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1. Introduction 

 

 Let            be a finite, undirected, connected graph with no loop or multiple edges. The order and size of   are denoted by 

    and     respectively      (        and           For basic graph theoretic terminology, we refer to [1], [2] and [3]. Graph labeling 

[4] is a strong relation between numbers and structure of graphs [3] A graph labeling is a bijection     from a subset of the elements of 

a graph to the set of positive integers. The domain of     is the set of vertices, for vertex labeling and for edge labeling the domain of 

    is the set of edges. A useful survey to know about the numerous graph labeling methods is given by J. A. Gallian [5]. The origin of 

labeling can be attributed to A. Rosa [6] or R.L. Graham and N.J.A. Sloane [7]. A vertex labeling [4] of a graph is an assignment f of 

labels to the vertices of   that induces for each edge    a label depending on the vertex label      and       The two important 

labeling methods are called graceful and harmonious labelings. Cordial labeling is a variation of both graceful and harmonious 

labeling [8]. The concept of cordial labeling was introduced by  I. Cahit [8]. 

 

Definition 1.1: Let           be a graph. A mapping f:              is called binary vertex labeling of   and      is called the 

label of the vertex   of   under   

For an edge e = uv, the induced edge labeling                   is given by                  –         Let       and       be 

the number of vertices of   having labels 0 and 1 respectively under f. Let       and       be the number of edges having labels 0 

and 1 respectively under     
 

Definition 1.2: A binary vertex labeling of a graph   is called a cordial labeling, if |                and                 .  

A graph   is cordial, if it admits cordial labeling. 

 

2. Separation Cordial Labeling 

 

 The concept of cordial labeling, motivated to introduce a new special type of cordial labeling called separation cordial labeling as 

follows: 

 

Definition 2.1: A separation cordial labeling of a graph   with vertex set   is a bijection   from   to            such that if each 

edge    assigned the label 1 if            is an odd number and label 0 if           is an even number then the number of 

edges labeled 0 and the number of edges labeled 1 differ by at most 1.  

 

A graph   is separation cordial, if it admits separation cordial labeling. 

 

Theorem 2.1: Given a positive integer  , then there is a separation cordial graph   which has   vertices. 

  

Proof: The positive integer   is divided into four cases. 

 

Case (i): n ≡ 0 (mod 4) 
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 Construct a path containing  
 

 
  vertices            

  
, which are labeled as 1, 2, .. ,   

 

 
   respectively. The edges          for 1 ≤  i  

≤  
 

 
  , have the label 1. Add  

 

 
  vertices    

 
     

 
            below (above), parallel to the path constructed earlier, which are 

labeled as 
 

 
   

 

 
         respectively to the above (below) vertices            

  
, and then join by a path as      

 
  , for     

 

 
   We see that the labels of the edges      

 
  ,  for     

 

 
  are all 0. 

 So, we have       =  
 

 
 ,       =  

 

 
   and hence                 . Thus, the resultant graph   is separation cordial. 

 

Case (ii): n ≡ 1 (mod 4) 

 

 As above construct a path containing  
   

 
  vertices              

  

 , which are labeled as 1, 2, … ,  
   

 
 respectively. The 

edges        , for     
   

 
 , have the label 1. Add  

   

 
 vertices     

 
  

     

 
  

        below (above), parallel to the path 

constructed earlier, which are labeled as 
   

 
   

   

 
         respectively to the above (below) vertices              

  

 and then 

join by a path as           

 
   

 for     
   

 
  . The labels of the edges           

 
   

, for     
   

 
   are all 0.  

 Also,       =  
   

 
  ,       =  

   

 
   and hence                 . Therefore, the resultant graph G is separation cordial. 

 

Case (iii): n ≡ 2 (mod 4) 

 

 Construct a path containing  
 

 
 vertices            

  
, which are labeled as 1, 2, .. ,   

 

 
 respectively. The edges          for 1≤  i ≤  

 

 
  , have the label 1 each.  Add  

 

 
  vertices      

 
     

 
             below (above), parallel to the path constructed earlier, which 

are labeled as   
 

 
   

 

 
         respectively to the above (below) vertices             

  
,  and then join by a path as 

         

 
   , for     

 

 
  . Join the vertex    and      The label of the edge      is also 1. The labels of the edges          

 
   , for 

    
 

 
   are all 0. 

 Here,        =  
 

 
  ,       =  

 

 
     and hence                 1. Thus the constructed graph G is separation cordial.  

 

Case (iv): n ≡ 3 (mod 4) 

 

 Construct a path containing 
   

 
 vertices              

  

 which are labeled as        
   

 
 respectively. The edges        , for 

    
   

 
, have the label 1. Add  

   

 
 vertices     

 
  

      

 
  

      , below (above), parallel to the path constructed earlier, which 

are labeled as 
   

 
   

   

 
         respectively to the above (below) vertices               

  
    

 and then join by a path as 

      

 
  

, for     
   

 
  . The labels of the edges       

 
  

, for     
   

 
   are 0 each.  

         So, we have       =  
   

 
  ,       =  

   

 
  and hence                =    Therefore, the resultant graph G is separation 

cordial. Hence the proof. 

 

The Class      of Planar Graphs 

 

 J. Baskar Babujee [9] defined a class of planar graphs obtained by removing some edges from the complete graphs   . The class 

of planar graphs on n vertices so obtained having maximum number of edges possible is denoted by     

 

Definition 2.1[9]: Let    be the complete graph on ‘n’ vertices    =           . The class of graphs     has the vertex set    and 

the edge set                                      
 

We use    to denote a complete graph with ‘n’ vertices and with all possible edges. A graph is said to be embedded in a surface S 

when it is drawn in S so that two edges don’t intersect. A graph is planar if it can be embedded in the plane. The complete graph    

           are planar. For    n ≥ 5,    is non planar.  

 

We construct planar graphs from   , (n ≥ 5). 

 

Construction:  

 

 Place the vertices    and    as the end points of a horizontal line segment as shown in Figure. 1. Now place the vertices   ,   ,… 

,     ,    along a vertical line (perpendicular to the line segment used for placing    and   ) with    at the top and    at the bottom 
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so that   ,    and     form a triangular face. Join the vertices   ,   , .. ,    to    and    to form 2n – 5 interior faces in this graph 

    The edges of the graph     can now be drawn without any crossings. All the faces of this graph are of size 3.  

 
Figure 1: The class     

 

Theorem 2.2: The class       of planar graphs is separation cordial, for n ≥ 5. 

 

Proof: Consider the planar class          with n vertices            and 3n – 6 edges. Define a bijection   from   to             
as follows. 

The labeling of the vertices are: 

 

               { 

                                         

           *
 

 
+

                      

 

                             *
 

 
+      

                             *
 

 
+      

For even values of n, ef (0) = ef (1)  

For odd values of n and not a multiple of 3,       =          and for odd values of n and a multiple of 3,       =        . 

 

Hence, in both case,                  

 

 Therefore, class     of planar graphs is separation cordial, for n ≥ 5. 

  

The class        of Bipartite Planar Graphs 

 

Here, we introduce a class of planar graphs denoted by        obtained from the complete bipartite graphs              by 

removing certain edges. 

 

Definition 2.3: Let              be the complete bipartite graph on    =              and    =             . The class of 

graphs             has the vertex set         and the edge set                   (     )                  

     
 

The complete bipartite graphs            and            are planar.   

 

But for      ,        is non planar.  

 

We construct planar graphs from              

 

Construction: 

 

 Place the vertices            in that order along a horizontal line segment with   as the left end -point and    as the right end-

point. Place the vertices                 in that order along a vertical line segment with     as the bottom end-point and     as the 

top end-point so that these entire line segment is below the horizontal line segment, where            are placed. At last place    

above the horizontal line segment so that the vertices         and      form a face of length 4, for       –   . Join the vertices 
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            to   and    to form       interior faces in this graph       as shown in Figure 2. All the faces of this graph are of 

size 4 

 
Figure 2: The class       

 

Theorem 2.3: The class       of planar graphs is separation cordial, for m, n ≥ 3 and at least one of  m or n is even. 

 

Proof: Consider the planar class             with m + n vertices                        and 2m + 2n - 4 edges. Define a 

bijection   from   to            as follows. 

The labeling of the vertices are: 

 

                      

                        

Here,       =       –    =        for m, n ≥ 3 and at least one of them is even. 

Hence                  

Therefore, the class       of planar graphs is separation cordial, for m, n  ≥ 3 and at least one of them is even. 

 

Theorem 2.4: If G is a separation cordial graph of even size, then G – e is also separation cordial,  for all e   E (G). 

 

Proof: Let the size of the separation cordial graph be q. Then it follows that              = 
 

 
. Let e be any edge in G which is 

labeled as either 0 or 1. Then in G – e, clearly,       =         or       =         and therefore                 . Thus       

G – e is separation cordial, for all e   E (G). 

 

Theorem 2.5: If G is a separation cordial graph of odd size, then G – e is also separation cordial for some e   E (G). 

 

Proof: Let the size of the separation cordial graph be q. Then it follows that                  or                . If        

       + 1, then removing the edge   which is labeled as 0 is also separation cordial. If               , then removing the edge 

  which is labeled as 1 is also separation cordial. Then, in both case,                But if we remove the edge   which is labeled as 

1 in       =       + 1, changes the graph   –    into a non separation cordial graph. Similarly the latter case also. Therefore,   –    is 

also separation cordial for some         . 

 

Definition 2.4: An ordered rooted tree is a binary tree if each vertex has at most two children. 

 

Definition 2.5: A full binary tree is a binary tree in which each vertex has exactly two children. 

 

Theorem 2.6: Every full binary tree is separation cordial. 

 

Proof: We have every full binary tree has odd number of vertices and hence has even number of edges. Let   be a full binary tree and 

let   be a root of   which is called zero level vertex. Also, the     
 level of     has    vertices. If   has   levels, then number of 

vertices of     is         and the number of edges is          
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 Now, assign the label 1 to the root    Next, we assign the labels                       to the     level vertices for        . 

Then, upto the     level edges,       =      and       =     , for        .  

Thus                  and therefore   is separation cordial.  

 

Theorem 2.7: The star graph      is separation cordial.  

 

Proof: The star graph      has q + 1 vertices and q edges. Now assign the label 1 to the centre of the star graph. Next we assign the 

labels 2 to       to the other   vertices in any order. If   is even ef (0) = ef (1) = 
 

 
 and if q is odd, ef (1) = 

   

 
  and ef (0) = 

   

 
    Thus 

                 always. Hence      is separation cordial. 

 

Theorem 2.8: The complete graph    is not separation cordial, for n ≥ 4. 

 

Proof: The complete graph    has n vertices            and  
       

 
 edges. Define a bijection   from   to            as follows.  

 

The labeling of the vertices are:                      . 

 

Case (i) suppose n is even 

  

 First calculate ef (1).  The edges        for        
 

 
 gives ef (1)  =  

 

 
.  

The edges           for         
 

 
   gives ef (1)  =  

 

 
    The edges           for         

 

 
    gives ef (1)  =  

 

 
  . The 

edges           for       
 

 
    gives ef (1) =  

 

 
   and so on. At last the edges              for      

 

 
  

 

 
    gives ef 

(1)  =  
 

 
  

 

 
   . 

 

 Adding all the values of ef (1), we get,  

 

ef (1) = 
 

  
 +  

 

 
    +  

 

 
      

 

 
     (

 

 
  )     … +*

 

 
    

 

 
   + 

 

         =       
 

 
  *             ( 

 

 
  )  ( 

 

 
  )+   

 

         =       
 

 
  *         ( 

 

 
  )+   

        

         =       
 

 
  [  [

(
 

 
  ) 

 

 

 
]] 

 

         =      
 

 
 * 

 

 
   

 

 
+ 

 

ef (1)  =  
  

 
 

We have, ef (0) +  ef (1) =  
      

 
 

                            ef (0)  =  
      

 
   ef (1) =   

      

 
  

  

 
  = 

  

 
  

 

  
 . 

Thus,                 , for  n ≥ 4.  

 

Therefore, the complete graph    is not separation cordial, for even values of n ≥ 4 

 

Case (ii) suppose n is odd. 

  

             As above, calculate ef (1). The edges        for      
   

 
  gives ef (1) =  

   

 
. The edges           for        

   

 
  gives 

ef (1)  =  
   

 
   The edges           for        

   

 
    gives ef (1)  =  

   

 
  . The edges           for       

   

 
    gives    

ef (1) =  
   

 
   and so on. At last the edges              for      

   

 
  

   

 
    gives ef (1)  =  

   

 
  

   

 
   . 

 

 Adding all the values of ef (1), we get,  

 

ef (1) = 
   

  
 + 

   

  
  +  

   

 
    +  

   

 
          *

   

 
    

   

 
   + 

         =         
   

 
   *        ( 

   

 
  )  ( 

   

 
  )+   
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         =         
   

 
   *         ( 

   

 
  )+   

        

         =         
   

 
   [  [

(
   

 
  )  

   

 
 

 
]] 

 

         =        
   

 
  *(

   

 
  )  

   

 
 + 

 

ef (1)  =  
    

 
 

We have, ef (0) +  ef (1) =  
      

 
 

                            ef (0)  =  
      

 
   ef (1) =   

      

 
  (

    

 
 ) =  

    

 
   

 

  
 . 

Thus,                 , for  n ≥ 4.  

 

Therefore, the complete graph    is not separation cordial, for odd values of n ≥ 4.  

 

 Hence, the complete graph    is not separation cordial, for n ≥ 4. 

 

Theorem 2.9: The complete bipartite graph       is separation cordial. 

 

Proof: The complete bipartite graph      has m+n vertices                          and    edges. Define a bijection   from 

  to           as follows.  

 

The labeling of the vertices are: 

 

                      

                      . 

 

Here, ef (0) =  ef (1) = 
   

  
 , for at least one of m or n is even and ef (0) =  

     

  
 ,  

ef (1) =  
       

  
 , for both m and n are odd. Hence,                 , for  all values of m and n. Therefore, the complete bipartite 

graph       is separation cordial. 

 

Definition 2.6: The number of edges in a path is called the length of the path. A path of length n is called n – path and is denoted by 

       
 

Theorem 2.10: The path    is separation cordial. 

 

Proof: The path    has n vertices            and n – 1 edges.  Define a bijection   from   to             The path     and     are 

separation cordial trivially. In       by labeling the vertices        and     as 1, 3 and 2, it is clear the separation cordiality. Place the 

vertices             in such a way that          for 1 ≤ i ≤ n – 1.  

 

The labeling of the vertices for n ≥ 4 are   

 

      

{
 

 
                                              

                                     

                             

                                          

 

 

Here, ef (0) =  
 

  
 , ef (1) =  

 

  
  , for                 

         ef (0) =  
   

  
 , ef (1) =  

   

  
, for                   

         ef (0) =  
 

  
  ,  ef (1) =  

 

  
 , for               

 

Thus,                  

  

Therefore, the path graph     is separation cordial. 

 

Theorem 2.11: The cycle          is separation cordial, where n is not congruent to 2 mod 4. 
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Proof: The cycle    has n vertices            and n edges.  Define a bijection   from   to           . Place the vertices 

            in such a way that          for 1 ≤ i ≤  n – 1 and      are adjacent.  The labeling of the vertices for n = 3 are         
               Therefore, | ef (0) – ef (1) | ≤ 1.  

The labeling of the vertices for n ≥ 4 are   

        . 

     {

                             

                             

                                          

 

 

Here, ef (0) =  
 

  
 , ef (1) =  

 

  
,       for               

         ef (0) =  
   

  
 , ef (1) =  

   

  
, for                 

         ef (0) =  
   

  
,  ef (1) =  

   

  
 , for               

If              | ef (0) – ef (1) | ≥ 2. 

  

Therefore, the cycle          is separation cordial,where n is not congruent to 2 mod 4. 

 

Definition 2.7: Consider t copies of stars namely     
      

   
           

     Then G = 〈    
      

   
           

   〉 is the graph 

obtained by joining apex (central) vertices of each     
     and       

    to new vertex     , where 1 ≤ i ≤ t – 1.  

 

Theorem 2.12: The graph G = 〈    
      

   
           

   〉 is separation cordial.  

 

Proof: The graph G has t (n + 2) – 1 vertices                    and t (n + 2) – 2  edges.  Define a bijection   from   to           . 

Let     be the apex (central)  vertices of     
      for 1 ≤ i ≤  t . Then place                    , 1≤ i ≤ n , 1 ≤ m ≤ t be the vertices of 

    
     Also,     

    and        
    are adjacent to the common vertex             , for 1 ≤ i ≤ t – 1.  

The labeling of the vertices,              for     1 ≤ i ≤ | |.  

 

Here, ef (0) = ef (1) =  
         

  
 , if at least one of t or n is even. 

         ef (0) =  
         

  
  and ef (1) =  

         

  
  if both t and n are odd. 

 Therefore,                  in both case. Hence, graph G is separation cordial.  

 

3. Observations 

Observation 1: The class      ( n ≥ 5) of planar graphs are    - packable [9], but not randomly [10]. 

 

Observation 2: The class       (m, n ≥ 4 and even) of bipartite planar graphs are randomly    - packable [10]. 

 

Observation 3: The complete graph    is separation cordial only for n = 1, 2 and 3 

 

4. Conclusion 

 

  The class     ( n ≥ 5),       (m, n ≥ 3, at least one of m or n is even), full binary tree, the star graph     , the complete bipartite 

graph      , path graph   , are separation cordial. The cycle graph     where n is not congruent to 2 mod 4 are separation cordial 

under certain conditions. But the complete graph    ( n ≥ 4) is not separation cordial.  
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