
31083 Redouane Esbai et al./ Elixir Comp. Engg. 80 (2015) 31083-31090

Introduction

 In recent years many organizations have begun to consider

MDA (Model-View-Presenter) as an approach to design and

implement enterprise applications. The key principle of MDA is

the use of models at different phases of application development

by implementing many transformations. These changes are

present in MDA, and help transform a CIM (Computation

Independent Model) into a PIM (Platform Independent Model) or

to obtain a PSM (Platform Specific Model) from a PIM.

 Rich Internet applications (RIAs) combine the simplicity of

the hypertext paradigm with the flexibility of desktop interfaces.

Moreover, RIAs provide a new client-server architecture that

reduces significantly network traffic using more intelligent

asynchronous requests that send only small blocks of data. In

fact, the technological advances of RIAs require from the

developer to represent a rich user interface based on the

composition of Graphical User Interface (GUI) widgets, to

define an event-based choreography between these widgets and

to establish a fine grained communication between the client and

the server layers. Many frameworks that implement the MVP

pattern have emerged; for instance: Mvp4g [1], GWT [2], Echo2

[3], JFace [4], Vaadin [5], ZK [6], Nucleo .NET [7].

 GWT is an AJAX framework, developed by Google, which

permits us to create RIAs by writing the browser-side code in

Java, thus gaining all the advantages of Java (e.g. compiling,

debugging, etc.) and generating a generic JavaScript and HTML

code that can be executed in any browser.

 Moreover, GWT makes every attempt to be flexible

allowing us to integrate with other client AJAX frameworks (e.g.

Script.aculo.us, Dojo, Yahoo! UI) and with server Java

frameworks such as Struts [8], EJB, etc.

 In [9][10], the authors have developed a source and a target

meta-model. The first was a PIM meta-model specific to class

diagrams. The second was a PSM meta-model for N-tiers web

applications (particularly Struts, Spring, DTO, Hibernate)

without UI. The purpose of our contribution is to produce and

generate an RIA PSM model (particularly GWT), implementing

MVP pattern, from the class diagram. In this case, we elaborate a

number of transformation rules using the approach by modeling

and MOF 2.0 QVT, as transformation language, to permit the

generation of an XML file that can be used to produce the

required code of the target application. The advantage of this

approach is the bidirectional execution of transformation rules.

 This paper is organized as follows: related works are

presented in the second section, the third section defines the

MDA approach, and the fourth section presents GWT and the

MVP model and its implementation as a framework. The

transformation language MOF 2.0 QVT is the subject of the fifth

section. In the sixth section, we present the UML and MVP

meta-models. In the seventh section, we present the

transformation rules using MOF 2.0 QVT from UML source

model to the MVP target model. The last section concludes this

paper and presents some perspectives.

Related Work

 Many researches on MDA and generation of code have been

conducted in recent years. The most relevant are

[11][12][13][14][15][16][17][18][19][20][21][22] [23][24]. The

authors of the work [19] show how to generate JSPs and

JavaBeans using the UWE [18], and the ATL transformation

language [17]. Among future works cited, the authors considered

the integration of AJAX into the engineering process of UWE.

Two other works followed the same logic and have been the

subject of two works [15][16]. A meta-model for Ajax was

defined using AndroMDA tool. The generation of Ajax code has

been illustrated by an application CRUD (Create, Read, Update,

and Delete) that manages people. Meliá, Pérez and Díaz

propose in [25] a new approach called OOH4RIA which

proposes a model driven development process that extends OOH

methodology. It introduces new structural and behavioral models

in order to represent a complete RIA and to apply

Model-driven transformation for GWT with approach by modeling: from UML

model to MVP web applications
Redouane Esbai

1,*
 Mohammed Erramdani

2
 and Samir Mbarki

3

1
Department of Commerce ENCGO, Mohammed 1 University, Oujda, Morocco.

2
Department of Management ESTO, Mohammed 1 University, Oujda, Morocco.

3
Department of Mathematics and Computer Science, Faculty of Science, Ibn Tofail University, Kenitra, Morocco.

ABSTRACT

The continuing evolution of business needs and technology makes Web applications

more demanding in terms of development, usability and interactivity of their user

interfaces. To cope with this complexity, several frameworks have emerged and a new

type of Web applications called RIA (Rich Internet Applications) has recently appeared

providing richer and more efficient graphical components similar to desktop

applications. Given this diversity of solutions, the generation of a code based on UML

models has become important. This paper presents the application of the MDA (Model

Driven Architecture) to generate, from the UML model, the Code following the MVP

pattern (Model-View-Presenter) for a RIA. We adopt GWT (Google web Toolkit) for

creating a target meta-model to generate an entire GWT-based web application.

 © 2015 Elixir All rights reserved.

ARTICLE INFO

Article history:

Received: 29 August 2014;

Received in revised form:

28 February 2015;

Accepted: 14 March 2015;

Keywords

GWT,

Model transformation,

Ria, Metamodel,

Model-View-Presenter,

Transformation rules.

Elixir Comp. Engg. 80 (2015) 31083-31090

Computer Engineering

Available online at www.elixirpublishers.com (Elixir International Journal)

Tele:

E-mail addresses: es.redouane@gmail.com

 © 2015 Elixir All rights reserved

 Redouane Esbai et al./ Elixir Comp. Engg. 80 (2015) 31083-31090

31084

transformations that reduce the effort and accelerate its

development.In another work [26] they present a tool called

OIDE (OOH4RIA Integrated Development Environment) aimed

at accelerating the RIAs development through the OOH4RIA

approach which establishes a RIA-specific model-driven

process.

 The Web Modeling Language (WebML) [27] is a visual

notation for specifying the structure and navigation of legacy

web applications. The notation greatly resembles UML class and

Entity-Relation diagrams. Presentation in WebML is mainly

focused on look and feel and lacks the degree of notation needed

for AJAX web user interfaces [28][29].

 Nasir, Hamid and Hassan [23] have presented an approach

to generate a code for the .Net application Student Nomination

Management System. The method used is WebML and the code

was generated by applying the MDA approach, but the creation

was not done according to the .Net MVC2 logic.

 This paper aims to finalize the work presented in [9][10], by

applying the standard MOF 2.0 QVT to develop the

transformation rules aiming at generating the MVP target model

with UI. It is actually the only work for reaching this goal.

Model Driven Architecture (MDA)

 In November 2000, OMG, a consortium of over 1 000

companies, initiated the MDA approach. The key principle of

MDA is the use of models at different phases of application

development. Specifically, MDA advocates the development of

requirements models (CIM), analysis and design (PIM) and code

(PSM).

 The MDA architecture [30] is divided into four layers. In

the first layer, we find the standard UML (Unified Modelling

Language), MOF (Meta-Object Facility) and CWM (Common

Warehouse Meta-model). In the second layer, we find a standard

XMI (XML Metadata Interchange), which enables the dialogue

between middlewares (Java, CORBA, .NET and web services).

The third layer contains the services that manage events,

security, directories and transactions. The last layer provides

frameworks which are adaptable to different types of

applications namely Finance, Telecommunications, Transport,

medicine, E-commerce and Manufacture, etc.).

 The major objective of MDA [31] is to develop sustainable

models; those models are independent from the technical details

of platforms implementation (JavaEE, .Net, PHP or other), in

order to enable the automatic generation of all codes and

applications leading to a significant gain in productivity. MDA

includes the definition of several standards, including UML

[32], MOF [33] and XMI [34].

The MVP Pattern

 The Model View Presenter is a derivative of the Model View

Controller Pattern. Its aim is to provide a cleaner

implementation of the Observer connection between Application

Model and view.

MVP is a user interface architectural pattern engineered to

facilitate automated unit testing and improve the separation of

concerns in presentation logic.

Figure 1 shows the architecture of the MVP pattern. The main

feature of this pattern is to be composed of:

 The model is an interface defining the data to be displayed or

otherwise acted upon in the user interface.

 The view is a passive interface that displays data (the model)

and routes user commands (events) to the presenter to act upon

that data.

 The presenter acts upon the model and the view. It retrieves

data from repositories (the model), and formats it for display in

the view.

Figure 1. MVP Architecture

 Based on this model many frameworks are designed to help

developers build the presentation layer of their user interfaces.

In the Java community, many frameworks that implements MVP

pattern have emerged, among them: Echo2, JFace, Swing,

Vaadin, ZK framework, GWT, etc.

 The GWT project is one of the best examples.

Implementing MVP in Google Web Toolkit requires only that

some component implement the view interface.

The GWT framework

 Google Web Toolkit (GWT) [35] is an open source web

development framework that allows developers to easily create

high-performance AJAX applications using Java. With GWT,

you are able to write your front end in Java, and it compiles your

source code into highly optimized, browser-compliant

JavaScript and HTML.

 However, GWT is not the only framework for managing the

user interfaces. Indeed, other frameworks have been designed

for the same goal, but GWT is the most mature. The main

advantage of GWT is the reduced complexity compared to other

frameworks of the same degree of power, for instance, JFace,

Flex and Vaadin.

The transformations of MDA models

MDA establishes the links of traceability between the CIM, PIM

and PSM models through to the execution of the models’

transformations.

The models’ transformations recommended by MDA are

essentially the CIM transformations to PIM and PIM

transformations to PSM.

Approach by modeling

 ` Currently, the models’ transformations can be written

according to three approaches: The approach by Programming,

the approach by Template and the approach by Modeling.

The approach by Modeling is the one used in the present paper.

It consists of applying concepts from model engineering to

models’ transformations themselves.

 The objective is modeling a transformation, to reach

perennial and productive transformation models, and to express

their independence towards the platforms of execution.

Consequently, OMG elaborated a standard transformation

language called MOF 2.0 QVT [36]. The advantage of the

approach by modeling is the bidirectional execution of

transformation rules. This aspect is useful for the

synchronization, the consistency and the models reverse

engineering [37].

 Figure 2 illustrates the approach by modeling. Models

transformation is defined as a model structured according to

MOF 2.0 QVT meta-model. The MOF 2.0 QVT meta-model

expresses some structural correspondence rules between the

source and target meta-model of a transformation. This model is

a perennial and productive model that is necessary to transform

in order to execute the transformation on an execution platform.

 Redouane Esbai et al./ Elixir Comp. Engg. 80 (2015) 31083-31090

31085

Figure 2. Approach by Modeling

Mof 2.0 Qvt
 Transformations models are at the heart of MDA, a standard

known as MOF 2.0 QVT being established to model these

changes. This standard defines the metamodel for the

development of transformation model.

 The QVT standard has a hybrid character (declarative /

imperative) in the sense that it is composed of three different

transformation languages (see Figure 3).

 The declarative part of QVT is defined by Relations and

Core languages, with different levels of abstraction. Relations

are a user-oriented language for defining transformations in a

high level of abstraction. It has a syntax text and graphics. Core

language forms the basic infrastructure for the declaration part;

this is a technical language of lower level determined by textual

syntax. It is used to specify the semantics of Relations language

in the form of a Relations2Core transformation. The declarative

vision comes through a combination of patterns, source and

target side to express the transformation.

 The imperative QVT component is supported by

Operational Mappings language. The vision requires an explicit

imperative navigation as well as an explicit creation of target

model elements. The Operational Mappings language extends

the two declarative languages of QVT, adding imperative

constructs (sequence, selection, repetition), etc and constructs in

OCL edge effect.

 The imperative style languages are better suited for

complex transformations including a significant algorithm

component. Compared to the declarative style, they have the

advantage of optional case management in a transformation. For

this reason, we chose to use an imperative style language in this

paper.

 Finally, QVT suggests a second extension mechanism for

specifying transformations invoking the functionality of

transformations implemented in an external language Black

Box.

Figure 3. The QVT Structure

 This work uses the QVT-Operational mappings language

implemented by Eclipse modeling [38].

OCL (Object Constraint Language)

 Object Constraint Language (OCL) is a formal language

used to describe expressions on UML models.

 These expressions typically specify invariant conditions that

must hold for the system being modeled or queries over objects

described in a model. Note that when the OCL expressions are

evaluated, they do not have side effects. OCL expressions can

be used to specify operations / actions that, when executed, do

alter the state of the system. UML modelers can use OCL to

specify application-specific constraints in their models.

In MOF 2.0 QVT, OCL is extended to Imperative OCL as part

of QVT Operational Mappings.

 Imperative OCL added services to manipulate the system

states (for example, to create and edit objects, links and

variables) and some constructions of imperative programming

languages (for example, loops and conditional execution). It is

used in QVT Operational Mappings to specify the

transformations.

 QVT defines two ways of expressing model

transformations: declarative and operational approaches.

The declarative approach is the Relations language where

transformations between models are specified as a set of

relationships that must hold for successful transformation.

 The operational approach allows either defining

transformations using a complete imperative approach or

complementing the relational transformations with imperative

operations, by implementing relationships.

 Imperative OCL adds imperative elements of OCL, which

are commonly found in programming languages like Java. Its

semantics are defined in [36] by a model of abstract syntax. The

complete abstract syntax ImperativeOCL is shown in Figure 4.

The most important aspect of the abstract syntax is that all

expression classes must inherit OclExpression.

 OclExpression is the base class for all the conventional

expressions of OCL. Therefore, Imperative Expressions can be

used wherever there is OclExpressions.

Figure 4. Imperative Expressions of ImperativeOCL

UML and MVP meta-models

 To develop the transformation algorithm between source

and target model, we present in this section, the various meta-

classes forming the meta-model UML source and the meta-

model MVP target.

Meta-model UML source

 The source meta-model structures a simplified UML model

based on packages containing data types and classes. Those

classes contain typed properties and they are characterized by

multiplicities (upper and lower). The classes are composed of

operations with typed parameters. Figure 5 illustrates the source

meta-model.

 Redouane Esbai et al./ Elixir Comp. Engg. 80 (2015) 31083-31090

31086

Figure 5. Simplified UML meta-model

 UmlPackage: is the concept of UML package. This meta-class

is connected to the meta-class Classifier.

 Classifier: This is an abstract meta-class representing both the

concept of UML class and the concept of data type.

 Class: is the concept of UML class.

 DataType: represents UML data type.

 Operation: is used to express the concept of operations of a

UML class.

 Parameter: expresses the concept of parameters of an

operation. These are of two types, Class or DataType. It explains

the link between Parameter meta-class and Classifier meta-class.

 Property: expresses the concept of properties of a UML class.

These properties are represented by the multiplicity and meta-

attributes upper and lower.

 The works of Mbarki and Erramdani [20] [21] contains more

details related to this section topic.

Meta-model GWT MVP target

 Our target meta-model is composed of two essential part.

Figure 6 illustrates the first part of the target meta-model. This

meta-model represents a simplified version of the MVP pattern.

It presents the different meta-classes to express the concept of

MVP implementation:

 UIPackage: represents the project package. This meta-class is

connected to the meta-class MvpPackage

 MvpPackage: represents the different meta-classes to express

the concept of MVP. This meta-class is connected to the meta-

class ClientPackage and SharedPackage which represents

respectively View and Model package.

 GwtXml: expresses the concept of GWT module Encapsulates

units of GWT configurations (paths, properties, deferred binding

etc); defined in an XML module file and stored in the Java

package hierarchy.

 ClientPackage: represents the client package, in this package,

we will typically find, and put, all the code required for the

client side part of our application (the part in the browser). This

meta-class is connected to the meta-class PresenterPackage and

ViewPackage

 MainApp: this meta-class implements EntryPoint interface.

When a module is loaded, entry point class is instantiated and its

onModuleLoad() method gets called.

 EntryPoint: represents the concept of entry point interface

containing the method onModuleLoad(). Implement this

interface to allow a class to act as a module entry point.

 PresenterPackage: represents the different meta-classes to

express the concept of Presenter. This Presenter is Responsible

for getting the data, driving the view, listening for GUI events,

implements business logic

 IPresenter: represents the concept of basic presenter interface

that all of our presenters will implement and containing the

methods bind() and go()

 PresenterImpl: expresses the concept of specific Presenter

implementation all methods to bind and go are implemented in

this meta-class.

 Display: represents the concept of the inner interface type of

the view is determined by the getView() method.

 View: expresses the concept of the view contains all of the UI

components that make up our application.

 SharedPackage: represents package which contains the

different meta-classes to express the concept of model.

 Pojo: represents the concept of pojo. The latter extends the

meta-class Class. The pojos represents objects in the area of

application.

 Widget: expresses the concept of the GWT Widget.

Figure 6. The proposed MVP metamodel

 Figure 7 illustrates the second part of target meta-model.

Like the Abstract Window Toolkit (AWT) and Swing, GWT is

based on widgets. To create a user interface, you instantiate

widgets, add them to panels, and then add your panels to the

application’s root panel, which is a top-level container that

contains all of the widgets in a particular view. GWT contains

many widgets whose classes are described by an inheritance

hierarchy. An illustration of some of those widgets is shown in

Figure7.

Figure 7. Simplified GWT metamodel

 Redouane Esbai et al./ Elixir Comp. Engg. 80 (2015) 31083-31090

31087

 Panel: A panel that lets you place widgets a pixel locations.

 Button: A button that the user can click.

 Composite: An opaque wrapper for a set of widgets.

 DataGrid: A table that arranges its widgets in a grid.

 HorizontalPanel: A panel that arranges its widgets

horizontally.

 VerticalPanel: A panel that arranges its widgets vertically.

 Image: An image that can fire load events when it loads its

corresponding image file.

 Label: Text that supports word wrap and horizontal alignment.

 PopupPanel: A panel that pops up when it’s shown.

 ScrollPanel: A panel that automatically adds scrollbars to

itself on demand.

 TextBox: A single-line text widget.

 ListBox: A list of choices that the user can select.

The process of transforming UML source model to MVP target

model

CRUD operations (Create, Read, Update, and Delete) are most

commonly implemented in all systems. That is why we have

taken into account in our transformation rules these types of

transactions.

We first developed ECORE models corresponding to our source

and target meta-models, and then we implemented the algorithm

(see sub-section 7.1) using the transformation language QVT

Operational Mappings.

To validate our transformation rules, we conducted several tests.

For example, we considered the class diagram (see Figure 8).

After applying the transformation on the UML model, composed

by the class Employee, we generated the target model (see

Figure 11).

Figure 8. UML instance model

The transformation rules

By source model, we mean model containing the various classes

of our business model. The elements of this model are primarily

classes.

Main algorithm:

input umlModel:UmlPackage

output gwtModel:UIPackage

begin

create UIPackage crudProjectPackage

create MvpPackage mvpPackage

create ClientPackage clientPackage

create MainApp mainapp

link mainapp to clientPackage

create PresenterPackage presenterPackage

create IPresenter ipresenter

ipresenter.name = 'IPresenter'

ipresenter.methods = declaration of {do,bind}

link ipresenter to presenterPackage

for each e source model

 x = transformationRuleOne(e)

 link x to presenterPackage

end for

end for

create SharedPackage sharedPackage;

for each e source model

 x = transformationRuleThree(e)

 link x to sharedPackage

end for

create GwtXml gwtxml;

link presenterPackage to clientPackage

link viewPackage to clientPackage

link clientPackage to mvpPackage

link mvpPackage to crudProjectPackage

link sharedPackage to crudProjectPackage

link gwtxml to crudProjectPackage

return crud

end

function

transformationRuleOne(e:Class):PresenterImpl

begin

 create PresenterImpl presenterImpl

 presenterImpl.name = e.name+ 'PresenterImpl'

for each e1 PresenterPackage

 if e1.name = 'I'+e.name+ 'Presenter'

 put e1 in interfaces

 end if

end for

link interfaces to presenterImpl

return presenterImpl

end

function

transformationRuleTwo(e:Class):ViewPackage

begin

create ViewPackage vp

for each e source model

 if e.methods.name ≠ 'remove'

 create View page

 link page to vp

end if

end for

return vp

end

function

transformationRuleThree(e:Class):Pojo

begin

create Pojo pj

pj.name = e.name

pj.attributes = e.properties

return pj

end

Figure 9 illustrates the first part of the transformation code of

UML source model to the MVP target model.

end for

create ViewPackage viewPackage;

for each e source model

 x = transformationRuleTwo(e)

 link x to viewPackage

 Redouane Esbai et al./ Elixir Comp. Engg. 80 (2015) 31083-31090

31088

Figure 9. The transformation code UML2Gwt

 The transformation uses as input a UML type model, named

umlModel, and as output a GWT type model named gwtModel.

The entry point of the transformation is the main method. This

method makes the correspondence between all elements of type

UmlPackage of the input model and the elements of type

UIPackage output model.

The objective of the second part of this code is to transform a

UML package to GWT package, by creating the elements of

type package ‘Presenter’, ‘View’ and ‘Shared’. It is a question

of transforming each class of package UML, to IPresenter and

PresenterImpl in the Presenter package, and to Pojo, in the

Shared package, to Dispaly contains widgets in the View

Package without forgetting to give names to the different

packages.

Figure 10. The mapping Operation2View

 The methods presented in Figure 10 means that each

operation in a class corresponds to View. The codes and models

are publicly available online http://sites.google.com/

site/uml2mvp/.

Result

 Figure 11 shows the result after applying the transformation

rules.

 The first element in the generated PSM model is UIPackage

which includes MvpPackage that contains gwt.xml file, Client

Package and Shared Package. The Client Package contains the

main application, the Presenter Package and the View Package

that contains the Three Views, namely CreateEmployeeView,

DisplayEmployeeView and UpdateEmployeeView. Since the

operation of the removal requires any view, we'll go to every

view element, which contains a multiple element widget like

Panel, firstNameTextBox, lastNameTextBox, actionButton and

cancelButton. Since the view Display contains the DataGrid

widget that contains removal button.

 The Presenter Package includes one presenter’ interface,

one presenter’ implementation that contains methods with their

parameters and their implementations and the last package

element in the generated PSM model is Shared Package which

contains one Pojo’ object that contains their attributes

correspond to the object ‘Employee’.

Figure 11. Generated PSM MVP model

 Redouane Esbai et al./ Elixir Comp. Engg. 80 (2015) 31083-31090

31089

Conclusion and perspectives
 In this paper, we applied the MDA approach to generate the

MVP web application based on UML class diagram.

The purpose of our contribution is to finalize the works

presented in [9] [10]. This involves developing all meta-classes

needed to be able to generate a GWT application respecting a

MVP pattern and then we applied the approach by modeling and

used the MOF 2.0 QVT standard as a transformation language.

The transformation rules defined allow browsing the source

model instance class diagram, and generating, through these

rules, an XML file containing layers of MVP architecture

according to our target model. This file can be used to produce

the necessary code of the target application. The algorithm of

transformation manages all CRUD operations. Moreover, it can

be re-used with any kind of methods represented in the UML

class diagram.

In the future, this work should be extended to allow the

generation of other components of Web application besides the

configuration files. Afterward we can consider integrating other

frameworks like Flex and JFace.

References

[1] Mvp4g A framework to build a GWT application the right

way (https://code.google.com/p/mvp4g/)

[2] GWT source web site (https://code.google.com/p/google-

web-toolkit/)

[3] Echo2 source web site (http://echopoint.sourceforge.net/)

[4] Harris, Robert; Warner, Rob, The Definitive Guide to SWT

and JFACE (1st ed.), (Apress, 2004).

[5] Vaadin Framework web site (https://vaadin.com/home)

[6] ZK framework web site (http://www.zkoss.org)

[7] Nucleo .NET framework web site

(http://nucleo.codeplex.com/)

[8] Apache Software Foundation: The Apache Struts Web

Application Software Framework (http://struts.apache.org).

[9] Esbai. R, Erramdani, M., Mbarki, S., Arrassen. I, Meziane.

A. and Moussaoui. M., Model-Driven transformation with

approach by modeling: From UML to N-tiers Web Model,

International Journal of Computer Science Issues (IJCSI) , Vol.

8, Issue 3, May 2011, ISSN (Online): 1694-0814

[10] Esbai. R, Erramdani, M., Mbarki, S., Arrassen. I, Meziane.

A. and Moussaoui. M., Transformation by Modeling MOF 2.0

QVT: From UML to MVC2 Web model, InfoComp - Journal of

Computer Science, vol. 10, no. 3, p. 01-11, September of 2011,

ISSN 1807-4545.

[11] AndroMDA web site (http://www.andromda.org/).

[12] Bezivin, J., Busse, S., Leicher, A., Suss, J.G, Platform

Independent Model Transformation Based on TRIPLE.

Proceedings of the 5th ACM/IFIP/USENIX International

Conference on Middleware, (Page: 493, Year of publication:

2004).

[13] Bezivin, J., Hammoudi, S., Lopes, D., Jouault, F., Applying

MDA approach for web service platform. Proceedings of the 8th

IEEE International Enterprise Distributed Object Computing

Conference, (Page: 58, Year of publication: 2004).

[14] Cong, X., Zhang, H., Zhou, D., Lu, P., Qin, L., A Model-

Driven Architecture Approach for Developing E-Learning

Platform , Entertainment for Education, Digital Techniques and

Systems Lecture Notes in Computer Science, Volume

6249/2010, 2010.

[15] Distante, D., Rossi, G., Canfora, G., Modeling Business

Processes in Web Applications: An Analysis Framework. In

Proceedings of the The 22nd Annual ACM Symposium on

Applied Computing (Page: 1677, Year of publication: 2007,

ISBN: 1-59593-480-4).

[16] Gharavi, V., Mesbah, A., Deursen, A. V., Modelling and

Generating AJAX Applications: A Model-Driven Approach,

Proceeding of the7th International Workshop on Web-Oriented

Software Technologies, New York, USA (Page: 38, Year of

publication: 2008, ISBN: 978-80-227-2899-7)

[17] Jouault, F., Allilaire, F., Bézivin, J., Kurtev, I., ATL: A

model transformation tool. Science of Computer Programming-

Elsevier Vol. 72, n. 1-2: pp. 31-39, 2008.

[18] Koch, N., Transformations Techniques in the Model-Driven

Development Process of UWE, Proceeding of the 2nd

International Workshop Model-Driven Web Engineering, Palo

Alto (Page: 3 Year of publication: 2006 ISBN: 1-59593-435-9).

[19] Kraus, A., Knapp, A., Koch N., Model-Driven Generation

of Web Applications in UWE. Proceeding of the 3rd

International Workshop on Model-Driven Web Engineering,

CEUR-WS, Vol. 261, 2007

[20] Mbarki, S., Erramdani, M., Toward automatic generation of

mvc2 web applications, InfoComp - Journal of Computer

Science, Vol.7 n.4, pp. 84-91, December 2008, ISSN: 1807-

4545.

[21] Mbarki, S., Erramdani, M., Model-Driven Transformations:

From Analysis to MVC 2 Web Model, International Review on

Computers and Software (I.RE.CO.S.), Vol. 4. n. 5, pp. 612-

620, September 2009.

[22] Mbarki, S., Rahmouni, M., Erramdani, M., Transformation

ATL pour la génération de modèles Web MVC 2, Proceeding of

the 10e Colloque Africain sur la Recherche en Informatique et

en Mathématiques Appliquées, Theme5:Information Systems,

CARI (Year of publication: 2006).

[23] Nasir, M.H.N.M., Hamid, S.H., Hassan, H., WebML and

.NET Architecture for Developing Students Appointment

Management System, Journal of applied science, Vol. 9, n. 8,

pp. 1432-1440, 2009

[24] Ndie, T. D., Tangha1, C., Ekwoge, F. E., MDA (Model-

Driven Architecture) as a Software Industrialization Pattern: An

Approach for a Pragmatic Software Factories. J. Software

Engineering & Applications, pages 561-571, 2010

[25] Meliá S., Gómez J., Pérez P., Díaz O., A Model-Driven

Development for GWT-Based Rich Internet Applications with

OOH4RIA, Proceedings of ICWE '08. Eighth International

Conference on, Yorktown Heights, NJ, (Page: 13, Year of

publication: 2008, ISBN: 978-0-7695-3261-5).

[26] Meliá S., Gómez J., Pérez S., Diaz O. Facing Architectural

and Technological Variability of Rich Internet Applications.

IEEE Internet Computing, vol. 99, pp.30-38, 2010.

[27] S. Ceri, P. Fraternali, and A. Bongio. Web modeling

language (WebML): a modeling language for designing web

sites. Computer Networks, vol. 33(1-6) pp137–157, 2000.

[28] Preciado J. Carlos, M. Linaje, S. Comai, and F. Sanchez-

Figueroa. Designing Rich Internet Applications with Web

engineering methodologies. Proceedings of the 9th IEEE

International Symposium on Web Site Evolution

(WSE’07)(Page: 23 Year of publication: 2007).

[29] Trigueros M. L., J. C. Preciado, and F. S´anchez-Figueroa.

A method for model based design of Rich Internet Application

interactive user interfaces. In ICWE’07: Proceedings of the 7th

International Conference Web Engineering (page: 226 Year of

publication: 2007).

[30] Miller, J., Mukerji, J., al. MDA Guide Version 1.0.1 (OMG,

2003).

[31] Blanc, X., MDA en action : Ingénierie logicielle guidée par

les modèles (Eyrolles, 2005).

[32] UML Infrastructure Final Adopted Specification, version

2.0, September 2003, http://www.omg.org/cgi-bin/doc?ptc/03-

09-15.pdf

 Redouane Esbai et al./ Elixir Comp. Engg. 80 (2015) 31083-31090

31090

[33] Meta Object Facility (MOF), version 2.0 (OMG, 2006)

[34] XML Metadata Interchange (XMI), version 2.1.1 (OMG,

2007),

[35] GWT project web site http://www.gwtproject.org/

[36] Meta Object Facility (MOF) 2.0

Query/View/Transformation (QVT), Version 1.1 (OMG, 2009).

[37] Czarnecki, K., Helsen, S., Classification of Model

Transformation Approaches, Proceedings of the 2nd

OOPSLA’03 Workshop on Generative Techniques in the

Context of MDA. Anaheim (Year of publication: 2003).

[38] Eclipse modeling, http://www.eclipse.org/modeling/.

