass transfer is the difference 

in concentration. The effects of chemically reactive species on 

fluid flow due to a stretching sheet bear equal importance in 

engineering research. The diffusion of a chemically reactive 

species in a laminar boundary layer flow over a flat plate was 

studied by Chambra and Young [1]. The effect of transfer of 

chemically reactive species in the laminar flow over a stretching 

sheet is explained by Andersson et al. [2]. Afify [3] explicated 

the MHD free convective flow of viscous incompressible fluid 

and mass transfer over a stretching sheet with chemical reaction. 

There are some fluids which react chemically with some 

ingredients present in them. On the other hand, the process of 

suction and injection (blowing) is also important in many 

engineering applications such as in the design of thrust bearing 

and radial diffusers, and thermal oil recovery. Suction is applied 

to chemical processes to remove reactants. Blowing is used to 

add reactants, to cool the surfaces, to prevent corrosion or 

scaling and to reduce the drag. Injection or withdrawal of fluid 

through a porous heated or cooled bounding wall is of practical 

interest in problems involving film cooling, control of boundary-

layers, and so forth. For example, Gurminder and Chamkha [4] 

studied the problem of viscous fluid flow and heat transfer with 

second-order slip at linearly shrinking isothermal sheet in a 

quiescent medium. Nanadeppanavar et al. [5] analyzed second-

order slip flow over a horizontal shrinking sheet with a non-

linear Navier boundary condition.  

 The boundary-layer flows of non-Newtonian fluids have 

been given considerable attention due to ever increasing 

engineering applications. In order to obtain a thorough cognition 

of non-Newtonian fluids and their various applications, it is 

necessary to study their flow behaviors. It is well known that the 

mechanics of non-Newtonian fluids present a special challenge 

to engineers, physicists and mathematicians. The non-linearity 

can manifest itself in a variety of ways in many fields, such as 

food processing, drilling operations and bio-engineering. 

Furthermore, in order to obtain a thorough cognition of non-

Newtonian fluids and their various applications, it is necessary 

to study their flow behaviors. Due to their application in 

industry and technology, few problems in fluid mechanics have 

enjoyed the attention that has been accorded to the flow which 

involves non-Newtonian fluids. It is well known that mechanics 

of non-Newtonian fluids present a special challenge to 

engineers, physicists and mathematicians. The non-linearity can 

manifest itself in a variety of ways in many fields, such as food, 

drilling operations and bio-engineering. The Navier–Stokes 

theory is inadequate for such fluids, and no single constitutive 

equation is available in the literature which exhibits the 

properties of all fluids. Because of the complexity of these 

fluids, there is not a single constitutive equation which exhibits 

all properties of such non-Newtonian fluids. Thus, a number of 

non-Newtonian fluid models have been proposed. In the 

literature, the vast majority of non-Newtonian fluid models are 

concerned with simple models like the power law and grade two 

or three [6–10]. These simple fluid models have shortcomings 

that render to results not having accordance with fluid flows in 

the reality. Casson fluid is another fluid model for non-

Newtonian fluid. In the literature, the Casson fluid model is 

sometimes stated to fit rheological data better than general 

viscoplastic models for many materials [11,12]. Examples of 

Casson fluid include jelly, tomato sauce, honey, soup and 

concentrated fruit juices, etc. Human blood can also be treated 

as Casson fluid. Due to the presence of several substances like, 

protein, fibrinogen and globulin in aqueous base plasma, human 

red blood cells can form a chainlike structure, known as 

aggregates or rouleaux. If the rouleaux behave like a plastic 

solid, then there exists a yield stress that can be identified with 

the constant yield stress in Casson’s fluid [13–15]. The non-

linear Casson’s constitutive equation has been found to describe 
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accurately the flow curves of suspensions of pigments in 

lithographic varnishes used for preparation of printing inks [16] 

and silicon suspensions [17]. The shear stress–shear rate relation 

given by Casson satisfactorily describes the properties of many 

polymers [18] over a wide range of shear rates. Casson fluid can 

be defined as a shear thinning liquid which is assumed to have 

an infinite viscosity at zero rate of shear, a yield stress below 

which no flow occurs, and a zero viscosity at an infinite rate of 

shear [19]. Eldabe and Salwa [20] have studied the Casson fluid 

for the flow between two rotating cylinders, and Boyd et al. [21] 

investigated the Casson fluid flow for the steady and oscillatory 

blood flow. In this contribution the boundary layer flow due to 

stretching plane with mass transfer is studied. We venture 

further in the regime of two-dimensional second order slip flows 

of a non-Newtonian fluid with first order chemical reaction 

effect. Casson fluid model is used to characterize the non-

Newtonian fluid behavior.  

Mathematical analysis 

 Let us consider a steady two-dimensional, boundary layer, 

non-Newtonian Casson fluid flowing over a continuous 

permeable vertical stretching or shrinking sheet in the x –

direction with a linear velocity ax , and a concentration 

distribution undergoing a first-order chemical reaction. The 

mass transfer velocity at the surface equal to
w

v .  

 

Fig. 1 Problem schematic and coordinate system 

 

Fig. 2 Velocity distribution versus   for various values of 

Casson parameter 

The Casson fluid model is used to characterize the non-

Newtonian fluid behavior, Fig. 1 illustrates the physical model 

and coordinate system, the x -axis is taken along the plate and 

the y -axis is taken perpendicular to the plate. The fluid 

experiences a second-order slip at the sheet surface.  
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Fig. 3 Concentration distribution versus h  for various 

values of Casson parameter 
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Fig. 4 Concentration distribution versus h  for various 

values of reaction rate parameter 
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Fig. 5 Concentration distribution versus h  for various 

values of Schmidt number 
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Fig. 6 Velocity distribution versus h  for various values of 

diffusion parameter 
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Fig 7. Concentration distribution versus h  for various 

values of diffusion parameter 
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Fig. 8 Velocity distribution versus h  for various values of 

mass transfer parameter 
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Fig. 9 Concentration distribution versus h  for various 

values of mass transfer parameter 

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8



f '

Assisting flow

Opposing flow

 = 0.3, 0.5, 0.6, 0.8, 1.0

 

Fig. 10 Velocity distribution versus h  for various values of 

first order slip parameter 
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Fig. 11 Concentration distribution versus h  for various 

values of first order slip parameter 
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Fig. 12 Velocity distribution versus h  for various values of 

second order slip parameter 
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Fig. 13 Concentration distribution versus h  for various 

values of second order slip parameter 
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Fig. 14 Variation of (0)f ¢  versus b  for various values of 

reaction rate parameter 
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Fig. 15 Variation of (0)f ¢  versus b  for various values of 

Schmidt number 
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Fig. 16 Variation of (0)f ¢¢  versus b  for various values of 

diffusion parameter 
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Fig. 17 Variation of (0)f ¢  versus b  for various values of 

diffusion parameter 

0.5 1 1.5 2 2.5 3 3.5 4
-3

-2.5

-2

-1.5

-1

-0.5

0



f '
' w

Assisting flow

Opposing flow

 = 0.3, 0.5, 0.6, 0.8, 1.0

 

Fig. 18 Variation of (0)f ¢¢  versus b  for various values of 

first order slip parameter 
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Fig. 19 Variation of (0)f ¢  versus b  for various values of 

first order slip parameter 
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Fig. 20 Variation of (0)f ¢¢  versus b  for various values of 

second order slip parameter 
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Fig. 21 Variation of (0)f ¢  versus b  for various values of 

second order slip parameter 

On the other hand, the rheological equation of state for an 

isotropic and incompressible flow of a Casson fluid as [11] 

2 ,
2

2 ,
2

y

B ij c

ij
y

B ij c

c

P
e

P
e

m p p
p

t

m p p
p

æ öìï ç ÷ï ç ÷+ >ï ç ÷ï ç ÷è øï
= í æ öï ç ÷ï ç ÷+ <ï ç ÷ï ç ÷è øïî

 



A. Mahdy/ Elixir Mech. Engg. 79 (2015) 30469-30475 
 

30473 

where, 
ij

t  is the ( , )i j -th component of the stress 

tensor,
ij ij ij

e et =  and 
i j

e  are the ( , )i j -th component of the 

deformation rate, p  is the product of the component of 

deformation rate with itself, 
c

p  is a critical value of this product 

based on the non-Newtonian model, 
B

m  is plastic dynamic 

viscosity of the non-Newtonian fluid, and 
y

P  is the yield stress 

of the fluid. So, if a shear stress less than the yield stress is 

applied to the fluid, it behaves like a solid, whereas if a shear 

stress greater than yield stress is applied, it starts to move. 

Considering the balance laws of mass, linear momentum and 

energy and with the help of Boussinesq’s approximation the 

equations governing this flow can be written in the usual form as 

0
u v

x y

¶ ¶
+ =

¶ ¶

     (1) 

2

2

1
1 ( )

u u u
u v g C C

x y y
n b

b
¥

æ ö¶ ¶ ¶ç ÷+ = + ± -ç ÷ç ÷è ø¶ ¶ ¶

%
 (2) 

2

2
( )

C C C
u v D k C C

x y y
¥

¶ ¶ ¶
+ = - -

¶ ¶ ¶

  (3) 

where, ( , )u v  are the velocity components in ( , )x y  directions, 

respectively, n  is the kinematic viscosity, C  is the 

concentration of the fluid inside the thermal boundary layer, 

whereas C
¥

 is the ambient concentration, b  is the Casson 

parameter. b% is the thermal expansion coefficient and k  is the 

reaction rate of the solute, D  is the diffusion coefficient. The 

last term on the right-hand side of equation (2) represents the 

influence of the diffusion of chemically reactive species on the 

flow field, with "+" sign corresponding to the flow assisting 

region and "-" sign corresponding to the flow opposing region. 

Applying the following boundary conditions for the governing 

equations   

slip
0, , ,

w w
y u ax U v v C C= = + = =  

, 0,y u C C
¥

® ¥ ® ®   (4) 

The model of  
slip

U  is taken as Wu [22]  

3 2 2
4 2

slip 2 2

2

2

2 3 3 1 1 2
(1 )

3 2 2 4
n n

u u
U

K y K y

u u
A B

y y

a
g g

a

æ öæ ö ç ÷- - ¶ ¶ç ÷ ç ÷ç ÷= - - + -ç ÷ç ÷ ç ÷ç ÷ ç ÷¶è ø ¶è ø

¶ ¶
= +

¶ ¶

l l
% %l l

 

where 
1

min , 1

n
K

æ ö
ç ÷ç ÷= ç ÷ç ÷è ø

l
, a  with is the momentum 

accommodation coefficient  with 0 1a£ £ , and ( 0)g >%  is 

the molecular mean free path. Based on the definition of l , it is 

seen that, for any given value of Kundsen number 
n

K we 

have 0 1£ £l . Since the molecular mean free path g% is 

always positive it results in that A  is positive and B  is a 

negative number. ax  is the velocity of the stretching surface, a  

being a positive constant. 
w

v  is a prescribed distribution of 

suction ( 0
w

v < ) or blowing ( 0
w

v > ). A majority of the 

existing exact solutions in fluid mechanics are similarity 

solutions which reduce the number of independent variables by 

one or more. The methods for generating similarity 

transformations for equations of physical interest are discussed 

by Ames [23]. Similarity solutions are often asymptotic 

solutions to a given problem and may have utility in this area of 

limiting solutions. Similarity solutions may be used to gain 

physical insight into these details of complex fluid flows and 

these solutions exhibit most of the characteristic as well as the 

influence of the physical and thermal parameters of the actual 

problem. In order to get a similarity solution of the problem we 

define the following transformations 

, ( ), ( )

w

C Ca
y a xf

C C
h y n h f h

n

¥

¥

-
= = =

-

   (5) 

Substituting Eq. (5) into Eqs. (2) and (3) we get the following 

ordinary governing differential equations: 

21
0f ff f

b
l f

b

æ ö+ç ÷ ¢¢¢ ¢¢ ¢+ - + =ç ÷ç ÷è ø

        (6) 

1
( ) 0f f

Sc
f f g f¢¢ ¢ ¢+ - + =

          (7) 

The boundary conditions (4) then turn into 

(0) , (0) 1 (0) (0), (0) 1f S f f fd s f¢ ¢¢ ¢¢¢= = + + =       

( ) 0, ( ) 0f f¢¥ ® ¥ ®                        (8) 

In the above equations, the prime denotes ordinary 

differentiation with respect to the similarity variable h , where, 

2/ ReGrl = ±  is the diffusion parameter, with 

( )3 2( ) /
w

Gr g C C xb n
¥

= -%  is the local Grashof number 

and 2Re /ax n=  is the local Reynolds number. Further, 

( 0)l >  corresponding to flow assisting region, whereas 

0l <  corresponding to flow opposing region. /Sc Dn= , 

/k ag =  are the Schmidt number and reaction rate parameter, 

respectively. The mass transfer parameter /
w

S v an= - , 

0S >  (i. e. 0
w

v < ) corresponding to suction and 0S <  (i. 

e. 0
w

v > ) corresponding to blowing. /A ad n=  is the 

first-order slip flow parameter and /Bas n= is the second-

order slip flow parameter. In addition, the exact analytical 

solution of Eq. (6) when 0l =  and slip is absent is given as 

11 1( ) 1 1f e

h

bh b
-

-
- +

æ ö
ç ÷ç ÷ç ÷= + -ç ÷ç ÷ç ÷è ø

,    

1 11 1

1

1
( ) , ( )

1

f e f e

h h

b bh h

b

- -
- -

+ +

-

¢ ¢¢= = -

+

   (9) 

The local mass flux may be written by Fourier's Law as 

0

( ) (0)

m

y

w

C
q D

y

a
D C C f

n

=

¥

¶
= -

¶

¢= - -

 

The local mass transfer coefficient is given by  

m

w

q
h

C C
¥

=
-

 

In practical applications, the quantity of physical interest in our 

case is the local Sherwood number Sh , which may be written 

in non-dimensional form as  
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Re (0)
hx

Sh
D

f ¢= = -
                 (10) 

Results and discussion  

 The system of ordinary differential equations (6) and (7) 

subject to the boundary conditions (8) was solved numerically 

using the function bvp4c from Matlab for different values of the 

Casson parameter , the diffusion parameter l , mass transfer S , 

the Schmidt number Sc , first-order slip parameter d  and 

second-order slip parameter s , reaction rate parameter g . The 

relative tolerance was set to 1010- . In this method, we have 

chosen a suitable finite value of h ® ¥  namely 

20h h
¥

= = . The guess should satisfy the boundary 

conditions and reveal the behavior of the solution. However, it is 

difficult to come up with a sufficiently good guess for the 

solution of the system of the ordinary differential equations (6) 

and (7) in the case of opposing flow. To overcome this 

difficulty, we start with a set of parameter values for which the 

problem is easy to be solved. Then, we use the obtained result as 

initial guess for the solution of the problem with small variation 

of the parameters. This is repeated until the right values of the 

parameters are reached. The results are given to carry out a 

parametric study showing influences of several non-dimensional 

parameters. For the validation of the numerical results obtained 

in this investigation, the case when the Casson parameter 

approaches to infinity ( b ® ¥ , i.e. Newtonian fluid case) has 

been considered and compared with the previously published 

results. In Table 1 we compare our obtained results for various 

values of first order slip parameter with the available results of 

Andersson [2] for skin-friction coefficient (0)f ¢¢  when slip is 

absent, which show an excellent agreement. 

 Figs. 2 and 3 illustrate the influence of Casson parameter 

b  on velocity and concentration distributions respectively, 

considering the two cases of assisting and opposing flow (i.e. 

0.5, 0.5l = - ) when 0.63, 0.5, 0.7, 0.4Sc S g d= = = =  and 

0.6s = - . The increasing values of the Casson parameter i.e. 

the decreasing yield stress (the fluid behaves as Newtonian fluid 

as Casson parameter becomes large) suppress the velocity field. 

The effect of increasing values of b  is to reduce the rate of 

transport, and hence, the boundary layer thickness decreases. It 

is observed that ( )f h¢ and the associated boundary layer 

thickness are decreasing function of b . The effect of 

increasing b  leads to enhance the concentration field for steady 

motion Figs. 3. It can also be seen from Fig. 2 that the 

momentum boundary layer thickness decreases as b increases 

and hence induces an increase in the absolute value of the 

velocity gradient at the surface. On the other hand, first the peak 

of the velocity at the surface increasing with b  until critical 

value of h ( 0.2287 ) then the velocity decreases. The chemical 

reaction parameter affects the species concentration distribution 

and this can be verified from Fig. 4, considering the two cases of 

assisting and opposing flow (i.e. 0.5, 0.5l = - ). From the 

figure it reveals that the values of the concentration profiles 

decrease with increasing chemical reaction parameter i.e. the 

chemical reaction opposes the diffusion of species concentration 

distribution. Fig. 5 depicts the effect of the Schmidt number on 

concentration distribution. The value of the concentration profile 

at a particular point decreases significantly with increasing 

Sc and consequently, the concentration boundary layer 

thickness becomes thinner. This decrease in the solute 

concentration causes a reduction in the solutal buoyancy effects 

resulting in less induced flow along the surface.  

Table 1. The skin-friction coefficient (0)f ¢¢ for various 

values of d  when 0Sl = =  and b ® ¥  (Newtonian 

fluid) 

d  Andersson [2] Present 

0.0 

0.1 

0.2 

0.5 

1.0 

2.0 

5.0 

10.0 

20.0 

50.0 

100.0 

-1.0000 

-0.8721 

-0.7764 

-0.5912 

-0.4302 

-0.2840 

-0.1448 

-0.0812 

-0.0438 

-0.0186 

-0.0095 

-1.00000 

-0.87243 

-0.77632 

-0.59092 

-0.43103 

-0.28321 

-0.14479 

-0.08120 

-0.04376 

-0.01858 

-0.00946 

 The variation of velocity field and reactive concentration 

distribution for several values of the diffusion parameter l  are 

obtained. Figs. 6 and 7 plotted the dimensionless velocity and 

concentration profiles. With increasing values of l  the velocity 

at a fixed point increases, but converse effect is observed for 

species concentration profiles i.e. ( )f h  at a fixed decreases 

with l . This effect of diffusion of reactive species on the flow 

field is very significant in physical and practical point of view. 

In addition, Figs. 8 and 9 display the effects of suction/blowing 

parameter. With increasing suction/blowing parameter, fluid 

velocity and species concentration distribution are found to 

decrease. That is, the effect of S  is to decrease the fluid 

velocity in the boundary-layer and in turn, the wall shear stress 

decreases. The increase S causes thinning of the boundary 

layer. However, species concentration at a point is found to 

decrease with increasingS . This causes a decrease in the rate of 

mass transfer. Figs. 10 and 11 display the effect of partial first 

order slip parameter on the velocity and concentration profiles. 

From Fig. 10 we have found a special point 1.82h = , before 

and after that point the behavior of velocity profiles change 

completely. The velocity decreases with the increasing values of 

first order slip parameter up to that point whereas increases to 

some extent after this.  Consequently, with increase of first order 

slip parameter the thickness of boundary layer increases except 

very large values of d , because if we increase d  to a value 

tending to infinity then the boundary layer structure will 

disappear. In addition, from Fig. 11 it is observed that the value 

of concentration profile at a point increases with d . Fig. 12 

depicts that with the increase in second order slip parameter s , 

the fluid velocity decreases, the higher the value of s , the 

lower is the fluid velocity but with the increase in h , the 

velocity profiles intersect and the behavior changes. Fig. 13 

shows that with the increase in s , the species concentration 

increases. Figs. 14 and 15 demonstrate the effect of reaction rate 

parameter and Schmidt number on variation of mass transfer 

coefficient (0)f ¢- , as it is shown for the increase of Sc and g  

the values (0)f ¢-  increase. Variations of skin-friction 

coefficient and the mass transfer coefficient for various values 

of diffusion parameter are displayed in Figs. 16 and 17. It is 

clear that both of (0)f ¢¢ and (0)f ¢-  increase with increasing l . 

It can be seen in Fig. 18, when only the first order slip parameter 

d  is considered, the reduced skin friction (0)f ¢¢  increases with 

the increase of the parameter d , but the mass transfer rate 
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(0)f ¢-  decreases, Fig. 19. The same, observations are seen for 

the second order slip parameter s  from Figs. 20 and 21.  

Conclusions 

 A numerical analysis of steady two-dimensional boundary 

layer flow with a second-order slip of non-Newtonian Casson 

fluid over a stretching or shrinking sheet with first-order 

chemical reaction effect has been performed.  It is shown in this 

paper how the first and second-order slip parameters, reaction 

rate parameter, diffusion parameter and Casson parameter affect 

the species concentration distribution, velocity and the mass 

transfer coefficient. We can conclude that: 
 The effect of increasing values of the Casson parameter b  is 

to suppress the velocity field, whereas the species concentration 

is enhanced with increasing Casson parameter.  
 Increasing values of the diffusion parameter l  tends to 

suppress the species concentration field (as the reaction rate 

parameter), but the velocity field is enhanced with increasing 

diffusion parameter. 
 Surface mass transfer rate S  influences the flow and 

concentration fields. Suction at the surface produces higher 

entrainment velocities, whereas injection makes the velocity and 

concentration distributions more linear. 
  First and second-order slip parameters make the velocity 

decreases and species concentration increases. 
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